

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	23
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0880sj020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	12.3.5. LIN-UART Control 0 Register1712.3.6. LIN-UART Control 1 Registers1712.3.7. Noise Filter Control Register1712.3.8. LIN Control Register1712.3.9. LIN-UART Address Compare Register1712.3.10.LIN-UART Baud Rate High and Low Byte Registers17	1 4 5 7
Chapter 1	3. Infrared Encoder/Decoder 18	2
13.1.	Architecture	2
13.2.	Operation	
	13.2.1. Transmitting IrDA Data	
10.0	13.2.2. Receiving IrDA Data	
	Infrared Encoder/Decoder Control Register Definitions	
	4. Analog-to-Digital Converter 18	
	Architecture	
14.2.	Operation	
	14.2.1. ADC Timing 18 14.2.2. ADC Interrupt 18	
	14.2.2. ADC Interrupt	
	14.2.4. Internal Voltage Reference Generator	
	14.2.5. Calibration and Compensation	
14.3.	ADC Control Register Definitions	9
	14.3.1. ADC Control Register 0 18	
	14.3.2. ADC Raw Data High Byte Register	
	14.3.3. ADC Data High Byte Register1914.3.4. ADC Data Low Bits Register19	
	14.3.5. Sample Settling Time Register	
	14.3.6. Sample Time Register	
	14.3.7. ADC Clock Prescale Register 19	5
Chapter 1	5. Low-Power Operational Amplifier 19	6
Chapter 1	6. Enhanced Serial Peripheral Interface 19	7
16.1.	Architecture	7
16.2.	ESPI Signals	9
	16.2.1. Master-In/Slave-Out	
	16.2.2. Master-Out/Slave-In	
	16.2.3. Serial Clock 199 16.2.4. Slave Select 200	
16.3.		
10.3.	16.3.1. Throughput	

Z8 Encore! XP[®] F1680 Series Product Specification

Figure 56.	Target OCD Connector Interface 296
Figure 57.	Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface, #1 of 2
Figure 58.	Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface, #2 of 2
Figure 59.	OCD Data Format
Figure 60.	Synchronous Operation
Figure 61.	Start Bit Flow Control
Figure 62.	Recommended 20MHz Crystal Oscillator Configuration
Figure 63.	Connecting the On-Chip Oscillator to an External RC Network 323
Figure 64.	Typical RC Oscillator Frequency as a Function of External Capacitance 324
Figure 65.	Recommended 32kHz Crystal Oscillator Configuration 325
Figure 66.	Op Code Map Cell Description 345
Figure 67.	First Op Code Map
Figure 68.	Second Op Code Map after 1FH 348
Figure 69.	Typical Active Flash Mode Supply Current (1–20MHz) 353
Figure 70.	Typical Active PRAM Mode Supply Current (1–20MHz) 354
Figure 71.	Typical Active Flash Mode Supply Current (32–900kHz) 354
Figure 72.	Typical Active PRAM Mode Supply Current (32–900kHz) 355
Figure 73.	STOP Mode Current Consumption as a Function of V _{DD} with Temperature as a Parameter; all Peripherals Disabled
Figure 74.	VDD Versus Maximum System Clock Frequency
Figure 75.	Port Input Sample Timing
Figure 76.	GPIO Port Output Timing
Figure 77.	On-Chip Debugger Timing
Figure 78.	UART Timing With CTS
Figure 79.	UART Timing Without CTS 370

1.3. Block Diagram

Figure 1 displays the architecture of the F1680 Series MCU.

Figure 1. F1680 Series MCU Block Diagram

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tristate Output	Internal Pull-up or Pull-down	Schmitt Trigger Input	Open Drain Output	5V Tolerance
PE[6:0]	I/O	I	N/A	Yes	Programmable pull-up	Yes	Yes, programmab le	Yes, 5V tolerant inputs unless pull- ups are enabled
RESET/ PD0	I/O	I/O (defaults <u>to</u> RESET)	Low (in RESET mode)	Yes (PD0 only)	Programmable for PD0; always On for RESET		Programmab le for PD0; alw <u>ays On</u> for RESET	Yes, 5V tolerant inputs unless pull- ups are enabled
V _{DD}	N/A	N/A	N/A	N/A			N/A	N/A
V _{SS}	N/A	N/A	N/A	N/A			N/A	N/A

18

Address (Hex)	Register Description	Mnemonic	Reset (Hex) ¹	Page #				
F4B	LIN UART1 Control 1—Multiprocessor Control	U1CTL1	00	<u>172</u>				
	LIN UART1 Control 1—Noise Filter Control	U1CTL1	00	<u>174</u>				
	LIN UART1 Control 1—LIN Control	U1CTL1	00	<u>175</u>				
F4C	LIN UART1 Mode Select and Status	U1MDSTAT	00	<u>168</u>				
F4D	UART1 Address Compare	U1ADDR	00	<u>177</u>				
F4E	UART1 Baud Rate High Byte	U1BRH	FF	<u>177</u>				
F4F	UART1 Baud Rate Low Byte	U1BRL	FF	<u>178</u>				
l ² C								
F50	I ² C Data	I2CDATA	00	244				
F51	I ² C Interrupt Status	I2CISTAT	80	<u>245</u>				
F52	I ² C Control	I2CCTL	00	<u>247</u>				
F53	I ² C Baud Rate High Byte	I2CBRH	FF	<u>248</u>				
F54	I ² C Baud Rate Low Byte	I2CBRL	FF	<u>249</u>				
F55	I ² C State	I2CSTATE	02	<u>251</u>				
F56	I ² C Mode	I2CMODE	00	<u>252</u>				
F57	I ² C Slave Address	I2CSLVAD	00	<u>255</u>				
F58-F5F	Reserved	_	XX					
Enhanced Seria	al Peripheral Interface (ESPI)							
F60	ESPI Data	ESPIDATA	XX	<u>214</u>				
F61	ESPI Transmit Data Command	ESPITDCR	00	<u>214</u>				
F62	ESPI Control	ESPICTL	00	<u>215</u>				
F63	ESPI Mode	ESPIMODE	00	<u>217</u>				
F64	ESPI Status	ESPISTAT	01	<u>219</u>				
F65	ESPI State	ESPISTATE	00	<u>220</u>				
F66	ESPI Baud Rate High Byte	ESPIBRH	FF	<u>220</u>				
F67	ESPI Baud Rate Low Byte	ESPIBRL	FF	<u>220</u>				
F68–F6F	Reserved		XX					

Table 8. Register Fi	le Address Map	(Continued)
----------------------	----------------	-------------

Notes:

1. XX=Undefined.

2. The Reserved space can be configured as General-Purpose Register File RAM depending on the user option bits (see the <u>User Option Bits</u> chapter on page 277) and the on-chip PRAM size (see the <u>Ordering Information</u> chapter on page 372). If the PRAM is programmed as General-Purpose Register File RAM on Reserved space, the starting address always begins immediately after the end of General-Purpose Register File RAM.

Bit	Description (Continued)
[6]	Timer Input/Output Polarity
TPOL	Operation of this field is a function of the current operating modes of the timer.
	ONE-SHOT Mode
	When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer reload.
	CONTINUOUS Mode
	When the timer is disabled, the Timer Output signal is set to the value of this bit. When the
	timer is enabled, the Timer Output signal is complemented upon timer reload.
	COUNTER Mode
	When the timer is disabled, the Timer Output signal is set to the value of this bit. When the
	timer is enabled, the Timer Output signal is complemented upon timer reload.
	0 = Count occurs on the rising edge of the Timer Input signal.
	1 = Count occurs on the falling edge of the Timer Input signal.
	PWM SINGLE OUTPUT Mode
	0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced High (1) on PWM count match and forced Low (0) on Reload.
	1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer
	Output is forced Low (0) on PWM count match and forced High (1) on Reload.
	CAPTURE Mode
	0 = Count is captured on the rising edge of the Timer Input signal.
	1 = Count is captured on the falling edge of the Timer Input signal.
	COMPARE Mode
	When the timer is disabled, the Timer Output signal is set to the value of this bit. When the
	timer is enabled, the Timer Output signal is complemented on timer reload.
	GATED Mode
	0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on th
	falling edge of the Timer Input.
	1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on th
	rising edge of the Timer Input.
	CAPTURE/COMPARE Mode
	0 = Counting is started on the first rising edge of the Timer Input signal. The current count i
	captured on subsequent rising edges of the Timer Input signal.
	1 = Counting is started on the first falling edge of the Timer Input signal. The current count
	captured on subsequent falling edges of the Timer Input signal.

114

Bit	Description (Continued)
[5:3]	Prescale Value
PRES	The timer input clock is divided by 2PRES, where PRES can be set from 0 to 7. The prescaler is reset each time the Timer is disabled. This insures proper clock division each time the Timer is restarted. 000 = Divide by 1 001 = Divide by 2 010 = Divide by 4 011 = Divide by 8
	100 = Divide by 16
	101 = Divide by 32 110 = Divide by 64
	111 = Divide by 128
[2:0] TMODE[2	Timer Mode 1:0] This field, along with the TMODE[3] bit in the TxCTL0 Register, determines the operating mode of the timer. TMODE[3:0] selects among the following modes: 0000 = ONE-SHOT Mode 0001 = CONTINUOUS Mode 0010 = COUNTER Mode 0011 = PWM SINGLE OUTPUT Mode 0100 = CAPTURE Mode 0101 = COMPARE Mode 0110 = GATED Mode 0111 = CAPTURE/COMPARE Mode
	1000 = PWM DUAL OUTPUT Mode 1001 = CAPTURE RESTART Mode 1010 = COMPARATOR COUNTER Mode
	1011 = TRIGGERED ONE-SHOT Mode 1100 = DEMODULATION Mode

Table 75. Multi-Channel Time	er Control 1 Register (MCTCTL1)
------------------------------	---------------------------------

Bit	7	6	5	4	3	2	1	0		
Field	TEN	Reserved		PRES		Reserved	TMO	DDE		
Reset	0	0	0	0	0	0	0	0		
R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W		
Address		See note.								
Note: If a	00H is in the S	Subaddress R	egister, it is a	accessible thr	ough Subreg	ister 1.				
Bit	Descriptio	n								
[7] TEN	0 = Timer is	Timer Enable 0 = Timer is disabled and the counter is reset. 1 = Timer is enabled to count.								
[6]	Reserved;	must be 0.								
[5:3] PRES	Prescale Value The system clock is divided by 2PRES, where PRES can be set from 0 to 7. The prescaling operation is not applied when the alternate function input pin is selected as the timer clock source. 000 = Divide by 1 001 = Divide by 2 010 = Divide by 4 011 = Divide by 8 100 = Divide by 16 101 = Divide by 32 110 = Divide by 64 111 = Divide by 128									
[2]	Reserved; must be 0.									
[1:0] TMODE	counti 01 = Reser 10 = Count	Modulo: Tin ng up resum ved. up/down: Ti d count down	ies. mer Counts	up to Reloa	Ū	alue. Then it counts dowr				

11 = Reserved.

WDT Reload	(with	Approximate Time-Out Delay 10kHz Typical WDT Oscillator Frequency)
Value (Decimal)	Typical	Description
1024	102 ms	Reset default value time-out delay.
65,536	6.55 s	Maximum time-out delay.
	Value (Decimal) 1024	WDT ReloadValue (Decimal)Typical1024102 ms

Table 80. Watchdog Timer Approximate Time-Out Delays

11.1.1. Watchdog Timer Refresh

When first enabled, the WDT is loaded with the value in the WDT Reload registers. The WDT then counts down to 0000H unless a WDT instruction is executed by the eZ8 CPU. Execution of the WDT instruction causes the downcounter to be reloaded with the WDT reload value stored in the WDT Reload registers. Counting resumes following the reload operation.

When the eZ8 CPU is operating in DEBUG Mode (through the OCD), the WDT is continuously refreshed to prevent unnecessary WDT time-outs.

11.1.2. Watchdog Timer Time-Out Response

The WDT times out when the counter reaches 0000H. A time-out of the WDT generates either a system exception or a Reset. The WDT_RES option bit determines the time-out response of the WDT. For information about programming the WDT_RES option bit, see the Flash Option Bits section on page 276.

11.1.2.1. WDT System Exception in Normal Operation

If it is configured to generate a system exception when a time-out occurs, the WDT issues an exception request to the interrupt controller. The eZ8 CPU responds to the request by fetching the System Exception vector and executing code from the vector address. After time-out and system exception generation, the WDT is reloaded automatically and continues counting.

11.1.2.2. WDT System Exception in STOP Mode

The WDT automatically initiates a Stop Mode Recovery and generates a system exception request if configured to generate a system exception when a time-out occurs and the CPU is in STOP Mode. Both the WDT status bit and the stop bit in the Reset Status Register are set to 1 following a WDT time-out in STOP Mode.

Upon completion of the Stop Mode Recovery, the eZ8 CPU responds to the system exception request by fetching the System Exception vector and executing code from the vector address.

Applicable	BRG Divisor	Actual Rate		Applicable	BRG Divisor	Actual Rate	
Rate (kHz)	(Decimal)	(kHz)	Error (%)	Rate (kHz)	(Decimal)	(kHz)	Error (%)
38.4	16	39.1	1.73	0.30	2083	0.30	0.2
19.2	33	18.9	0.16				

Table 97. LIN-UART Baud Rates, 10.0 MHz System Clock (Continued)

Table 98. LIN-UART Baud Rates, 5.5296 MHz System Clock

Applicable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)	Applicable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)
1250.0	N/A	N/A	N/A	9.60	36	9.60	0.00
625.0	N/A	N/A	N/A	4.80	72	4.80	0.00
250.0	1	345.6	38.24	2.40	144	2.40	0.00
115.2	3	115.2	0.00	1.20	288	1.20	0.00
57.6	6	57.6	0.00	0.60	576	0.60	0.00
38.4	9	38.4	0.00	0.30	1152	0.30	0.00
19.2	18	19.2	0.00				

Table 99. LIN-UART Baud Rates, 3.579545 MHz System Clock

	BRG				BRG		
Applicable Rate (kHz)	Divisor (Decimal)	Actual Rate (kHz)	Error (%)	Applicable Rate (kHz)	Divisor (Decimal)	Actual Rate (kHz)	Error (%)
1250.0	N/A	N/A	N/A	9.60	23	9.73	1.32
625.0	N/A	N/A	N/A	4.80	47	4.76	-0.83
250.0	1	223.72	-10.51	2.40	93	2.41	0.23
115.2	2	111.9	-2.90	1.20	186	1.20	0.23
57.6	4	55.9	-2.90	0.60	373	0.60	-0.04
38.4	6	37.3	-2.90	0.30	746	0.30	-0.04
19.2	12	18.6	-2.90				

Figure 39. ESPI Configured as an SPI Master in a Single Master, Single Slave System

16.3.4.2. Multi-Master SPI Operation

In a Multi-Master SPI system, all SCK pins are tied together, all MOSI pins are tied together and all MISO pins are tied together. All SPI pins must be configured in opendrain mode to prevent bus contention. At any time, only one SPI device is configured as the Master and all other devices on the bus are configured as slaves. The Master asserts the enabled when running in I^2C FAST Mode (400 Kbps) and can also be used at lower data rates.

17.2.2. I²C Interrupts

The I²C controller contains multiple interrupt sources that are combined into one interrupt request signal to the interrupt controller. If the I²C controller is enabled, the source of the interrupt is determined by which bits are set in the I2CISTAT Register. If the I²C controller is disabled, the BRG controller is used to generate general-purpose timer interrupts.

Each interrupt source, other than the baud rate generator interrupt, features an associated bit in the I2CISTAT Register that clears automatically when software reads the register or performs another task, such as reading/writing the Data Register.

17.2.2.1. Transmit Interrupts

Transmit interrupts (TDRE bit = 1 in I2CISTAT) occur under the following conditions, both of which must be true:

- The Transmit Data Register is empty and the TXI bit = 1 in the I^2C Control Register.
 - The I^2C controller is enabled with one of the following elements:
 - The first bit of a 10-bit address is shifted out.
 - The first bit of the final byte of an address is shifted out and the RD bit is deasserted.
 - The first bit of a data byte is shifted out.

Writing to the I²C Data Register always clears the TRDE bit to 0.

17.2.2.2. Receive Interrupts

Receive interrupts (RDRF bit = 1 in I2CISTAT) occur when a byte of data has been received by the I²C controller. The RDRF bit is cleared by reading from the I²C Data Register. If the RDRF interrupt is not serviced prior to the completion of the next Receive byte, the I²C controller holds SCL Low during the final data bit of the next byte until RDRF is cleared, to prevent receive overruns. A receive interrupt does not occur when a Slave receives an address byte or for data bytes following a slave address that do not match. An exception is if the Interactive Receive Mode (IRM) bit is set in the I2CMODE Register, in which case Receive interrupts occur for all Receive address and data bytes in SLAVE Mode.

17.2.2.3. Slave Address Match Interrupts

Slave address match interrupts (SAM bit = 1 in I2CISTAT) occur when the I^2C controller is in SLAVE Mode and an address received matches the unique slave address. The General Call Address (0000_0000) and STARTBYTE (0000_0001) are recognized if the

The first 7 bits transmitted in the first byte are 11110xx. The 2 xx bits are the two most significant bits of the 10-bit address. The lowest bit of the first byte transferred is the Read/Write control bit (which is cleared to 0). The transmit operation is performed in the same manner as 7-bit addressing.

Observe the following steps for a master transmit operation to a 10-bit addressed slave:

- The software initializes the MODE field in the I²C Mode Register for MASTER/ SLAVE Mode with 7- or 10-bit addressing (the I²C bus protocol allows the mixing of slave address types). The MODE field selects the address width for this mode when addressed as a slave (but not for the remote slave). The software asserts the IEN bit in the I²C Control Register.
- 2. The software asserts the TXI bit of the I²C Control Register to enable transmit interrupts.
- 3. The I^2C interrupt asserts because the I^2C Data Register is empty.
- 4. The software responds to the TDRE interrupt by writing the first Slave Address byte (11110xx0). The least-significant bit must be 0 for the write operation.
- 5. The software asserts the start bit of the I^2C Control Register.
- 6. The I^2C controller sends a start condition to the I^2C Slave.
- 7. The I²C controller loads the I²C Shift Register with the contents of the I²C Data Register.
- 8. After one bit of the address is shifted out by the SDA signal, the transmit interrupt asserts.
- 9. The software responds by writing the second byte of address into the contents of the I²C Data Register.
- 10. The I²C controller shifts the remainder of the first byte of the address and the Write bit out via the SDA signal.
- 11. The I²C slave sends an Acknowledge by pulling the SDA signal Low during the next High period of SCL. The I²C controller sets the ACK bit in the I²C Status Register.

If the slave does not acknowledge the first address byte, the I²C controller sets the NCKI bit in the I²C Status Register, sets the ACKV bit and clears the ACK bit in the I²C State Register. The software responds to the Not Acknowledge interrupt by setting the stop bit and clearing the TXI bit. The I²C controller flushes the second address byte from the Data Register, sends a stop condition on the bus and clears the stop and NCKI bits. The transaction is complete and the following steps can be ignored.

- 12. The I²C controller loads the I²C Shift Register with the contents of the I²C Data Register (2nd address byte).
- 13. The I²C controller shifts the second address byte out via the SDA signal. After the first bit has been sent, the transmit interrupt asserts.

Chapter 19. Temperature Sensor

The on-chip Temperature Sensor allows you to measure temperature on the die to an accuracy of roughly $\pm 7^{\circ}$ C over a range of -40° C to $+105^{\circ}$ C. Over a reduced range, the accuracy is significantly better. This block is a moderately accurate temperature sensor for low-power applications where high accuracy is not required. Uncalibrated accuracy is significantly worse, therefore the temperature sensor is not recommended for untrimmed use:

- On-chip temperature sensor
- $\pm 7^{\circ}$ C full-range accuracy for calibrated version
- $\pm 1.5^{\circ}$ C accuracy over the range of 20° C to 30° C
- Flash recalibration capability

19.1. Operation

The on-chip temperature sensor is a Proportional To Absolute Temperature (PTAT) topology which provides for zero-point calibration. A pair of Flash option bytes contain the calibration data. The temperature sensor can be disabled by a bit in the <u>Power Control</u> <u>Register 0</u> (see page 44) to reduce power consumption.

The temperature sensor can be directly read by the ADC to determine the absolute value of its output. The temperature sensor output is also available as an input to the comparator for threshold type measurement determination. The accuracy of the sensor when used with the comparator is substantially less than when measured by the ADC. Maximum accuracy can be obtained by customer retrimming the sensor using an external reference and a high-precision external reference in the target application.

During normal operation, the die undergoes heating that will cause a mismatch between the ambient temperature and that measured by the sensor. For best results, the XP device should be placed into STOP Mode for sufficient time such that the die and ambient temperatures converge (this time will be dependent on the thermal design of the system). The temperature sensor should be measured immediately after recovery from STOP Mode.

The following two equations define the relationship between the ADC reading and the die temperature. In each equation, T is the temperature in degrees Celsius, and ADC is the 10-bit compensated ADC value.

Equation #1. If bit 2 of TEMPCALH calibration option byte is 0, then:

T = (25/128) * (ADC + {TEMPCALH_bit1, TEMPCALH_bit0, TEMPCALL}) - 77

Equation #2. If bit 2 of TEMPCALH calibration option byte is 1, then:

T = (25/128) * (ADC - {TEMPCALH_bit1, TEMPCALH_bit0, TEMPCALL}) -77

The Flash Sector Protect Register can be configured to prevent sectors from being programmed or erased. After a sector is protected, it cannot be unprotected by user code. The Flash Sector Protect Register is cleared after reset and any previously written protection values is lost. User code must write this register in their initialization routine if they want to enable sector protection.

The Flash Sector Protect Register shares its Register File address with the Page Select Register. The Flash Sector Protect Register is accessed by writing the Flash Control Register with 5EH. After the Flash Sector Protect Register is selected, it can be accessed at the Page Select Register address. When user code writes the Flash Sector Protect Register, bits can only be set to 1. Thus, sectors can be protected, but not unprotected, via register write operations. Writing a value other than 5EH to the Flash Control Register deselects the Flash Sector Protect Register and reenables access to the Page Select Register. code:

- 1. Write 00H to the Flash Control Register to reset the Flash Controller.
- 2. Write 5EH to the Flash Control Register to select the Flash Sector Protect Register.
- 3. Read and/or write the Flash Sector Protect Register which is now at Register File address FF9H.
- 4. Write 00H to the Flash Control Register to return the Flash Controller to its reset state.

The Sector Protect Register is initialized to 0 on Reset, putting each sector into an unprotected state. When a bit in the Sector Protect Register is written to 1, the corresponding sector can no longer be written or erased. After a bit of the Sector Protect Register has been set, it can not be cleared except by a System Reset.

20.2.4. Byte Programming

Flash memory is enabled for byte programming on the active page after unlocking the Flash Controller. Erase the address(es) to be programmed using either the Page Erase or Mass Erase command prior to performing byte programming. An erased Flash byte contains all 1s (FFH). The programming operation can only be used to change bits from 1 to 0. To change a Flash bit (or multiple bits) from 0 to 1 requires execution of either the Page Erase or Mass Erase command.

Byte programming can be accomplished using the On-Chip Debugger's Write Memory command or eZ8 CPU execution of the LDC or LDCI instructions. For a description of the LDC and LDCI instructions, refer to the <u>eZ8 CPU Core User Manual (UM0128)</u>, available for download at <u>www.zilog.com</u>. While the Flash Controller programs the contents of Flash memory, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate.

After a byte is written, the page remains unlocked, allowing for subsequent writes to other bytes on the same page. To exit programming mode and lock Flash memory, write any value to the Flash Control Register except the Mass Erase or Page Erase commands.

20.3.4. Flash Sector Protect Register

The Flash Sector Protect Register is shared with the Flash Page Select Register. When the <u>Flash Control Register</u> (see page 271) is written with 5EH, the next write to this address targets the Flash Sector Protect Register. In all other cases, it targets the Flash Page Select Register.

This register selects one of the eight available Flash memory sectors to be protected. The reset state of each Sector Protect bit is an unprotected state. After a sector is protected by setting its corresponding register bit, it can only be unprotected (the register bit can only be cleared) by a System Reset. Please refer to <u>Table 132</u> on page 262 and to Figures 51 through 53 to review how Flash memory is arranged by sector.

Bits	7	6	5	4	3	2	1	0				
Field	SPROT7	SPROT6	SPROT5	SPROT4	SPROT3	SPROT2	SPROT1	SPROT0				
Reset	0	0	0	0	0	0	0	0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address		FF9H										

Table	137.	Flash	Sector	Protect	Register	(FPROT)
IUNIO		1 14011	000101	1101001	riogiotoi	(

Bit	Description
[7:0]	Sector Protection
SPROT <i>x</i>	 On Z8F2480 devices, each bit corresponds to a 3KB Flash sector.
	 On Z8F1680 devices, each bit corresponds to a 2KB Flash sector.
	• On 79E0890 dovinger, and hit corresponde to a 1KP Electrosector

• On Z8F0880 devices, each bit corresponds to a 1KB Flash sector.

20.3.5. Flash Frequency High and Low Byte Registers

The Flash Frequency High and Low Byte registers, shown in Tables 138 and 139, combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash Frequency value must contain the system clock frequency (in kHz) and is calculated using the following equation:

FFREQ[15:0] = {FFREQH[7:0],FFREQL[7:0]} = System Clock Frequency 1000

Caution: Flash programming and erasure is not supported for system clock frequencies below 32 kHz or above 20MHz. The Flash Frequency High and Low Byte registers must be loaded with the correct values to ensure proper operation of the device.

23.2.6. Automatic Reset

The Z8 Encore! XP F1680 Series devices have the capability to switch clock sources during operation. If the Autobaud is set and the clock source is switched, the Autobaud value becomes invalid. A new Autobaud value must be configured with the new clock frequency.

The oscillator control logic has clock switch detection. If a clock switch is detected and the Autobaud is set, the device will automatically send a Serial Break for 4096 clocks. This will reset the Autobaud and indicate to the host that a new Autobaud character should be sent.

23.2.7. Transmit Flow Control

Transmit flow control is implemented by the use of a remote start bit. When transmit flow control is enabled, the transmitter will wait for the remote host to send the start bit. Transmit flow control is useful in applications where receive overruns can occur.

The remote host can transmit a remote start bit by sending the character FFH. The transmitter will append its data after the start bit. Due to the *wire-and* nature of the open drain bus, the start bit sent by the remote host and the data bits sent by the Z8 Encore! XP F1680 Series device appear as one character; see Figure 61.

Receiving Device		ST									
Transmitting Device			D0	D1	D2	D3	D4	D5	D6	D7	SP
Single Wire Bus		ST	D0	D1	D2	D3	D4	D5	D6	D7	SP
	SP =	= Start = Stop D7 = D	bit	its							

Figure 61. Start Bit Flow Control

23.2.8. Breakpoints

Execution breakpoints are generated using the BRK instruction (op code 00H). When the eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If breakpoints are enabled, the OCD idles the eZ8 CPU and enters DEBUG mode. If breakpoints are not

27.3. eZ8 CPU Instruction Notation

In the <u>eZ8 CPU Instruction Summary</u> section on page 336, the operands, condition codes, status flags and address modes are represented by the notational shorthand provided in Table 176.

Notation	Description	Operand	Range
b	Bit	b	b represents a value from 0 to 7 (000B to 111B)
CC	Condition Code	—	See the Condition Codes overview in the <u>eZ8</u> CPU Core User Manual (UM0128)
DA	Direct Address	Addrs	Addrs. represents a number in the range of 0000H to FFFFH
ER	Extended Addressing Register	Reg	Reg. represents a number in the range of 000H to FFFH
IM	Immediate Data	#Data	Data is a number between 00H to FFH
lr	Indirect Working Register	@Rn	n = 0 –15
IR	Indirect Register	@Reg	Reg. represents a number in the range of 00H to FFH
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12 or 14
IRR	Indirect Register Pair	@Reg	Reg. represents an even number in the range 00H to FEH
р	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0–15
R	Register	Reg	Reg. represents a number in the range of 00H to FFH
RA	Relative Address	Х	X represents an index in the range of $+127$ to -128 , which is an offset relative to the address of the next instruction
rr	Working Register Pair	RRp	p = 0, 2, 4, 6, 8, 10, 12 or 14
RR	Register Pair	Reg	Reg. represents an even number in the range of 00H to FEH
Vector	Vector Address	Vector	Vector represents a number in the range of 00H to FFH
Х	Indexed	#Index	The register or register pair to be indexed is offset by the signed Index value (#Index) in a +127 to -128 range.

Table 176. Notational Shorthand

Assembly			dress ode	Op Code(s)			Fla	ags			_ Fetch Cycles	Instr. Cycles
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н		
TM dst, src	dst AND src	r	r	72	_	*	*	0	_	-	2	3
		r	lr	73	_						2	4
		R	R	74	_						3	3
		R	IR	75	_						3	4
		R	IM	76	_						3	3
		IR	IM	77	_						3	4
TMX dst, src	dst AND src	ER	ER	78	_	*	*	0	_	_	4	3
		ER	IM	79	_						4	3
TRAP Vector	$SP \leftarrow SP - 2$ @SP \leftarrow PC $SP \leftarrow SP - 1$ @SP \leftarrow FLAGS PC \leftarrow @Vector		Vector	F2	_	-	_	-	-	_	2	6
WDT				5F	—	-	_	_	_	_	1	2
XOR dst, src	$dst \gets dst \ XOR \ src$	r	r	B2	—	*	*	0	_	_	2	3
		r	lr	B3	_						2	4
		R	R	B4	_						3	3
		R	IR	B5	_						3	4
		R	IM	B6	_						3	3
		IR	IM	B7	_						3	4
XORX dst, src	$dst \gets dst \ XOR \ src$	ER	ER	B8	—	*	*	0	_	_	4	3
		ER	IM	B9	_						4	3

Table 186. eZ8 CPU Instruction Summary (Continued)

Flags notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 =Set to 1.

Chapter 30. Packaging

Zilog's F1680 Series of MCUs includes the Z8F0880, Z8F1680 and Z8F2480 devices, which are available in the following packages:

- 20-pin Plastic Dual-Inline Package (PDIP)
- 20-pin Small Outline Integrated Circuit Package (SOIC)
- 20-pin Small Shrink Outline Package (SSOP)
- 28-pin Plastic Dual-Inline Package (PDIP)
- 28-pin Small Outline Integrated Circuit Package (SOIC)
- 28-pin Small Shrink Outline Package (SSOP)
- 40-pin Plastic Dual-Inline Package (PDIP)
- 44-pin Low-Profile Quad Flat Package (LQFP)
- 44-pin Quad Flat No Lead (QFN)

Current diagrams for each of these packages are published in Zilog's <u>Packaging Product</u> <u>Specification (PS0072)</u>, which is available free for download from the Zilog website.