
Zilog - Z8F1680SJ020EG Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT

Number of I/O 23

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 3K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f1680sj020eg

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f1680sj020eg-4380631
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8 Encore! XP® F1680 Series
Product Specification

xxiii
Table 148. Trim Option Bits at 0002H (TIPO). 283

Table 149. Trim Option Bits at Address 0003H (TLVD_VBO) 284

Table 150. LVD_Trim Values . 284

Table 151. Trim Option Bits at 0004H (TCOMP_ADC) . 286

Table 152. Truth Table of HYS . 286

Table 153. Trim Option Bits at 0005H (TVREF). 287

Table 154. Trim Option Bits at 0006H (TBG) . 287

Table 155. Trim Option Bits at 0007H (TFilter0) . 288

Table 156. Trim Option Bits at 0008H (TFilter1) . 288

Table 157. Temperature Sensor Calibration High Byte at FE60H (TEMPCALH) . . . 289

Table 158. Temperature Sensor Calibration Low Byte at FE61H (TEMPCALL) 289

Table 159. Write Status Byte . 291

Table 160. Read Status Byte. 292

Table 161. NVDS Read Time. 293

Table 162. OCD Baud-Rate Limits . 299

Table 163. On-Chip Debugger Commands . 304

Table 164. OCD Control Register (OCDCTL). 310

Table 165. OCD Status Register (OCDSTAT). 312

Table 166. OCD Line Control Register (OCDLCR) . 313

Table 167. Baud Reload Register . 314

Table 168. Oscillator Configuration and Selection. 316

Table 169. Peripheral Clock Source and Usage . 318

Table 170. Oscillator Control 0 Register (OSCCTL0) . 319

Table 171. Oscillator Control 1 Register (OSCCTL1) . 320

Table 172. Recommended Crystal Oscillator Specifications . 323

Table 173. Recommended Crystal Oscillator Specifications . 326

Table 174. Assembly Language Syntax Example 1 . 329

Table 175. Assembly Language Syntax Example 2 . 329

Table 176. Notational Shorthand . 330

Table 177. Additional Symbols . 331
PS025015-1212 P R E L I M I N A R Y List of Tables

Z8 Encore! XP® F1680 Series
Product Specification

12
Figure 4. Z8F2480, Z8F1680 and Z8F0880 in 40-Pin Dual Inline Package (PDIP)

PB0/AMPOUT/ANA0

PD1/C1INN

PD2/C1INP

PC3/MISO/LED

PC2/ANA6/SS/LED

PC1/ANA5/C0INN/LED

PC0/ANA4/C0INP/LED

VSS

PD3/CTS1/C1OUT

PB1/AMPINN/ANA1

PB2/AMPINP/ANA2

PB4/ANA7

PB5/VREF

PB3/CLKIN/ANA3

PE0

AVDD

VDD

1 40

DBG

PA0/T0IN/T0OUT/XIN

PD0/RESET

VDD

PC7/T2OUT/LED

VSS

AVSS

PE1/SCL

PC6/T2IN/T2OUT/LEDPE2/SDA

PD4/RXD1/IRRX1PD7/C0OUT

PA7/T1OUTPA2/DE0/X2IN

PC5/SCK/LED

PC4/MOSI/LED

PA6/T1IN/T1OUT

PA3/CTS0/X2OUT

PD6/DE1

PA4/RXD0/IRRX0

20 21 PD5/TXD1/IRTX1PA5/TXD0/IRTX0

5

10

15

35

30

25

PA1/T0OUT/XOUT
PS025015-1212 P R E L I M I N A R Y Pin Description

Z8 Encore! XP® F1680 Series
Product Specification

18
PE[6:0] I/O I N/A Yes Programmable
pull-up

Yes Yes,
programmab
le

Yes, 5 V
tolerant
inputs
unless pull-
ups are
enabled

RESET/
PD0

I/O I/O
(defaults

to
RESET)

Low (in
RESET
mode)

Yes (PD0
only)

Programmable
for PD0; always
On for RESET

Yes Programmab
le for PD0;
always On
for RESET

Yes, 5 V
tolerant
inputs
unless pull-
ups are
enabled

VDD N/A N/A N/A N/A N/A N/A

VSS N/A N/A N/A N/A N/A N/A

Table 5. Pin Characteristics (20-, 28-, 40- and 44-pin Devices) (Continued)

Symbol
Mnemonic Direction

Reset
Direction

Active
Low or
Active
High

Tristate
Output

Internal 
Pull-up or
Pull-down

Schmitt
Trigger
Input

Open Drain
Output

5 V
Tolerance
PS025015-1212 P R E L I M I N A R Y Pin Description

Z8 Encore! XP® F1680 Series
Product Specification

20
need to use this on-chip Program RAM to shadow Interrupt Service Routines (ISR). For
details, see the PRAM_M section on page 278.

3.2. Program Memory

The eZ8 CPU supports 64 KB of Program Memory address space. The F1680 Series MCU
contains 8 KB to 24 KB of on-chip Flash memory in the Program Memory address space,
depending on the device.

In addition, the F1680 Series MCU contains up to 1 KB of on-chip Program RAM. The
Program RAM is mapped in the Program Memory address space beyond the on-chip Flash
memory. The Program RAM is entirely under user control and is meant to store interrupt
service routines of high-frequency interrupts. Since interrupts bring the CPU out of low-
power mode, it is important to ensure that interrupts that occur very often use as low a
current as possible. For battery operated systems, Program RAM based handling of high-
frequency interrupts provides power savings by keeping the Flash block disabled.
Program RAM (PRAM) is optimized for low-current operation and can be easily boot-
strapped with interrupt code at power up.

Reading from Program Memory addresses present outside the available Flash memory and
PRAM addresses returns FFH. Writing to these unimplemented Program Memory
addresses produces no effect. Table 6 describes the Program Memory maps for the F1680
Series MCU.

Table 6. F1680 Series MCU Program Memory Maps

Program Memory
Address (Hex) Function

Z8F2480 Device

0000–0001 Flash option bits

0002–0003 Reset vector

0004–0005 WDT interrupt vector

0006–0007 Illegal instruction trap

0008–0037 Interrupt vectors*

0038–003D Oscillator fail traps*

003E–5FFF Program Flash

E000–E3FF 1 KB PRAM

Note: *See Table 36 on page 69 for a list of inter-
rupt vectors and traps.
PS025015-1212 P R E L I M I N A R Y Address Space

Z8 Encore! XP® F1680 Series
Product Specification

72
Example 1. A poor coding style that can result in lost interrupt requests:

LDX r0, IRQ0
AND r0, MASK
LDX IRQ0, r0

To avoid missing interrupts, use the coding style in Example 2 to clear bits in the Interrupt
Request 0 Register:

Example 2. A good coding style that avoids lost interrupt requests:

ANDX IRQ0, MASK

8.3.4. Software Interrupt Assertion

Program code can generate interrupts directly. Writing a 1 to the correct bit in the Interrupt
Request Register triggers an interrupt (assuming that the interrupt is enabled). When the
interrupt request is acknowledged by the eZ8 CPU, the bit in the Interrupt Request
Register is automatically cleared to 0.

Zilog recommends not using a coding style to generate software interrupts by setting bits
in the Interrupt Request registers. All incoming interrupts received between execution of
the first LDX command and the final LDX command are lost. See Example 3, which fol-
lows.

Example 3. A poor coding style that can result in lost interrupt requests:

LDX r0, IRQ0
OR r0, MASK
LDX IRQ0, r0

To avoid missing interrupts, use the coding style in Example 4 to set bits in the Interrupt
Request registers:

Example 4. A good coding style that avoids lost interrupt requests:

ORX IRQ0, MASK

8.4. Interrupt Control Register Definitions

For all interrupts other than the Watchdog Timer interrupt, the Primary Oscillator Fail
Trap and the Watchdog Oscillator Fail Trap, the Interrupt Control registers enable
individual interrupts, set interrupt priorities and indicate interrupt requests.

Caution:
PS025015-1212 P R E L I M I N A R Y Interrupt Controller

Z8 Encore! XP® F1680 Series
Product Specification

83
8.4.9. Interrupt Control Register

The Interrupt Control (IRQCTL) Register, shown in Table 51, contains the master enable
bit for all interrupts.

[5]
PA5CS

PA5/Comparator 1 Selection
0 = PA5 is used for the interrupt for PA5CS interrupt request.
1 = The Comparator 1 is used for the interrupt for PA5CS interrupt request.

[4:1]
PADxS

PAx/PDx Selection
0 = PAx is used for the interrupt for PAx/PDx interrupt request
1 = PDx is used for the interrupt for PAx/PDx interrupt request; an x indicates the specific
GPIO port pin number (1–4).

[0] Reserved; must be 0.

Table 51. Interrupt Control Register (IRQCTL)

Bits 7 6 5 4 3 2 1 0

Field IRQE Reserved

Reset 0 0 0 0 0 0 0 0

R/W R/W R R R R R R R

Address FCFH

Bit Description

[7]
IRQE

Interrupt Request Enable
This bit is set to 1 by executing an Enable Interrupts (EI) or IRET (Interrupt Return) instruction,
or by a direct register write of a 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8
CPU acknowledgement of an interrupt request, a Reset, or by a direct register write of a 0 to
this bit.
0 = Interrupts are disabled.
1 = Interrupts are enabled.

[6:0] Reserved; must be 0.

Bit Description
PS025015-1212 P R E L I M I N A R Y Interrupt Controller

Z8 Encore! XP® F1680 Series
Product Specification

101
generated the interrupt, read the associated GPIO input value and compare to the value
stored in the TPOL bit.

The timer counts up to the 16-bit reload value stored in the Timer Reload High and Low
Byte registers. The timer input is the timer clock. When reaching the reload value, the
timer generates an interrupt, the count value in the Timer High and Low Byte registers is
reset to 0001H and counting resumes (assuming the Timer Input signal is still asserted).
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state
(from Low to High or from High to Low) at timer reset.

Observe the following steps to configure a timer for GATED Mode and initiate the count:

1. Write to the Timer Control 1 Register to:

– Disable the timer

– Configure the timer for GATED Mode

– Set the prescale value

2. Write to the Timer Control 2 Register to choose the timer clock source.

3. Write to the Timer Control 0 Register to set the timer interrupt configuration field
TICONFIG.

4. Write to the Timer High and Low Byte registers to set the starting count value. This
value only affects the first pass in GATED Mode. After the first timer reset in GATED
Mode, counting always begins at the reset value of 0001H.

5. Write to the Timer Reload High and Low Byte registers to set the reload value.

6. If required, enable the timer interrupt and set the timer interrupt priority by writing to
the relevant interrupt registers. By default, the timer interrupt will be generated for
both input deassertion and reload events. If required, configure the timer interrupt to
be generated only at the Input Deassertion event or the Reload event by setting
TICONFIG field of the Timer Control 0 Register.

7. Configure the associated GPIO port pin for the Timer Input alternate function.

8. Write to the Timer Control 1 Register to enable the timer.

9. Assert the Timer Input signal to initiate the counting.

COMPARE Mode Time (s)
Compare Value - Start Value  Prescale

Timer Clock Frequency (Hz)
---=
PS025015-1212 P R E L I M I N A R Y Timers

Z8 Encore! XP® F1680 Series
Product Specification

165
12.3.3. LIN-UART Status 0 Register

The LIN-UART Status 0 Register identifies the current LIN-UART operating
configuration and status. Table 85 describes the Status 0 Register for standard UART
mode. Table 86 describes the Status 0 Register for LIN mode.

Table 85. LIN-UART Status 0 Register—Standard UART Mode (U0STAT0 = F41H)

Bit 7 6 5 4 3 2 1 0

Field RDA PE OE FE BRKD TDRE TXE CTS

Reset 0 0 0 0 0 1 1 X

R/W R R R R R R R R

Address F41H, F49H

Note: R = Read; X = undefined.

Bit Description

[7]
RDA

Receive Data Available
This bit indicates that the LIN-UART Receive Data Register has received data. Reading the
LIN-UART Receive Data Register clears this bit.
0 = The LIN-UART Receive Data Register is empty.
1 = There is a byte in the LIN-UART Receive Data Register.

[6]
PE

Parity Error
This bit indicates that a parity error has occurred. Reading the Receive Data Register clears
this bit.
0 = No parity error occurred.
1 = A parity error occurred.

[5]
OE

Overrun Error
This bit indicates that an overrun error has occurred. An overrun occurs when new data is
received and the Receive Data Register is not read. Reading the Receive Data Register clears
this bit.
0 = No overrun error occurred.
1 = An overrun error occurred.

[4]
FE

Framing Error
This bit indicates that a framing error (no stop bit following data reception) was detected.
Reading the Receive Data Register clears this bit.
0 = No framing error occurred.
1 = A framing error occurred.

[3]
BRKD

Break Detect
This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit and stop bit(s)
are all zeros then this bit is set to 1. Reading the Receive Data Register clears this bit.
0 = No break occurred.
1 = A break occurred.
PS025015-1212 P R E L I M I N A R Y LIN-UART

Z8 Encore! XP® F1680 Series
Product Specification

166
[2]
TDRE

Transmitter Data Register Empty
This bit indicates that the Transmit Data Register is empty and ready for additional data.
Writing to the Transmit Data Register resets this bit.
0 = Do not write to the Transmit Data Register.
1 = The Transmit Data Register is ready to receive an additional byte for transmission.

[1]
TXE

Transmitter Empty
This bit indicates that the Transmit Shift Register is empty and character transmission is
finished.
0 = Data is currently transmitting.
1 = Transmission is complete.

[0]
CTS

Clear to Send Signal
When this bit is read it returns the level of the CTS signal. If LBEN = 1, the CTS input signal is
replaced by the internal Receive Data Available signal to provide flow control in loopback
mode. CTS only affects transmission if the CTSE bit = 1.

Table 86. LIN-UART Status 0 Register—LIN Mode (U0STAT0 = F41H)

Bit 7 6 5 4 3 2 1 0

Field RDA PLE OE FE BRKD TDRE TXE ATB

Reset 0 0 0 0 0 1 1 0

R/W R R R R R R R R

Address F41H, F49H

Note: R = Read.

Bit Description

[7]
RDA

Receive Data Available
This bit indicates that the Receive Data Register has received data. Reading the Receive Data
Register clears this bit.
0 = The Receive Data Register is empty.
1 = There is a byte in the Receive Data Register.

[6]
PLE

Physical Layer Error
This bit indicates that transmit and receive data do not match when a LIN slave or master is
transmitting. This could be by a fault in the physical layer or multiple devices driving the bus
simultaneously. Reading the Status 0 Register or the Receive Data Register clears this bit.
0 = Transmit and Receive data match.
1 = Transmit and Receive data do not match.

Bit Description (Continued)
PS025015-1212 P R E L I M I N A R Y LIN-UART

Z8 Encore! XP® F1680 Series
Product Specification

212
A receive interrupt is generated by the RDRNE status bit when the ESPI block is enabled,
the DIRQE bit is set and a character transfer completes. At the end of the character
transfer, the contents of the Shift Register are transferred into the Data Register, causing
the RDRNE bit to assert. The RDRNE bit is cleared when the Data Buffer is read as
empty. If information is being transmitted but not received by the software application, the
receive interrupt can be eliminated by selecting Transmit Only mode (ESPIEN1,0 = 10) in
either MASTER or SLAVE modes. When information is being sent and received under
interrupt control, RDRNE and TDRE will both assert simultaneously at the end of a
character transfer. Since the new receive data is in the Data Register, the receive interrupt
must be serviced before the transmit interrupt.

ESPI error interrupts occur if any of the TUND, COL, ABT and ROVR bits in the ESPI
Status Register are set. These bits are cleared by writing a 1. If the ESPI is disabled
(ESPIEN1, 0 = 00), an ESPI interrupt can be generated by a Baud Rate Generator time-
out. This timer function must be enabled by setting the BRGCTL bit in the ESPICTL
register. This timer interrupt does not set any of the bits of the ESPI Status Register.

16.3.7. ESPI Baud Rate Generator

In ESPI MASTER Mode, the Baud Rate Generator creates a lower frequency serial clock
(SCK) for data transmission synchronization between the Master and the external Slave.
The input to the Baud Rate Generator is the system clock. The ESPI Baud Rate High and
Low Byte registers combine to form a 16-bit reload value, BRG[15:0], for the ESPI Baud
Rate Generator. The ESPI baud rate is calculated using the following equation:

Minimum baud rate is obtained by setting BRG[15:0] to 0000H for a clock divisor value
of (2 x 65536 = 131072).

When the ESPI is disabled, the Baud Rate Generator can function as a basic 16-bit timer
with interrupt on time-out. Observe the following steps to configure the Baud Rate Gener-
ator as a timer with interrupt on time-out:

1. Disable the ESPI by clearing the ESPIEN1,0 bits in the ESPI Control Register.

2. Load the appropriate 16-bit count value into the ESPI Baud Rate High and Low Byte
registers.

3. Enable the Baud Rate Generator timer function and associated interrupt by setting the
BRGCTL bit in the ESPI Control Register to 1.

When configured as a general purpose timer, the SPI BRG interrupt interval is calculated
using the following equation:

SPI Baud Rate bits s§  System Clock Frequency Hz 
2 BRG[15:0]

--=
PS025015-1212 P R E L I M I N A R Y Enhanced Serial Peripheral Interface

Z8 Encore! XP® F1680 Series
Product Specification

215
16.4.3. ESPI Control Register

The ESPI Control Register, shown in Table 111, configures the ESPI for transmit and
receive operations.

[1]
TEOF

Transmit End of Frame
This bit is used in MASTER Mode to indicate that the data in the Transmit Data Register is the
last byte of the transfer or frame. When the last byte has been sent SS (and SSV) will change
state and TEOF will automatically clear.
0 = The data in the Transmit Data Register is not the last character in the message.
1 = The data in the Transmit Data Register is the last character in the message.

[0]
SSV

Slave Select Value
When SSIO = 1, writes to this register will control the value output on the SS pin. For more
details, see the SSMD field of the ESPI Mode Register on page 217.

Table 111. ESPI Control Register

Bits 7 6 5 4 3 2 1 0

Field DIRQE ESPIEN1 BRGCTL PHASE CLKPOL WOR MMEN ESPIEN0

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Address F62H

Bit Description

[7]
DIRQE

Data Interrupt Request Enable
This bit is used to disable or enable data (TDRE and RDRNE) interrupts. Disabling the data
interrupts is needed to control data transfer by polling. Error interrupts are not disabled. To
block all ESPI interrupt sources, clear the ESPI interrupt enable bit in the Interrupt Controller.
0 = TDRE and RDRNE assertions do not cause an interrupt. Use this setting if controlling data

transfer by software polling of TDRE and RDRNE. The TUND, COL, ABT and ROVR bits
will cause an interrupt.

1 = TDRE and RDRNE assertions will cause an interrupt. TUND, COL, ABT and ROVR will
also cause interrupts. Use this setting when controlling data transfer via interrupt handlers.

Bit Description
PS025015-1212 P R E L I M I N A R Y Enhanced Serial Peripheral Interface

Z8 Encore! XP® F1680 Series
Product Specification

216
[6,0]
ESPIEN1,
ESPIEN0

ESPI Enable and Direction Control
00 = The ESPI block is disabled. BRG can be used as a general-purpose timer by setting

BRGCTL = 1.
01 = Receive Only Mode. Use this setting in SLAVE Mode if software application is receiving

data but not sending. TDRE will not assert. Transmitted data will be all 1s. Not valid in
MASTER Mode since Master must source data to drive the transfer.

10 = Transmit Only Mode
Use this setting in MASTER or SLAVE Mode when the software application is sending
data but not receiving. RDRNE will not assert.

11 = Transmit/Receive Mode
Use this setting if the software application is both sending and receiving information. Both
TDRE and RDRNE will be active.

[5]
BRGCTL

Baud Rate Generator Control
The function of this bit depends upon ESPIEN1,0. When ESPIEN1,0 = 00, this bit allows
enabling the BRG to provide periodic interrupts.
If the ESPI is disabled
0 = The Baud Rate Generator timer function is disabled. Reading the Baud Rate High and Low

registers returns the BRG reload value.
1 = The Baud Rate Generator timer function and time-out interrupt is enabled. Reading the

Baud Rate High and Low registers returns the BRG Counter value.
If the ESPI is enabled
0 = Reading the Baud Rate High and Low registers returns the BRG reload value. If MMEN =

1, the BRG is enabled to generate SCK. If MMEN = 0, the BRG is disabled.
1 = Reading the Baud Rate High and Low registers returns the BRG Counter value. If MMEN =

1, the BRG is enabled to generate SCK. If MMEN = 0 the BRG is enabled to provide a
Slave SCK time-out. See the SLAVE Mode Abort error description on page 211.

Caution: If reading the counter one byte at a time while the BRG is counting keep in mind that
the values will not be in sync. Zilog recommends reading the counter using (2-byte) word
reads.

[4]
PHASE

Phase Select
Sets the phase relationship of the data to the clock. For more information about operation of
the PHASE bit, see the ESPI Clock Phase and Polarity Control section on page 201.

[3]
CLKPOL

Clock Polarity
0 = SCK idles Low (0).
1 = SCK idles High (1).

[2]
WOR

Wire-OR (Open-Drain) Mode Enabled
0 = ESPI signal pins not configured for open-drain.
1 = All four ESPI signal pins (SCK, SS, MISO and MOSI) configured for open-drain function.
This setting is typically used for multi-Master and/or Multi-Slave configurations.

[1]
MMEN

ESPI MASTER Mode Enable
This bit controls the data I/O pin selection and SCK direction.
0 = Data out on MISO, data in on MOSI (used in SPI SLAVE Mode), SCK is an input.
1 = Data out on MOSI, data in on MISO (used in SPI MASTER Mode), SCK is an output.

Bit Description (Continued)
PS025015-1212 P R E L I M I N A R Y Enhanced Serial Peripheral Interface

Z8 Encore! XP® F1680 Series
Product Specification

228
17.2.3. Start and Stop Conditions

The Master generates the start and stop conditions to start or end a transaction. To start a
transaction, the I2C controller generates a start condition by pulling the SDA signal Low
while SCL is High. To complete a transaction, the I2C controller generates a stop
condition by creating a Low-to-High transition of the SDA signal while the SCL signal is
High. These start and stop events occur when the start and stop bits in the I2C Control
Register are written by software to begin or end a transaction. Any byte transfer currently
under way including the Acknowledge phase finishes before the start or stop condition
occurs.

17.2.4. Software Control of I2C Transactions

The I2C controller is configured via the I2C Control and I2C Mode registers. The
MODE[1:0] field of the I2C Mode Register allows the configuration of the I2C controller
for MASTER/SLAVE or SLAVE ONLY mode and configures the slave for 7-bit or 10-bit
addressing recognition.

MASTER/SLAVE Mode can be used for:

• MASTER ONLY operation in a Single Master/One or More Slave I2C system

• MASTER/SLAVE in a Multimaster/multislave I2C system

• SLAVE ONLY operation in an I2C system

In SLAVE ONLY mode, the start bit of the I2C Control Register is ignored (software can-
not initiate a master transaction by accident) and operation to SLAVE ONLY Mode is
restricted thereby preventing accidental operation in MASTER Mode. The software con-
trols I2C transactions by enabling the I2C controller interrupt in the interrupt controller or
by polling the I2C Status Register.

To use interrupts, the I2C interrupt must be enabled in the interrupt controller and followed
by executing an EI instruction. The TXI bit in the I2C Control Register must be set to
enable transmit interrupts. An I2C interrupt service routine then checks the I2C Status
Register to determine the cause of the interrupt.

To control transactions by polling, the TDRE, RDRF, SAM, ARBLST, SPRS and NCKI
interrupt bits in the I2C Status Register should be polled. The TDRE bit asserts regardless
of the state of the TXI bit.

17.2.5. Master Transactions

The following sections describe Master Read and Write transactions to both 7-bit and 10-
bit slaves.
PS025015-1212 P R E L I M I N A R Y I2C Master/Slave Controller

Z8 Encore! XP® F1680 Series
Product Specification

229
17.2.5.1. Master Arbitration

If a Master loses arbitration during the address byte it releases the SDA line, switches to
SLAVE Mode and monitors the address to determine if it is selected as a Slave. If a Mas-
ter loses arbitration during the transmission of a data byte, it releases the SDA line and
waits for the next stop or start condition.

The Master detects a loss of arbitration when a 1 is transmitted but a 0 is received from the
bus in the same bit-time. This loss occurs if more than one Master is simultaneously
accessing the bus. Loss of arbitration occurs during the address phase (two or more
Masters accessing different slaves) or during the data phase, when the masters are
attempting to Write different data to the same Slave.

When a Master loses arbitration, the software is informed by means of the Arbitration Lost
interrupt. The software can repeat the same transaction at a later time.

A special case can occur when a Slave transaction starts just before the software attempts
to start a new master transaction by setting the start bit. In this case, the state machine
enters its Slave states before the start bit is set and as a result the I2C controller will not
arbitrate. If a Slave address match occurs and the I2C controller receives/transmits data,
the start bit is cleared and an Arbitration Lost interrupt is asserted. The software can
minimize the chance of this instance occurring by checking the busy bit in the I2CSTATE
Register before initiating a Master transaction. If a slave address match does not occur, the
Arbitration Lost interrupt will not occur and the start bit will not be cleared. The I2C
controller will initiate the master transaction after the I2C bus is no longer busy.

17.2.5.2. Master Address-Only Transactions

It is sometimes preferable to perform an address-only transaction to determine if a
particular slave device is able to respond. This transaction can be performed by
monitoring the ACKV bit in the I2CSTATE Register after the address has been written to
the I2CDATA Register and the start bit has been set. After the ACKV bit is set, the ACK
bit in the I2CSTATE Register determines if the slave is able to communicate. The stop bit
must be set in the I2CCTL Register to terminate the transaction without transferring data.
For a 10-bit slave address, if the first address byte is acknowledged, the second address
byte should also be sent to determine if the preferred Slave is responding.

Another approach is to set both the stop and start bits (for sending a 7-bit address). After
both bits have been cleared (7-bit address has been sent and transaction is complete), the
ACK bit can be read to determine if the Slave has acknowledged. For a 10-bit Slave, set
the stop bit after the second TDRE interrupt (which indicates that the second address byte
is being sent).

17.2.5.3. Master Transaction Diagrams

In the following transaction diagrams, the shaded regions indicate the data that is
transferred from the Master to the Slave and the unshaded regions indicate the data that is
PS025015-1212 P R E L I M I N A R Y I2C Master/Slave Controller

Z8 Encore! XP® F1680 Series
Product Specification

231
11. The I2C slave sends an Acknowledge (by pulling the SDA signal Low) during the next
High period of SCL. The I2C controller sets the ACK bit in the I2C Status Register.

If the slave does not acknowledge the address byte, the I2C controller sets the NCKI
bit in the I2C Status Register, sets the ACKV bit and clears the ACK bit in the I2C
State Register. The software responds to the Not Acknowledge interrupt by setting the
stop bit and clearing the TXI bit. The I2C controller flushes the Transmit Data Regis-
ter, sends a stop condition on the bus and clears the stop and NCKI bits. The transac-
tion is complete and the following steps can be ignored.

12. The I2C controller loads the contents of the I2C Shift Register with the contents of the
I2C Data Register.

13. The I2C controller shifts the data out via the SDA signal. After the first bit is sent, the
transmit interrupt asserts.

14. If more bytes remain to be sent, return to Step 9.

15. When there is no more data to be sent, the software responds by setting the stop bit of
the I2C Control Register (or the start bit to initiate a new transaction).

16. If no additional transaction is queued by the master, the software can clear the TXI bit
of the I2C Control Register.

17. The I2C controller completes transmission of the data on the SDA signal.

18. The I2C controller sends a stop condition to the I2C bus.

If the slave terminates the transaction early by responding with a Not Acknowledge during
the transfer, the I2C controller asserts the NCKI interrupt and halts. The software must ter-
minate the transaction by setting either the stop bit (end transaction) or the start bit (end
this transaction, start a new one). In this case, it is not necessary for software to set the
FLUSH bit of the I2CCTL Register to flush the data that was previously written but not
transmitted. The I2C controller hardware automatically flushes transmit data in the not
acknowledge case.

17.2.5.5. Master Write Transaction with a 10-Bit Address

Figure 44 displays the data transfer format from a Master to a 10-bit addressed slave.

S
Slave Address

1st Byte
W = 0 A

Slave Address
2nd Byte

A Data A Data A/A F/S

Figure 44. Data Transfer Format—Master Write Transaction with a 10-Bit Address

Note:
PS025015-1212 P R E L I M I N A R Y I2C Master/Slave Controller

Z8 Encore! XP® F1680 Series
Product Specification

234
4. If this operation is a single-byte transfer, the software asserts the NAK bit of the I2C
Control Register so that after the first byte of data has been read by the I2C controller,
a Not Acknowledge instruction is sent to the I2C slave.

5. The I2C controller sends a start condition.

6. The I2C controller sends the address and Read bit out via the SDA signal.

7. The I2C slave acknowledges the address by pulling the SDA signal Low during the
next High period of SCL.

If the slave does not acknowledge the address byte, the I2C controller sets the NCKI
bit in the I2C Status Register, sets the ACKV bit and clears the ACK bit in the I2C
State Register. The software responds to the Not Acknowledge interrupt by setting the
stop bit and clearing the TXI bit. The I2C controller flushes the Transmit Data Regis-
ter, sends a stop condition on the bus and clears the stop and NCKI bits. The transac-
tion is complete and the following steps can be ignored.

8. The I2C controller shifts in the first byte of data from the I2C slave on the SDA signal.

9. The I2C controller asserts the receive interrupt.

10. The software responds by reading the I2C Data Register. If the next data byte is to be
the final byte, the software must set the NAK bit of the I2C Control Register.

11. The I2C controller sends a Not Acknowledge to the I2C slave if the next byte is the
final byte; otherwise, it sends an Acknowledge.

12. If there are more bytes to transfer, the I2C controller returns to Step 7.

13. A NAK interrupt (NCKI bit in I2CISTAT) is generated by the I2C controller.

14. The software responds by setting the stop bit of the I2C Control Register.

15. A stop condition is sent to the I2C slave.

17.2.5.7. Master Read Transaction with a 10-Bit Address

Figure 46 displays the read transaction format for a 10-bit addressed Slave.

The first 7 bits transmitted in the first byte are 11110XX. The two XX bits are the two
most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the
write control bit.

Observe the following data transfer procedure for a Read operation to a 10-bit addressed
slave:

S
Slave Address

1st Byte
W=0 A

Slave Address
2nd Byte

A S
Slave Address

1st Byte
R=1 A Data A Data A P

Figure 46. Data Transfer Format—Master Read Transaction with a 10-Bit Address
PS025015-1212 P R E L I M I N A R Y I2C Master/Slave Controller

Z8 Encore! XP® F1680 Series
Product Specification

236
State Register. The software responds to the Not Acknowledge interrupt by setting the
stop bit and clearing the TXI bit. The I2C controller flushes the Transmit Data
Register, sends the stop condition on the bus and clears the stop and NCKI bits. The
transaction is complete and the following steps can be ignored.

16. The I2C controller sends a repeated start condition.

17. The I2C controller loads the I2C Shift Register with the contents of the I2C Data
Register (the third address transfer).

18. The I2C controller sends 11110b, followed by the two most-significant bits of the
slave read address and a 1 (Read).

19. The I2C slave sends an Acknowledge by pulling the SDA signal Low during the next
High period of SCL.

20. The I2C controller shifts in a byte of data from the slave.

21. The I2C controller asserts the Receive interrupt.

22. The software responds by reading the I2C Data Register. If the next data byte is to be
the final byte, the software must set the NAK bit of the I2C Control Register.

23. The I2C controller sends an Acknowledge or Not Acknowledge to the I2C Slave,
based on the value of the NAK bit.

24. If there are more bytes to transfer, the I2C controller returns to Step 18.

25. The I2C controller generates a NAK interrupt (the NCKI bit in the I2CISTAT
Register).

26. The software responds by setting the stop bit of the I2C Control Register.

27. A stop condition is sent to the I2C Slave.

17.2.6. Slave Transactions

The following sections describe Read and Write transactions to the I2C controller
configured for 7-bit and 10-bit Slave modes.

17.2.6.1. Slave Address Recognition

The following two slave address recognition options are supported; a description of each
follows.

• Slave 7-Bit Address Recognition Mode

• Slave 10-Bit Address Recognition Mode

Slave 7-Bit Address Recognition Mode. If IRM = 0 during the address phase and the
controller is configured for MASTER/SLAVE or SLAVE 7-bit address mode, the
PS025015-1212 P R E L I M I N A R Y I2C Master/Slave Controller

Z8 Encore! XP® F1680 Series
Product Specification

247
17.3.3. I2C Control Register

The I2C Control Register, shown in Table 121, enables and configures I2C operation.

The R/W1 bit can be set (written to 1) when IEN = 1, but cannot be cleared (written to 0).

Table 121. I2C Control Register (I2CCTL)

Bits 7 6 5 4 3 2 1 0

Field IEN START STOP BIRQ TXI NAK FLUSH FILTEN

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W1 R/W1 R/W R/W R/W1 W R/W

Address F52H

Bit Description

[7]
IEN

I2C Enable
This bit enables the I2C controller.

[6]
START

Send Start Condition
When set, this bit causes the I2C controller (when configured as the master) to send a start
condition. After it is asserted, this bit is cleared by the I2C controller after it sends the start
condition or by deasserting the IEN bit. If this bit is 1, it cannot be cleared by writing to the bit.
After this bit is set, a start condition is sent if there is data in the I2CDATA or I2C Shift Register.
If there is no data in one of these registers, the I2C controller waits until data is loaded. If this
bit is set while the I2C controller is shifting out data, it generates a restart condition after the
byte shifts and the Acknowledge phase completes. If the stop bit is also set, it waits until the
stop condition is sent before the start condition. If start is set while a SLAVE Mode transaction
is underway to this device, the start bit will be cleared and ARBLST bit in the Interrupt Status
Register will be set.

[5]
STOP

Send Stop Condition
When set, this bit causes the I2C controller (when configured as the master) to send the stop
condition after the byte in the I2C Shift Register has completed transmission or after a byte is
received in a receive operation. When set, this bit is reset by the I2C controller after a stop
condition has been sent or by deasserting the IEN bit. If this bit is 1, it cannot be cleared to 0 by
writing to the register. If stop is set while a SLAVE Mode transaction is underway, the stop bit is
cleared by hardware.

[4]
BIRQ

Baud Rate Generator Interrupt Request
This bit is ignored when the I2C controller is enabled. If this bit is set = 1 when the I2C controller
is disabled (IEN = 0), the baud rate generator is used as an additional timer causing an
interrupt to occur every time the baud rate generator counts down to one. The baud rate
generator runs continuously in this mode, generating periodic interrupts.

Note:
PS025015-1212 P R E L I M I N A R Y I2C Master/Slave Controller

Z8 Encore! XP® F1680 Series
Product Specification

265
20.2. Operation

The Flash Controller programs and erases Flash memory. The Flash Controller provides
the proper Flash controls and timing for byte programming, Page Erase and Mass Erase of
Flash memory.

The Flash Controller contains several protection mechanisms to prevent accidental
programming or erasure. These mechanisms operate on the page, sector and full-memory
levels.

The Flow Chart in Figure 54 displays basic Flash Controller operation. The sections that
follow provide details about the various operations (Lock, Unlock, Byte Programming,
Page Protect, Page Unprotect, Page Select Page Erase and Mass Erase) shown in
Figure 54.

Figure 53. 24 KB Flash Memory Arrangement

24KB Flash
Program Memory

0000H

0BFFH

0C00H

5FFFH
Addresses

17FFH

1800H

23FFH

3C00H

47FFH

4800H

53FFH

5400H

Sector 1

Sector 0

Sector 7

Sector 6

Sector 5

Sector 2

2400H

3BFFH

Page 47

Page 46

Page 45

Page 44

Page 43

Page 42

Page 41

Page 40

Page 1

Page 0

Page 3

Page 2

Page 5

Page 4

0000H

01FFH

03FFH

05FFH

0BFFH

53FFH

55FFH

57FFH

59FFH

5FFFH

51FFH

4FFFH
PS025015-1212 P R E L I M I N A R Y Flash Memory

Z8 Encore! XP® F1680 Series
Product Specification

379
input data sample timing 366
interrupts 58
port A-C pull-up enable sub-registers 63, 64
port A-H address registers 59
port A-H alternate function sub-registers 61
port A-H control registers 60
port A-H data direction sub-registers 60
port A-H high drive enable sub-registers 62
port A-H input data registers 65
port A-H output control sub-registers 62
port A-H output data registers 66
port A-H stop mode recovery sub-registers 63
port availability by device 46
port input timing 366
port output timing 367

H
H 331
HALT 333
halt mode 43, 333
hexadecimal number prefix/suffix 331

I
I2C 4

10-bit address read transaction 234
10-bit address transaction 231
10-bit addressed slave data transfer format 231,

239
7-bit address transaction 228, 236
7-bit address, reading a transaction 233
7-bit addressed slave data transfer format 230,

238
7-bit receive data transfer format 234, 240, 242
baud high and low byte registers 248, 250, 255
C status register 251
controller 223
controller signals 14
interrupts 226
operation 225
SDA and SCL signals 225
stop and start conditions 228

I2CBRH register 250, 255
I2CCTL register 247
I2CSTAT register 251

IM 330
immediate data 330
immediate operand prefix 331
INC 332
increment 332
increment word 332
INCW 332
indexed 330
indirect address prefix 331
indirect register 330
indirect register pair 330
indirect working register 330
indirect working register pair 330
infrared encoder/decoder (IrDA) 182
Instruction Set 328
instruction set, ez8 CPU 328
instructions

ADC 332
ADCX 332
ADD 332
ADDX 332
AND 334
ANDX 334
arithmetic 332
BCLR 333
BIT 333
bit manipulation 333
block transfer 333
BRK 335
BSET 333
BSWAP 333, 335
BTJ 335
BTJNZ 335
BTJZ 335
CALL 335
CCF 333
CLR 334
COM 334
CP 332
CPC 332
CPCX 332
CPU control 333
CPX 332
DA 332
PS025015-1212 P R E L I M I N A R Y Index

