E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	37
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f2480an020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore! XP[®] F1680 Series Product Specification

7.8.	5V Tolerance	48
7.9.	External Clock Setup	49
7.10.	GPIO Interrupts	58
7.11.	GPIO Control Register Definitions	58
	7.11.1. Port A–E Address Registers	59
	7.11.2. Port A–E Control Registers	60
	7.11.3. Port A–E Data Direction Subregisters	60
	7.11.4. Port A–E Alternate Function Subregisters	61
	7.11.5. Port A–E Output Control Subregisters	62
	7.11.6. Port A–E High Drive Enable Subregisters	62
	7.11.7. Port A–E Stop Mode Recovery Source Enable Subregisters	63
	7.11.8. Port A–E Pull-up Enable Subregisters	63
	7.11.9. Port A–E Alternate Function Set 1 Subregisters	64
	7.11.10.Port A–E Alternate Function Set 2 Subregisters	64
	7.11.11.Port A–E Input Data Registers	65
	7.11.12.Port A–E Output Data Register	66
	7.11.13.LED Drive Enable Register	66
	7.11.14.LED Drive Level Registers	67
Chapter 8.	Interrupt Controller	68
8.1.	Interrupt Vector Listing	68
8.2.	Architecture	70
8.3.	Operation	70
	8.3.1. Master Interrupt Enable	70
	8.3.2. Interrupt Vectors and Priority	71
	8.3.3. Interrupt Assertion	71
	8.3.4. Software Interrupt Assertion	72
8.4.	Interrupt Control Register Definitions	72
	8.4.1. Interrupt Request 0 Register	73
	8.4.2. Interrupt Request 1 Register	74
	8.4.3. Interrupt Request 2 Register	75
	8.4.4. IRQ0 Enable High and Low Bit Registers	76
	8.4.5. IRQ1 Enable High and Low Bit Registers	77
	8.4.6. IRQ2 Enable High and Low Bit Registers	79
	8.4.7. Interrupt Edge Select Register	82
	8.4.8. Shared Interrupt Select Register	82
	8.4.9. Interrupt Control Register	83
Chapter 9.	Timers	84
9.1.	Architecture	85
9.2.	Operation	85

Z8 Encore! XP[®] F1680 Series Product Specification

Table 2	P. Port A–E Alternate Function Set 1 Subregisters (PxAFS1)
Table 3	D. Port A–E Alternate Function Set 2 Subregisters (PxAFS2)
Table 3	I. Port A-E Input Data Registers (PxIN) 65
Table 32	2. Port A–E Output Data Register (PxOUT)
Table 3	3. LED Drive Enable (LEDEN) 66
Table 34	LED Drive Level High Bit Register (LEDLVLH)
Table 3	5. LED Drive Level Low Bit Register (LEDLVLL)
Table 3	5. Trap and Interrupt Vectors in Order of Priority
Table 3	7. Interrupt Request 0 Register (IRQ0)
Table 3	3. Interrupt Request 1 Register (IRQ1)
Table 3	P. Interrupt Request 2 Register (IRQ2)
Table 4	IRQ0 Enable and Priority Encoding
Table 4	I. IRQ0 Enable High Bit Register (IRQ0ENH)
Table 42	2. IRQ0 Enable Low Bit Register (IRQ0ENL)
Table 4	3. IRQ1 Enable and Priority Encoding
Table 4	IRQ1 Enable High Bit Register (IRQ1ENH) 78
Table 4	5. IRQ2 Enable and Priority Encoding
Table 4	5. IRQ1 Enable Low Bit Register (IRQ1ENL)
Table 4	7. IRQ2 Enable High Bit Register (IRQ2ENH) 80
Table 4	3. IRQ2 Enable Low Bit Register (IRQ2ENL). 81
Table 4	D. Interrupt Edge Select Register (IRQES)
Table 5	D. Shared Interrupt Select Register (IRQSS) 82
Table 5	I. Interrupt Control Register (IRQCTL). 83
Table 52	2. Timer Operating Modes
Table 5	3. TRIGGERED ONE-SHOT Mode Initialization Example
Table 54	DEMODULATION Mode Initialization Example
Table 5	5. Timer 0–2 High Byte Register (TxH)
Table 5	5. Timer 0–2 Low Byte Register (TxL) 109
Table 5	7. Timer 0–2 Reload High Byte Register (TxRH) 110
Table 5	3. Timer 0–2 Reload Low Byte Register (TxRL) 110

Table 118.	I2C Master/Slave Controller Registers
Table 119.	I2C Data Register (I2CDATA = F50H) 244
Table 120.	I2C Interrupt Status Register (I2CISTAT = F51H) 245
Table 121.	I2C Control Register (I2CCTL)
Table 122.	I2C Baud Rate High Byte Register (I2CBRH = 53H) 248
Table 123.	I2C Baud Rate Low Byte Register (I2CBRL = F54H)
Table 124.	I2C State Register (I2CSTATE)—Description when DIAG = 1 250
Table 125.	I2C State Register (I2CSTATE)—Description when $DIAG = 0 \dots 251$
Table 126.	I2CSTATE_L
Table 127.	I2CSTATE_H
Table 128.	I2C Mode Register (I2C Mode = F56H) 253
Table 129.	I2C Slave Address Register (I2CSLVAD = 57H) 255
Table 130.	Comparator 0 Control Register (CMP0) 257
Table 131.	Comparator 1 Control Register (CMP1) 258
Table 132.	Z8 Encore! XP F1680 Series Flash Memory Configurations 262
Table 133.	Flash Code Protection Using the Flash Option Bit
Table 134.	Flash Control Register (FCTL)
Table 135.	Flash Status Register (FSTAT)
Table 136.	Flash Page Select Register (FPS) 273
Table 137.	Flash Sector Protect Register (FPROT)
Table 138.	Flash Frequency High Byte Register (FFREQH)
Table 139.	Flash Frequency Low Byte Register (FFREQL) 275
Table 140.	Flash Option Bits at Program Memory Address 0000H 278
Table 141.	Flash Option Bits at Program Memory Address 0001H 280
Table 142.	Trim Bit Data Register (TRMDR) 281
Table 143.	Trim Bit Address Register (TRMADR)
Table 144.	Trim Bit Address Map
Table 145.	Trim Bit Address Description
Table 146.	Trim Option Bits at Address 0000H (TTEMP0) 282
Table 147.	Trim Option Bits at 0001H (TTEMP1)

xxii

need to use this on-chip Program RAM to shadow Interrupt Service Routines (ISR). For details, see the <u>PRAM_M</u> section on page 278.

3.2. Program Memory

The eZ8 CPU supports 64KB of Program Memory address space. The F1680 Series MCU contains 8KB to 24KB of on-chip Flash memory in the Program Memory address space, depending on the device.

In addition, the F1680 Series MCU contains up to 1 KB of on-chip Program RAM. The Program RAM is mapped in the Program Memory address space beyond the on-chip Flash memory. The Program RAM is entirely under user control and is meant to store interrupt service routines of high-frequency interrupts. Since interrupts bring the CPU out of low-power mode, it is important to ensure that interrupts that occur very often use as low a current as possible. For battery operated systems, Program RAM based handling of high-frequency interrupts provides power savings by keeping the Flash block disabled. Program RAM (PRAM) is optimized for low-current operation and can be easily boot-strapped with interrupt code at power up.

Reading from Program Memory addresses present outside the available Flash memory and PRAM addresses returns FFH. Writing to these unimplemented Program Memory addresses produces no effect. Table 6 describes the Program Memory maps for the F1680 Series MCU.

Program Memory Address (Hex)	Function
Z8F2480 Device	
0000–0001	Flash option bits
0002–0003	Reset vector
0004–0005	WDT interrupt vector
0006–0007	Illegal instruction trap
0008–0037	Interrupt vectors*
0038–003D	Oscillator fail traps*
003E-5FFF	Program Flash
E000–E3FF	1KB PRAM
Note: *See <u>Table 36 or</u>	n page 69 for a list of inter-

Table 6. F1680 Series MCU Program Memory Maps

Address (Hex)	Register Description	Mnemonic	Reset (Hex) ¹	Page #
F20	Timer 0 PWM1 High Byte	T0PWM1H	00	<u>111</u>
F21	Timer 0 PWM1 Low Byte	T0PWM1L	00	<u>111</u>
F22	Timer 0 Control 2	T0CTL2	00	<u>117</u>
F23	Timer 0 Status	TOSTA	00	<u>118</u>
F2C	Timer 0 Noise Filter Control	TONFC	00	<u>119</u>
Timer 1				
F08	Timer 1 High Byte	T1H	00	<u>109</u>
F09	Timer 1 Low Byte	T1L	01	<u>109</u>
F0A	Timer 1 Reload High Byte	T1RH	FF	<u>110</u>
F0B	Timer 1 Reload Low Byte	T1RL	FF	<u>110</u>
F0C	Timer 1 PWM0 High Byte	T1PWM0H	00	<u>110</u>
F0D	Timer 1 PWM0 Low Byte	T1PWM0L	00	<u>111</u>
F0E	Timer 1 Control 0	T1CTL0	00	<u>112</u>
F0F	Timer 1 Control 1	T1CTL1	00	<u>113</u>
F24	Timer 1 PWM1 High Byte	T1PWM1H	00	<u>111</u>
F25	Timer 1 PWM1 Low Byte	T1PWM1L	00	<u>111</u>
F26	Timer 1 Control 2	T1CTL2	00	<u>117</u>
F27	Timer 1 Status	T1STA	00	<u>118</u>
F2D	Timer 1 Noise Filter Control	T1NFC	00	<u>119</u>
Timer 2				
F10	Timer 2 High Byte	T2H	00	<u>109</u>
F11	Timer 2 Low Byte	T2L	01	<u>110</u>
F12	Timer 2 Reload High Byte	T2RH	FF	<u>110</u>
F13	Timer 2 Reload Low Byte	T2RL	FF	<u>110</u>
F14	Timer 2 PWM0 High Byte	T2PWM0H	00	<u>110</u>
F15	Timer 2 PWM0 Low Byte	T2PWM0L	00	<u>111</u>
F16	Timer 2 Control 0	T2CTL0	00	112

Table 8. Register File Address Map (Continued)

Notes:

1. XX=Undefined.

2. The Reserved space can be configured as General-Purpose Register File RAM depending on the user option bits (see the <u>User Option Bits</u> chapter on page 277) and the on-chip PRAM size (see the <u>Ordering Information</u> chapter on page 372). If the PRAM is programmed as General-Purpose Register File RAM on Reserved space, the starting address always begins immediately after the end of General-Purpose Register File RAM.

5.2.4. External Reset Input

The RESET pin has a Schmitt-triggered input and an internal pull-up resistor. When the RESET pin is asserted for a minimum of four system clock cycles, the device progresses through the System Reset sequence. Because of the possible asynchronicity of the system clock and reset signals, the required reset duration can be as short as three clock periods and as long as four. A reset pulse three clock cycles in duration might trigger a Reset; a pulse four cycles in duration always triggers a Reset.

While the $\overline{\text{RESET}}$ input pin is asserted Low, the F1680 Series MCU remains in the Reset state. If the $\overline{\text{RESET}}$ pin is held Low beyond the System Reset time-out, the device exits the Reset state on the system clock rising edge following $\overline{\text{RESET}}$ pin deassertion. Following a System Reset initiated by the external $\overline{\text{RESET}}$ pin, the EXT status bit in the RSTSTAT Register is set to 1.

5.2.5. External Reset Indicator

During System Reset or when enabled by the GPIO logic (see the <u>Port A–E Control Registers section on page 60</u>), the RESET pin functions as an open-drain (active Low) reset mode indicator in addition to the input functionality. This Reset output feature allows the F1680 Series MCU to reset other components to which it is connected, even if that reset is caused by internal sources such as POR, VBO, or WDT events.

After an internal Reset event occurs, the internal circuitry begins driving the $\overline{\text{RESET}}$ pin Low. The $\overline{\text{RESET}}$ pin is held Low by the internal circuitry until the appropriate delay listed in <u>Table 9</u> on page 32 has elapsed.

5.2.6. On-Chip Debugger Initiated Reset

A POR can be initiated using the OCD by setting the RST bit in the OCD Control Register. The OCD block is not reset, but the rest of the chip goes through a normal System Reset. The RST bit automatically clears during the system reset. Following the System Reset the POR bit in the WDT Control Register is set.

5.3. Stop Mode Recovery

STOP Mode is entered by execution of a stop instruction by the eZ8 CPU. For detailed STOP Mode information, see the <u>Low-Power Modes section on page 42</u>. During Stop Mode Recovery, the CPU is held in reset for 4 IPO cycles.

Stop Mode Recovery does not affect On-chip registers other than the Reset Status (RSTSTAT) register and the Oscillator Control Register (OSCCTL). After any Stop Mode Recovery, the IPO is enabled and selected as the system clock. If another system clock source is required or IPO disabling is required, the Stop Mode Recovery code must

- Configure the timer for DEMODULATION Mode. Setting the mode also involves writing to the TMODEHI bit in the TxCTL0 Register
- Set the prescale value
- Set the TPOL bit to set the Capture edge (rising or falling) for the Timer Input. This setting applies only if the TPOLHI bit in the TxCTL2 Register is not set
- 2. Write to the Timer Control 2 Register to:
 - Choose the timer clock source
 - Set the TPOLHI bit if the Capture is required on both edges of the input signal
- 3. Write to the Timer Control 0 Register to set the timer interrupt configuration field TICONFIG.
- 4. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 5. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 6. Clear the Timer TxPWM0 and TxPWM1 High and Low Byte registers to 0000H.
- 7. If required, enable the noise filter and set the noise filter control by writing to the relevant bits in the Noise Filter Control Register.
- 8. If required, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt will be generated for both input capture and reload events. If required, configure the timer interrupt to be generated only at the input Capture event or the Reload event by setting TICONFIG field of the Timer Control 0 Register.
- 9. Configure the associated GPIO port pin for the Timer Input alternate function.
- 10. Write to the Timer Control 1 Register to enable the timer. Counting will start on the occurrence of the first external input transition.

In DEMODULATION Mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

Capture Elapsed Time (s) = $\frac{(Capture Value - Start Value) \times Prescale}{Timer Clock Frequency (Hz)}$

For a given LIN-UART data rate, the integer baud rate divisor value is calculated using the following equation for LIN mode UART operation:

UART Baud Rate Divisor Value (BRG) = Round $\left(\frac{\text{System Clock Frequency (Hz)}}{\text{UART Data Rate (bits/s)}}\right)$

The baud rate error relative to the appropriate baud rate is calculated using the following equation:

UART Baud Rate Error (%) = $100 \times \left(\frac{\text{Actual Data Rate} - \text{Desired Data Rate}}{\text{Desired Data Rate}}\right)$

For reliable communication, the LIN-UART baud rate error must never exceed 5 percent. Tables 96 through 100 provide error data for popular baud rates and commonly-used crystal oscillator frequencies for normal UART modes of operation.

Applicable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)	Applicable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)
1250.0	1	1250.0	0.00	9.60	130	9.62	0.16
625.0	2	625.0	0.00	4.80	260	4.81	0.16
250.0	5	250.0	0.00	2.40	521	2.399	-0.03
115.2	11	113.64	-1.19	1.20	1042	1.199	-0.03
57.6	22	56.82	-1.36	0.60	2083	0.60	0.02
38.4	33	37.88	-1.36	0.30	4167	0.299	-0.01
19.2	65	19.23	0.16				

Table 96. LIN-UART Baud Rates, 20.0 MHz System Clock

Table 97. LIN-UART Baud Rates, 10.0 MHz System Clock

Applicable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)	Applicable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)
1250.0	N/A	N/A	N/A	9.60	65	9.62	0.16
625.0	1	625.0	0.00	4.80	130	4.81	0.16
250.0	3	208.33	-16.67	2.40	260	2.40	-0.03
115.2	5	125.0	8.51	1.20	521	1.20	-0.03
57.6	11	56.8	-1.36	0.60	1042	0.60	-0.03

	BRG				BRG		
Applicable Rate (kHz)	Divisor (Decimal)	Actual Rate (kHz)	Error (%)	Applicable Rate (kHz)	Divisor (Decimal)	Actual Rate (kHz)	Error (%)
38.4	16	39.1	1.73	0.30	2083	0.30	0.2
19.2	33	18.9	0.16				

Table 97. LIN-UART Baud Rates, 10.0 MHz System Clock (Continued)

Table 98. LIN-UART Baud Rates, 5.5296 MHz System Clock

Applicable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)	Applicable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)
1250.0	N/A	N/A	N/A	9.60	36	9.60	0.00
625.0	N/A	N/A	N/A	4.80	72	4.80	0.00
250.0	1	345.6	38.24	2.40	144	2.40	0.00
115.2	3	115.2	0.00	1.20	288	1.20	0.00
57.6	6	57.6	0.00	0.60	576	0.60	0.00
38.4	9	38.4	0.00	0.30	1152	0.30	0.00
19.2	18	19.2	0.00				

Table 99. LIN-UART Baud Rates, 3.579545 MHz System Clock

Applicable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)	Applicable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)
1250.0	N/A	N/A	N/A	9.60	23	9.73	1.32
625.0	N/A	N/A	N/A	4.80	47	4.76	-0.83
250.0	1	223.72	-10.51	2.40	93	2.41	0.23
115.2	2	111.9	-2.90	1.20	186	1.20	0.23
57.6	4	55.9	-2.90	0.60	373	0.60	-0.04
38.4	6	37.3	-2.90	0.30	746	0.30	-0.04
19.2	12	18.6	-2.90				

Bit Position	Value (H)	Description (Continued)
[5]	0	Select external reference.
REFEN	1	Select internal reference.
[4]	0	ADC is disabled.
ADCEN	1	ADC is enabled for normal use. This bit cannot change with bit 7 (start) at the same time.
[3:0]		Analog Input Select
ANAIN	0000	ANA0 input is selected for analog-to-digital conversion.
	0001	ANA1 input is selected for analog-to-digital conversion.
	0010	ANA2 input is selected for analog-to-digital conversion.
	0011	ANA3 input is selected for analog-to-digital conversion.
	0100	ANA4 input is selected for analog-to-digital conversion.
	0101	ANA5 input is selected for analog-to-digital conversion.
	0110	ANA6 input is selected for analog-to-digital conversion.
	0111	ANA7 input is selected for analog-to-digital conversion.
	1000	Hold LPO input nodes (ANA1 and ANA2) to ground.
	1001	Temperature Sensor.
	1100	Temperature Sensor output to ANA3 PAD.
	1101	vbg_chop signal output to ANA3 PAD.
	Others	Reserved.

Figure 36. SPI Mode (SSMD = 00)

16.3.3.2. Synchronous Frame Sync Pulse Mode

This mode is selected by setting the SSMD field of the Mode Register to 10. This mode is typically used for continuous transfer of fixed length frames where the frames are delineated by a pulse of duration one SCK period. The SSV bit in the ESPI Transmit Data Command register does not control the \overline{SS} pin directly in this mode. SSV must be set before or in sync with the first transmit data byte being written. The \overline{SS} signal will assert 1 SCK cycle before the first data bit and will stop after 1 SCK period. SCK is active from the initial assertion of \overline{SS} until the transaction end due to lack of transmit data.

The transaction is terminated by the Master when it no longer has data to send. If TDRE=1 at the end of a character, the \overline{SS} output will remain detached and SCK stops after the last bit is transferred. The TUND bit (transmit underrun) will assert in this case. After the transaction has completed, hardware will clear the SSV bit. Figure 37 displays a frame with synchronous frame sync pulse mode.

 \overline{SS} pin on the selected slave. Then, the active Master drives the clock and transmits data on the SCK and MOSI pins to the SCK and MOSI pins on the Slave (including those Slaves which are not enabled). The enabled slave drives data out its MISO pin to the MISO Master pin.

When the ESPI is configured as a Master in a Multi-Master SPI system, the \overline{SS} pin must be configured as an input. The \overline{SS} input signal on a device configured as a Master should remain High. If the \overline{SS} signal on the active Master goes Low (indicating another Master is accessing this device as a Slave), a Collision error flag is set in the ESPI Status Register. The Slave select outputs on a Master in a Multi-Master system must come from GPIO pins.

16.3.4.3. SPI Slave Operation

The ESPI block is configured for SLAVE Mode operation by setting the MMEN bit = 0 in the ESPICTL register and setting the SSIO bit = 0 in the ESPIMODE register. The SSMD field of the ESPI Mode Register is set to 00 for SPI protocol mode. The PHASE, CLKPOL and WOR bits in the ESPICTL register and the NUMBITS field in the ESPIMODE register must be set to be consistent with the other SPI devices. Typically for an SPI Slave, SSPO = 0.

If the Slave has data to send to the Master, the data must be written to the Data Register before the transaction starts (first edge of SCK when \overline{SS} is asserted). If the Data Register is not written prior to the Slave transaction, the MISO pin outputs all 1s.

Due to the delay resulting from synchronization of the \overline{SS} and SCK input signals to the internal system clock, the maximum SCK baud rate that can be supported in SLAVE Mode is the system clock frequency divided by 4. This rate is controlled by the SPI Master. Figure 41 displays the ESPI configuration in SPI SLAVE Mode.

Bits	7	6	5	4	3	2	1	0			
Field	DATA										
Reset	Х	Х	Х	Х	Х	Х	Х	Х			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address	F60H										
	•										

Table 109. ESPI Data Register (ESPIDATA)

Bit	Description
[7:0]	Data
DATA	Transmit and/or receive data. Writes to the ESPIDATA register load the Shift Register. Reads
	from the ESPIDATA register return the value of the Receive Data Register.

16.4.2. ESPI Transmit Data Command and Receive Data Buffer Control Register

The ESPI Transmit Data Command and Receive Data Buffer Control Register, shown in Table 110, provides control of the \overline{SS} pin when it is configured as an output (MASTER Mode), clear receive data buffer function and flag. The CRDR, TEOF and SSV bits can be controlled by a bus write to this register.

Table 110. ESPI Transmit Data Command and Receive Data Buffer	Control Register	(ESPITDCR)
---	------------------	------------

Bits	7	6	5	4	3	2	1	0
Field	CRDR	RDF	LAG		Reserved	TEOF	SSV	
Reset	0	0	0	0	0	0	0	0
R/W	R/W	F	२	R	R	R	R/W	R/W
Address	F61H							

Bit	Description
[7] CRDR	Clear Receive Data Register Writing 1 to this bit is used to clear all data in receive data buffer.
[6:5] RDFLAG	Receive Data Buffer Flag This bit is used to indicate how many bytes stored in receive buffer. 00 = 0 or 4 bytes (see RDRNE in the ESPI Status Register). 01 = 1 byte. 02 = 2 bytes. 03 = 3 bytes
[4:2]	Reserved These bits are reserved and must be programmed to 000.

- The software initializes the MODE field in the I²C Mode Register for MASTER/ SLAVE Mode with 7- or 10-bit addressing (the I²C bus protocol allows the mixing of slave address types). The MODE field selects the address width for this mode when addressed as a slave (but not for the remote slave). The software asserts the IEN bit in the I²C Control Register.
- 2. The software writes 11110b, followed by the two most-significant address bits and a 0 (write) to the I²C Data Register.
- 3. The software asserts the start bit of the I^2C Control Register.
- 4. The I^2C controller sends a start condition.
- 5. The I²C controller loads the I²C Shift Register with the contents of the I²C Data Register.
- 6. After the first bit has been shifted out, a transmit interrupt is asserted.
- 7. The software responds by writing the least significant eight bits of address to the I²C Data Register.
- 8. The I^2C controller completes shifting of the first address byte.
- 9. The I²C slave sends an Acknowledge by pulling the SDA signal Low during the next High period of SCL.

If the slave does not acknowledge the address byte, the I^2C controller sets the NCKI bit in the I^2C Status Register, sets the ACKV bit and clears the ACK bit in the I^2C State Register. The software responds to the Not Acknowledge interrupt by setting the stop bit and clearing the TXI bit. The I^2C controller flushes the Transmit Data Register, sends the stop condition on the bus and clears the stop and NCKI bits. The transaction is complete and the following steps can be ignored.

- 10. The I²C controller loads the I²C Shift Register with the contents of the I²C Data Register (the lower byte of the 10-bit address).
- 11. The I²C controller shifts out the next eight bits of the address. After the first bit shifts, the I²C controller generates a transmit interrupt.
- 12. The software responds by setting the start bit of the I²C Control Register to generate a repeated start condition.
- 13. The software writes 11110b, followed by the 2-bit slave address and a 1 (Read) to the I²C Data Register.
- 14. If the user chooses to read only one byte, the software responds by setting the NAK bit of the I²C Control Register.
- 15. After the I²C controller shifts out the address bits listed in <u>Step 9</u> (the second address transfer), the I²C slave sends an Acknowledge by pulling the SDA signal Low during the next High period of SCL.

If the slave does not acknowledge the address byte, the I^2C controller sets the NCKI bit in the I^2C Status Register, sets the ACKV bit and clears the ACK bit in the I^2C

S 1st Byte $W = 0$ A 2nd Byte A S 1st Byte $R = 1$ A Data A Data	S	Slave Addre 2nd Byte	Slave Address 1st Byte W = 0	ss	A	S	Slave Address 1st Byte	R = 1	A	Data	A	Data	А	Ρ
--	---	-------------------------	---------------------------------	----	---	---	---------------------------	-------	---	------	---	------	---	---

Figure 50. Data Transfer Format—Slave Transmit Transaction with 10-Bit Address

- 1. The software configures the controller for operation as a slave in 10-bit addressing mode.
 - a. Initialize the MODE field in the I²C Mode Register for either SLAVE ONLY mode or MASTER/SLAVE Mode with 10-bit addressing.
 - b. Optionally set the GCE bit.
 - c. Initialize the SLA[7:0] bits in the I2CSLVAD Register and SLA[9:8] in the I²C MODE Register.
 - d. Set IEN = 1 and NAK = 0 in the I²C Control Register.
- 2. The Master initiates a transfer by sending the first address byte. The SLAVE Mode $I^{2}C$ controller recognizes the start of a 10-bit address with a match to SLA[9:8] and detects R/W bit = 0 (a Write from the master to the slave). The $I^{2}C$ controller acknowledges indicating it is available to accept the transaction.
- 3. The Master sends the second address byte. The SLAVE Mode I²C controller compares the second address byte with the value in SLA[7:0]. If there is a match, the SAM bit in the I2CISTAT Register is set = 1, causing a slave address match interrupt. The RD bit is set = 0, indicating a write to the slave. If a match occurs, the I²C controller acknowledges on the I²C bus, indicating it is available to accept the data.
- 4. The software responds to the slave address match interrupt by reading the I2CISTAT Register, which clears the SAM bit. Because the RD bit = 0, no further action is required.
- 5. The Master sees the Acknowledge and sends a restart instruction, followed by the first address byte with R/W set to 1. The SLAVE Mode I²C controller recognizes the restart instruction followed by the first address byte with a match to SLA[9:8] and detects R/W = 1 (the master reads from the slave). The slave I²C controller sets the SAM bit in the I2CISTAT Register which causes the slave address match interrupt. The RD bit is set = 1. The SLAVE Mode I²C controller acknowledges on the bus.
- 6. The software responds to the interrupt by reading the I2CISTAT Register clearing the SAM bit. The software loads the initial data byte into the I2CDATA Register and sets the TXI bit in the I2CCTL Register.
- 7. The Master starts the data transfer by asserting SCL Low. After the I²C controller has data available to transmit, the SCL is released and the master proceeds to shift the first data byte.

```
ld R1, #%60
ldc R2, @RR0 ; R2 now contains the calibration value
```

21.2. Flash Option Bit Control Register Definitions

This section defines the features of the following Flash Option Bit Control registers.

User Option Bits: see page 278

Trim Bit Data Option Bits: see page 281

Trim Bit Address Option Bits: see page 281

Trim Bit Address Space: see page 282

Zilog Calibration Option Bits: see page 289

21.2.1. User Option Bits

The first two bytes of Flash program memory, at addresses 0000H and 0001H, are reserved for the user-programmable Flash option bits, as shown in Tables 140 and 141.

Bits	7	6	5	4	3	2	1	0
Field	WDT_RES	WDT_AO	OSC_SEL[1:0]		VBO_AO	FRP	PRAM_M	FWP
Reset	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address			F	Program Me	mory 0000H	l		
Nata: 11	الممام مرم ما م		Deed/Muite					

Table 140. Flash Option Bits at Program Memory Address 0000H

Note: U = Unchanged by Reset. R/W = Read/Write.

Bit	Description
[7] WDT_RES	 Watchdog Timer Reset 0 = Watchdog Timer time-out generates an interrupt request. Interrupts must be globally enabled for the eZ8 CPU to acknowledge the interrupt request. 1 = Watchdog Timer time-out causes a System Reset. This setting is the default for unprogrammed (erased) Flash.
[6] WDT_AO	 Watchdog Timer Always ON 0 = Watchdog Timer is automatically enabled upon application of system power. Watchdog Timer cannot be disabled. 1 = Watchdog Timer is enabled upon execution of the WDT instruction. After it is enabled, the Watchdog Timer can only be disabled by a Reset or Stop Mode Recovery. This setting is the default for unprogrammed (erased) Flash.

Figure 60. Synchronous Operation

23.2.5. OCD Serial Errors

The On-Chip Debugger can detect any of the following error conditions on the DBG pin:

- Serial Break (a minimum of ten continuous bits Low)
- Framing Error (received stop bit is Low)
- Transmit Collision (OCD and host simultaneous transmission detected by the OCD)

When the OCD detects one of these errors, it aborts any command currently in progress, transmits a Serial Break 4096 system clock cycles long back to the host and resets the Autobaud Detector/Generator. A Framing Error or Transmit Collision can be caused by the host sending a Serial Break to the OCD. Because of the open-drain nature of the interface, returning a Serial Break back to the host only extends the length of the Serial Break if the host releases the Serial Break early.

The host transmits a Serial Break on the DBG pin when first connecting to theZ8 Encore! XP F1680 Series device or when recovering from an error. A Serial Break from the host resets the Autobaud Generator/Detector but does not reset the OCD Control Register. A Serial Break leaves the device in DEBUG mode if that is the current mode. The OCD is held in Reset until the end of the Serial Break when the DBG pin returns High. Because of the open-drain nature of the DBG pin, the host can send a Serial Break to the OCD even if the OCD is transmitting a character.

	• •			
Parameter	Min	Мах	Units	Notes
44-Pin QFN Maximum Ratings at –40°C to 70°C				
Total power dissipation		750	mW	
Maximum current into V_{DD} or out of V_{SS}		200	mA	
44-Pin QFN Maximum Ratings at 70°C to 105°C				
Total power dissipation		295	mW	
Maximum current into V_{DD} or out of V_{SS}		83	mA	
44-pin LQFP Maximum Ratings at –40°C to 70°C				
Total power dissipation		750	mW	
Maximum current into V _{DD} or out of V _{SS}		200	mA	
44-pin LQFP Maximum Ratings at 70°C to 105°C				
Total power dissipation		410	mW	
Maximum current into V _{DD} or out of V _{SS}		114	mA	
Notes: *Operating temperature is specified in DC Characteristics. 1. This voltage applies to all pins except the following: V _{DD} , AV _{DD}				

Table 188. Absolute Maximum Ratings* (Continued)

29.2. DC Characteristics

Table 189 lists the DC characteristics of the Z8 Encore! XP F1680 Series products. All voltages are referenced to $V_{\mbox{\scriptsize SS}},$ which is the primary system ground.

		$T_{A} = 0$ $T_{A} = -4$	0°C to - 0°C to	+70°C +105°C			
Symbol	Parameter	Min	Тур	Max	Units	Conditions	
V _{DD}	Supply Voltage	1.8	_	3.6	V		
V _{IL1}	Low Level Input Voltage	-0.3	-	0.3*V _{DD}	V	For all input pins except RESET, DBG, XIN	
V _{IL2}	Low Level Input Voltage	-0.3	_	0.2*V _{DD}	V	For RESET, DBG, XIN	
V _{IH1}	High Level Input Voltage	0.7*V _{DD}	-	5.5	V	Port A, B, C, D and E pins (Digital inputs)	
Notes:							

Table 189. DC Characteristics

1. This condition excludes all pins that have on-chip pull-ups, when driven Low.

2. These values are provided for design guidance only and are not tested in production.

		T _A = 0 T _A = -4	0°C to - l0°C to	⊦70°C +105°C				
Symbol	Parameter	Min	Тур	Max	Units	Conditions		
V _{IH2}	High Level Input Voltage	0.7*V _{DD}	-	V _{DD} +0.3	V	Ports B and C (Analog)		
V _{OL1}	Low Level Output Voltage	-	-	0.4	V	$I_{OL} = 2 \text{ mA}; V_{DD} = 3.0 \text{ V}$ High Output Drive disabled.		
V _{OH1}	High Level Output Voltage	V _{DD} -0.5	-	-	V	$I_{OH} = -2 \text{ mA}; V_{DD} = 3.0 \text{ V}$ High Output Drive disabled.		
V _{OL2}	Low Level Output Voltage	-	_	0.6	V	$I_{OL} = 20 \text{ mA}; V_{DD} = 3.3 \text{ V}$ High Output Drive enabled.		
V _{OH2}	High Level Output Voltage	V _{DD} -0.5	_	-	V	$I_{OH} = -20 \text{ mA}; V_{DD} = 3.3 \text{ V}$ High Output Drive enabled.		
IIL	Input Leakage Current	-5	_	+5	μA	$V_{DD} = 3.6 \text{V};$ $V_{IN} = V_{DD} \text{ or } \text{V}_{SS}^{1}$		
I _{TL}	Tristate Leakage Current	-5	_	+5	μA	V _{DD} = 3.6V		
I _{LED}	Controlled LED	1.5	3	4.5	mA	${AFS2,AFS1} = {0,0}, V_{DD} = 3.3V$		
	Current Drive	2.8	7	10.5	mA	${AFS2,AFS1} = {0,1}, V_{DD} = 3.3V$		
		7.8	13	19.5	mA	${AFS2,AFS1} = {1,0}, V_{DD} = 3.3V$		
		12	20	30	mA	${AFS2,AFS1} = {1,1}, V_{DD} = 3.3V$		
C _{PAD}	GPIO Port Pad Capacitance	-	8.0 ²	_	pF	TBD		
C _{XIN}	XIN Pad Capacitance	_	8.0 ²	_	pF	TBD		
C _{XOUT}	XOUT Pad Capacitance	_	9.5 ²	_	pF	TBD		
I _{PU}	Weak Pull-up Current	30	100	350	μA	V _{DD} = 3.0V-3.6V		

Table 189. DC Characteristics (Continued)

Notes:

1. This condition excludes all pins that have on-chip pull-ups, when driven Low.

2. These values are provided for design guidance only and are not tested in production.

interrupts 157 multiprocessor mode 151 receiving data using interrupt-driven method 149 receiving data using the polled method 148 transmitting data using the interrupt-driven method 147 transmitting data using the polled method 146 x baud rate high and low registers 177 x control 0 and control 1 registers 170, 171 x status 0 and status 1 registers 165, 168 User Option Bits 278 UxBRH register 177 UxBRL register 178 UxCTL0 register 170, 177 UxCTL1 register 119, 172, 174, 175 UxRXD register 164 UxSTAT0 register 165, 166 UxSTAT1 register 168 UxTXD register 163

V

vector 330 voltage brownout reset (VBR) 35 voltage measurement timing diagram 188

W

watch-dog timer approximate time-out delay 141 approximate time-out delays 140 CNTL 35 control register 257, 258, 320 electrical characteristics and timing 361 operation 140 refresh 141 reload unlock sequence 142 reload upper, high and low registers 143 reset 36 reset in normal operation 142 reset in STOP mode 142 time-out response 141 watchdog timer electrical characteristics and timing 359 refresh 334

WDTCTL register 40, 257, 258, 319, 320 WDTH register 143 working register 330 working register pair 330

Х

X 330 XOR 334 XORX 334

Ζ

Z8 Encore! block diagram 3 features 1 part selection guide 2 Zilog Calibration Option Bits 289