
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	37
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f2480an020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 118.	I2C Master/Slave Controller Registers
Table 119.	I2C Data Register (I2CDATA = F50H) 244
Table 120.	I2C Interrupt Status Register (I2CISTAT = F51H) 245
Table 121.	I2C Control Register (I2CCTL)
Table 122.	I2C Baud Rate High Byte Register (I2CBRH = 53H) 248
Table 123.	I2C Baud Rate Low Byte Register (I2CBRL = F54H)
Table 124.	I2C State Register (I2CSTATE)—Description when DIAG = 1 250
Table 125.	I2C State Register (I2CSTATE)—Description when $DIAG = 0 \dots 251$
Table 126.	I2CSTATE_L
Table 127.	I2CSTATE_H
Table 128.	I2C Mode Register (I2C Mode = F56H) 253
Table 129.	I2C Slave Address Register (I2CSLVAD = 57H) 255
Table 130.	Comparator 0 Control Register (CMP0) 257
Table 131.	Comparator 1 Control Register (CMP1) 258
Table 132.	Z8 Encore! XP F1680 Series Flash Memory Configurations 262
Table 133.	Flash Code Protection Using the Flash Option Bit
Table 134.	Flash Control Register (FCTL)
Table 135.	Flash Status Register (FSTAT)
Table 136.	Flash Page Select Register (FPS) 273
Table 137.	Flash Sector Protect Register (FPROT)
Table 138.	Flash Frequency High Byte Register (FFREQH)
Table 139.	Flash Frequency Low Byte Register (FFREQL) 275
Table 140.	Flash Option Bits at Program Memory Address 0000H 278
Table 141.	Flash Option Bits at Program Memory Address 0001H 280
Table 142.	Trim Bit Data Register (TRMDR) 281
Table 143.	Trim Bit Address Register (TRMADR)
Table 144.	Trim Bit Address Map
	Trim Bit Address Description
Table 146.	Trim Option Bits at Address 0000H (TTEMP0) 282
Table 147.	Trim Option Bits at 0001H (TTEMP1) 283

xxii

need to use this on-chip Program RAM to shadow Interrupt Service Routines (ISR). For details, see the <u>PRAM_M</u> section on page 278.

3.2. Program Memory

The eZ8 CPU supports 64KB of Program Memory address space. The F1680 Series MCU contains 8KB to 24KB of on-chip Flash memory in the Program Memory address space, depending on the device.

In addition, the F1680 Series MCU contains up to 1 KB of on-chip Program RAM. The Program RAM is mapped in the Program Memory address space beyond the on-chip Flash memory. The Program RAM is entirely under user control and is meant to store interrupt service routines of high-frequency interrupts. Since interrupts bring the CPU out of low-power mode, it is important to ensure that interrupts that occur very often use as low a current as possible. For battery operated systems, Program RAM based handling of high-frequency interrupts provides power savings by keeping the Flash block disabled. Program RAM (PRAM) is optimized for low-current operation and can be easily boot-strapped with interrupt code at power up.

Reading from Program Memory addresses present outside the available Flash memory and PRAM addresses returns FFH. Writing to these unimplemented Program Memory addresses produces no effect. Table 6 describes the Program Memory maps for the F1680 Series MCU.

Program Memory Address (Hex)	Function				
Z8F2480 Device					
0000–0001	Flash option bits				
0002–0003	Reset vector				
0004–0005	WDT interrupt vector				
0006–0007	Illegal instruction trap				
0008–0037	Interrupt vectors*				
0038–003D	Oscillator fail traps*				
003E-5FFF	Program Flash				
E000–E3FF	1KB PRAM				
	on page 69 for a list of inter-				
rupt vectors and	traps.				

Table 6. F1680 Series MCU Program Memory Maps

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port A	PA0	T0IN/T0OUT	Timer 0 Input/Timer 0 Output Complement	AFS1[0]: 0
		Reserved		AFS1[0]: 1
	PA1	T0OUT	Timer 0 Output	AFS1[1]: 0
		Reserved		AFS1[1]: 1
	PA2	DE0	UART 0 Driver Enable	AFS1[2]: 0
		Reserved		AFS1[2]: 1
PA3		CTS0	UART 0 Clear to Send	AFS1[3]: 0
		Reserved		AFS1[3]: 1
	PA4	RXD0/IRRX0	UART 0/IrDA 0 Receive Data	AFS1[4]: 0
		Reserved		AFS1[4]: 1
	PA5	TXD0/IRTX0	UART 0/IrDA 0 Transmit Data	AFS1[5]: 0
		Reserved		AFS1[5]: 1
	PA6	T1IN/T1OUT	Timer 1 Input/Timer 1 Output Complement	AFS1[6]: 0
		SCL	I ² C Serial Clock	AFS1[6]: 1
	PA7	T1OUT	Timer 1 Output	AFS1[7]: 0
		SDA	I ² C Serial Data	AFS1[7]: 1

Table 18. Port Alternate Function Mapping, 28-Pin Parts^{1,2}

Notes:

 Because there are at most two choices of alternate functions for some pins in Ports A and B, the Alternate Function Set Register (AFS2) is implemented but not used to select the function. The alternate function selection must also be enabled, as described in the <u>Port A–E Alternate Function Subregisters</u> section on page 61.

2. Because there is only one alternate function for each Port D and Port E pin, the Alternate Function Set registers are not implemented for Ports D and E. Enabling the alternate function selections automatically enables the associated alternate function, as described in the <u>Port A–E Alternate Function Subregisters</u> section on page 61.

8.4.7. Interrupt Edge Select Register

The Interrupt Edge Select (IRQES) Register, shown in Table 49, determines whether an interrupt is generated for the rising edge or falling edge on the selected GPIO Port A or Port D input pin.

Bits	7	6	5	4	3	2	1	0
Field	IES7	IES6	IES5	IES4	IES3	IES2	IES1	IES0
Reset	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FCDH							

Table 49. Interrupt Edge Select Register (IRQES)

Bit	Description
[7:0]	Interrupt Edge Select x
IES <i>x</i>	0 = An interrupt request is generated on the falling edge of the PAx input or PDx input.
	1 = An interrupt request is generated on the rising edge of the PAx input or PDx input; x
	indicates the specific GPIO port pin number (0–7).

8.4.8. Shared Interrupt Select Register

The Shared Interrupt Select (IRQSS) Register, shown in Table 50, determines the source of the PADxS interrupts. The Shared Interrupt Select Register selects between Port A and alternate sources for the individual interrupts.

Bits	7	6	5	4	3	2	1	0
Field	PA7VS	PA6CS	PA5CS	PAD4S	PAD3S	PAD2S	PAD1S	Reserved
Reset	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FCEH							

Table 50. Shared Interrupt Select Register (IRQSS)

Bit	Description
[7] PA7VS	 PA7/LVD Selection 0 = PA7 is used for the interrupt for PA7VS interrupt request. 1 = The LVD is used for the interrupt for PA7VS interrupt request.
[6] PA6CS	 PA6/Comparator 0 Selection 0 = PA6 is used for the interrupt for PA6CS interrupt request. 1 = The Comparator 0 is used for the interrupt for PA6CS interrupt request.

9.1. Architecture

Figure 11 displays the architecture of the timers.

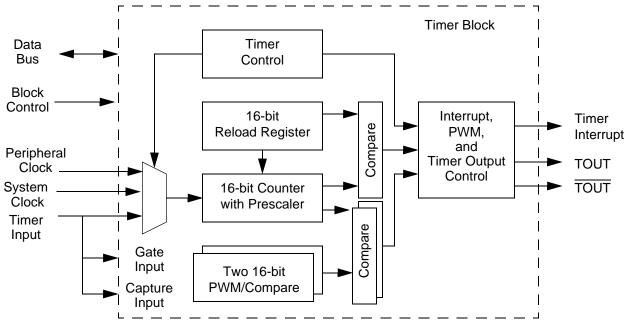


Figure 11. Timer Block Diagram

9.2. Operation

The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value 0001H into the Timer Reload High and Low Byte registers and setting the prescale value to 1. Maximum time-out delay is set by loading the value 0000H into the Timer Reload High and Low Byte registers and setting the prescale value to 128. If the Timer reaches FFFFH, the timer rolls over to 0000H and continues counting.

9.2.1. Timer Clock Source

The timer clock source can come from either the peripheral clock or the system clock. Peripheral clock is based on a low frequency/low power 32kHz secondary oscillator that can be used with external watch crystal. Peripheral clock source is only available for driving Timer and Noise Filter operation. It is not supported for other peripherals.

For timer operation in STOP Mode, peripheral clock must be selected as the clock source. Peripheral clock can be selected as source for both ACTIVE and STOP Mode operation.

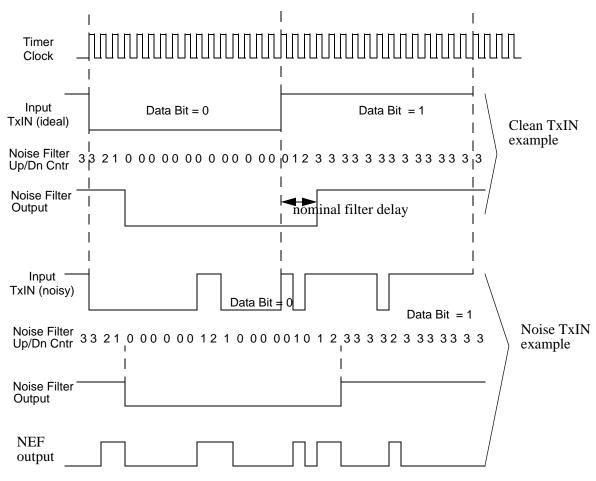


Figure 13. Noise Filter Operation

9.3. Timer Control Register Definitions

This section defines the features of the following Timer Control registers. <u>Timer 0–2 High and Low Byte Registers</u>: see page 109 <u>Timer Reload High and Low Byte Registers</u>: see page 109 <u>Timer 0–2 PWM0 High and Low Byte Registers</u>: see page 110 <u>Timer 0–2 PWM1 High and Low Byte Registers</u>: see page 111 <u>Timer 0–2 Control Registers</u>: see page 112 <u>Timer 0–2 Status Registers</u>: see page 118 <u>Timer 0–2 Noise Filter Control Register</u>: see page 119

Bit	Description (Continued)
[5] CHIEN	 Channel Interrupt Enable This bit enables generation of channel interrupt. A channel interrupt is generated whenever there is a capture/compare event on the Timer Channel. 0 = Channel interrupt is disabled. 1 = Channel interrupt is enabled.
[4] CHUE	 Channel Update Enable This bit determines whether writes to the Channel High and Low Byte registers are buffered when TEN = 1. Writes to these registers are not buffered when TEN = 0 regardless of the value of this bit. 0 = Writes to the Channel High and Low Byte registers are buffered when TEN = 1 and only take affect on the next end of cycle count. 1 = Writes to the Channel High and Low Byte registers are not buffered when TEN = 1.
[3]	Reserved; must be 0.
[2:0] CHOP	Channel Operation Method This field determines the operating mode of the channel. For a detailed description of the operating modes, see <u>Count Up/Down Mode</u> on page 123. 000 = One-Shot Compare operation. 001 = Continuous Compare operation. 010 = PWM Output operation. 011 = Capture operation. 100 - 111 = Reserved.

12.3. LIN-UART Control Register Definitions

The LIN-UART control registers support the LIN-UART, the associated Infrared Encoder/ Decoder and the noise filter. For more information about the infrared operation, see the <u>Infrared Encoder/Decoder</u> section on page 182.

12.3.1. LIN-UART Transmit Data Register

Data bytes written to the LIN-UART Transmit Data Register, shown in Table 83, are shifted out on the TxD pin. The write-only LIN-UART Transmit Data Register shares a Register File address with the read-only LIN-UART Receive Data Register.

Bit	7	6	5	4	3	2	1	0
Field			1	T>	٢D			1
Reset	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
Address	F40H, F48H							
Note: W =	Write; X = un	defined.						
Bit	Descriptio	n						

DIL	Description
[7:0]	Transmit Data
TxD	LIN–UART transmitter data byte to be shifted out through the TxD pin.

Bit	Description (Continued)
[5] OE	 Receive Data and Autobaud Overrun Error This bit is set just as in normal UART operation if a receive data overrun error occurs. This bit is also set during LIN Slave autobaud if the BRG counter overflows before the end of the autobaud sequence. This indicates that the receive activity is not an autobaud character or the master baud rate is too slow. The ATB status bit will also be set in this case. This bit is cleared by reading the Receive Data Register. 0 = No autobaud or data overrun error occurred. 1 = An autobaud or data overrun error occurred.
[4] FE	 Framing Error This bit indicates that a framing error (no stop bit following data reception) is detected. Reading the Receive Data Register clears this bit. 0 = No framing error occurred. 1 = A framing error occurred.
[3] BRKD	 Break Detect This bit is set in LIN mode if: It is in Lin Sleep state and a break of at least 4 bit times occurred (Wake-up event) or It is in Slave Wait Break state and a break of at least 11 bit times occurred (Break event) or It is in Slave Active state and a break of at least 10 bit times occurs. Reading the Status 0 Register or the Receive Data Register clears this bit.
	0 = No LIN break occurred. 1 = LIN break occurred.
[2] TDRE	 Transmitter Data Register Empty This bit indicates that the Transmit Data Register is empty and ready for additional data. Writing to the Transmit Data Register resets this bit. 0 = Do not write to the Transmit Data Register. 1 = The Transmit Data Register is ready to receive an additional byte for transmission.
[1] TXE	 Transmitter Empty This bit indicates that the Transmit Shift Register is empty and character transmission is completed. 0 = Data is currently transmitting. 1 = Transmission is complete.
[0] ATB	LIN Slave Autobaud Complete This bit is set in LIN SLAVE Mode when an autobaud character is received. If the ABIEN bit is set in the LIN Control Register, then a receive interrupt is generated when this bit is set. Reading the Status 0 Register clears this bit. This bit will be 0 in LIN MASTER Mode.

14.3.2. ADC Raw Data High Byte Register

The ADC Raw Data High Byte Register, shown in Table 102, contains the upper 8 bits of raw data from the ADC output. Access to the ADC Raw Data High Byte register is read-only. This register is used for test only.

Table 102. ADC Raw Data High Byte Register (ADCRD_H)

Bits	7	6	5	4	3	2	1	0
Field				ADC	RDH			
Reset)	<			
R/W				F	२			
Address				F7	1H			

Bit Position	Value (H)	Description
[7:0]	00–FF	ADC Raw Data High Byte The data in this register is the raw data coming from the SAR Block. It will change as the conversion is in progress. This register is used for testing only.

14.3.3. ADC Data High Byte Register

The ADC Data High Byte Register, shown in Table 103, contains the upper eight bits of the ADC output. Access to the ADC Data High Byte Register is read-only. Reading the ADC Data High Byte Register latches data in the ADC Low Bits Register.

Table 103	. ADC Data	High Byte	Register	(ADCD_H)
-----------	------------	------------------	----------	----------

Bits	7	6	5	4	3	2	1	0
Field				ADC	CDH			
Reset)	<			
R/W				F	२			
Address				F7	2H			

Bit Position	Value (H)	Description
[7:0]	00–FF	ADC High Byte The last conversion output is held in the data registers until the next ADC conversion has completed.

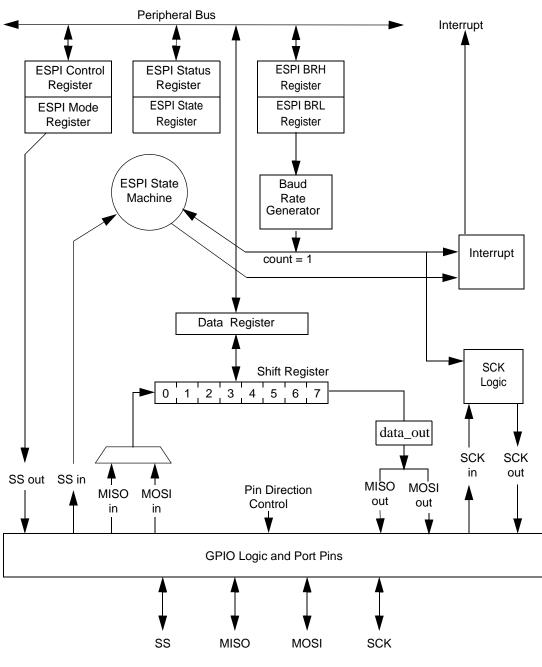


Figure 33. ESPI Block Diagram

17.2.3. Start and Stop Conditions

The Master generates the start and stop conditions to start or end a transaction. To start a transaction, the I²C controller generates a start condition by pulling the SDA signal Low while SCL is High. To complete a transaction, the I²C controller generates a stop condition by creating a Low-to-High transition of the SDA signal while the SCL signal is High. These start and stop events occur when the start and stop bits in the I²C Control Register are written by software to begin or end a transaction. Any byte transfer currently under way including the Acknowledge phase finishes before the start or stop condition occurs.

17.2.4. Software Control of I²C Transactions

The I²C controller is configured via the I²C Control and I²C Mode registers. The MODE[1:0] field of the I²C Mode Register allows the configuration of the I²C controller for MASTER/SLAVE or SLAVE ONLY mode and configures the slave for 7-bit or 10-bit addressing recognition.

MASTER/SLAVE Mode can be used for:

- MASTER ONLY operation in a Single Master/One or More Slave I²C system
- MASTER/SLAVE in a Multimaster/multislave I²C system
- SLAVE ONLY operation in an I²C system

In SLAVE ONLY mode, the start bit of the I²C Control Register is ignored (software cannot initiate a master transaction by accident) and operation to SLAVE ONLY Mode is restricted thereby preventing accidental operation in MASTER Mode. The software controls I²C transactions by enabling the I²C controller interrupt in the interrupt controller or by polling the I²C Status Register.

To use interrupts, the I^2C interrupt must be enabled in the interrupt controller and followed by executing an EI instruction. The TXI bit in the I^2C Control Register must be set to enable transmit interrupts. An I^2C interrupt service routine then checks the I^2C Status Register to determine the cause of the interrupt.

To control transactions by polling, the TDRE, RDRF, SAM, ARBLST, SPRS and NCKI interrupt bits in the I²C Status Register should be polled. The TDRE bit asserts regardless of the state of the TXI bit.

17.2.5. Master Transactions

The following sections describe Master Read and Write transactions to both 7-bit and 10bit slaves.

- 14. The software responds by writing the data to be written out to the I²C Control Register.
- 15. The I²C controller shifts out the remainder of the second byte of the slave address (or ensuring data bytes, if looping) via the SDA signal.
- 16. The I²C slave sends an Acknowledge by pulling the SDA signal Low during the next High period of SCL. The I²C controller sets the ACK bit in the I²C Status Register. If the slave does not acknowledge, see the second paragraph of <u>Step 11</u>.
- 17. The I²C controller shifts the data out by the SDA signal. After the first bit is sent, the transmit interrupt asserts.
- 18. If more bytes remain to be sent, return to <u>Step 14</u>.
- 19. The software responds by asserting the stop bit of the I^2C Control Register.
- 20. The I^2C controller completes transmission of the data on the SDA signal.
- 21. The I^2C controller sends a stop condition to the I^2C bus.

Note: If the slave responds with a Not Acknowledge during the transfer, the I^2C controller asserts the NCKI bit, sets the ACKV bit, clears the ACK bit in the I^2C State Register and halts. The software terminates the transaction by setting either the stop bit (end transaction) or the start bit (end this transaction, start a new one). The Transmit Data Register is flushed automatically.

17.2.5.6. Master Read Transaction with a 7-Bit Address

Figure 45 displays the data transfer format for a Read operation to a 7-bit addressed slave.

S	Slave Address	R = 1	А	Data	А	Data	А	P/S
---	---------------	-------	---	------	---	------	---	-----

Figure 45. Data Transfer Format—Master Read Transaction with a 7-Bit Address

Observe the following steps for a Master Read operation to a 7-bit addressed slave:

- The software initializes the MODE field in the I²C Mode Register for MASTER/ SLAVE Mode with 7- or 10-bit addressing (the I²C bus protocol allows the mixing of slave address types). The MODE field selects the address width for this mode when addressed as a slave (but not for the remote slave). The software asserts the IEN bit in the I²C Control Register.
- 2. The software writes the I²C Data Register with a 7-bit slave address, plus the Read bit (which is set to 1).
- 3. The software asserts the start bit of the I^2C Control Register.

17.3.2. I²C Interrupt Status Register

The read-only I^2C Interrupt Status Register, shown in Table 120, indicates the cause of any current I^2C interrupt and provides status of the I^2C controller. When an interrupt occurs, one or more of the TDRE, RDRF, SAM, ARBLST, SPRS or NCKI bits is set. The GCA and RD bits do not generate an interrupt but rather provide status associated with the SAM bit interrupt.

Bits	7	6	5	4	3	2	1	0
Field	TDRE	RDRF	SAM	GCA	RD	ARBLST	SPRS	NCKI
Reset	1	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R
Address	F51H							
Bit	Descriptio	n						
[7] TDRE	Transmit Data Register Empty When the I^2C controller is enabled, this bit is 1 when the I^2C Data Register is empty. When set, this bit causes the I^2C controller to generate an interrupt, except when the I^2C controller is shifting in data during the reception of a byte or when shifting an address and the RD bit is set. This bit clears by writing to the I2CDATA Register.						roller is	
[6] RDRF	Receive Data Register Full This bit is set = 1 when the I^2C controller is enabled and the I^2C controller has received a byte of data. When asserted, this bit causes the I^2C controller to generate an interrupt. This bit clears by reading the I2CDATA Register.							
[5] SAM	This bit is s that matche the I ² C Mod on both add	es the uniqued	e slave addr . In 10-bit ac When this b	er is enablec ess or Gene ddressing mo bit is set, the	eral Call Add ode, this bit	lress (if enal is not set ur	bled by the (htil a match i	GCE bit in s achieved
[4] GCA	This bit is s either 7 or 7 recognition updated fol Address is	10 bit SLAVI of the Gene lowing the fi	E Mode). Th eral Call Add rst address d from a Sta	n the Genera le GCE bit ir Iress and Sta byte of each art byte by th	the I ² C Mo art byte. This SLAVE Mo	de Register s bit clears v de transacti	must be set when IEN = on. A Gener	to enable 0 and is ral Call
[3] RD	from the Sla condition of	ave. This bit ccurs (for bo	matches the the the the the the the test of test o	ansfer of the e least-signi t and SLAVE byte of each	ficant bit of t E modes). T	the address his bit clears	byte after th	ne start

Table 120. I²C Interrupt Status Register (I2CISTAT = F51H)

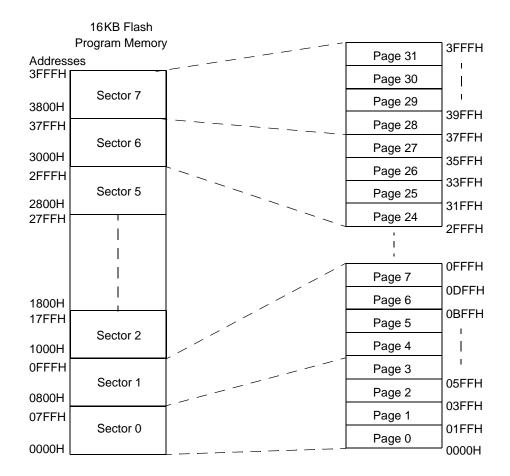


Figure 52. 16KB Flash Memory Arrangement

Read Baud Reload Register (1BH). The Read Baud Reload Register command returns the current value in the Baud Reload Register.

DBG \leftarrow 1BH DBG \rightarrow BAUD[15:8] DBG \rightarrow BAUD[7:0]

Write Test Mode Register (F0H). The Write Test Mode Register command writes the data that follows to the Test Mode register.

DBG \leftarrow F0H DBG \leftarrow TESTMODE[7:0]

Read Test Mode Register (F1H). The Read Test Mode Register command returns the current value in the Test Mode register.

DBG \leftarrow F1H DBG \rightarrow TESTMODE[7:0]

Write Option Bit Registers (F2H). The Write Option Bit Registers command is used to write to the option bit configuration registers. The option bit configuration registers store the device configuration and are loaded from Flash every time the Z8 Encore! XP F1680 Series is reset. The registers may be temporarily written using this OCD command to test peripherals without having to program the Flash Information Area and resetting the Z8 Encore! XP F1680 Series. The ZilogUserSel bit selects between Zilog option bits (1) and user option bits (0).

```
DBG \leftarrow F2H
DBG \leftarrow {ZilogUserSel,1'b0,OptAddr[4:0]}
DBG \leftarrow OptData[7:0]
```

Read Option Bit Registers (F3H). The Read Option Bit Registers command is used to read the option bit registers that store the device configuration that is read out of flash when the Z8 Encore! XP F1680 Series is reset. The ZilogUserSel bit selects between reading Zilog option bits (1) or user option bits (0).

```
DBG \leftarrow F1H
DBG \leftarrow {ZilogUserSel,1'b0,OptAddr[4:0]}
DBG \rightarrow OptData[7:0]
```

23.4. On-Chip Debugger Control Register Definitions

This section defines the features of the following On-Chip Debugger Control registers.

OCD Control Register: see page 310

OCD Status Register: see page 312

Line Control Register: see page 313

Baud Reload Register: see page 314

Tables 178 through 185 contain the instructions belonging to each group and the number of operands required for each instruction. Some instructions appear in more than one table as these instructions are to be considered as a subset of more than one category. Within these tables, the source operand is identified as src, the destination operand is dst and a condition code is cc.

Mnemonic	Operands	Instruction
ADC	dst, src	Add with Carry
ADCX	dst, src	Add with Carry using Extended Addressing
ADD	dst, src	Add
ADDX	dst, src	Add using Extended Addressing
СР	dst, src	Compare
CPC	dst, src	Compare with Carry
CPCX	dst, src	Compare with Carry using Extended Addressing
СРХ	dst, src	Compare using Extended Addressing
DA	dst	Decimal Adjust
DEC	dst	Decrement
DECW	dst	Decrement Word
INC	dst	Increment
INCW	dst	Increment Word
MULT	dst	Multiply
SBC	dst, src	Subtract with Carry
SBCX	dst, src	Subtract with Carry using Extended Addressing
SUB	dst, src	Subtract
SUBX	dst, src	Subtract using Extended Addressing

Table 178. Arithmetic Instructions

Figures 69 through 72 display the typical current consumption at voltages of 1.8 V, 2.0 V, 2.7 V, 3.0 V, 3.3 V and 3.6 V, respectively, versus different system clock frequencies while operating at a temperature of 25° C.

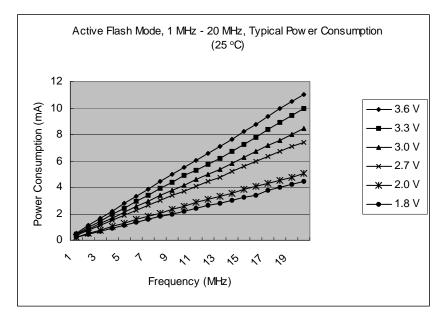


Figure 69. Typical Active Flash Mode Supply Current (1–20MHz)

control register, I2C 247 Control Registers 19 CP 332 CPC 332 CPCX 332 CPU and peripheral overview 4 CPU control instructions 333 CPX 332 current measurement architecture 186 operation 186 Customer Feedback Form 387

D

DA 330, 332 data memory 21 data register, I2C 243 DC characteristics 350 debugger, on-chip 294 **DEC 332** decimal adjust 332 decrement 332 decrement and jump non-zero 335 decrement word 332 **DECW 332** destination operand 331 device, port availability 46 DI 333 direct address 330 disable interrupts 333 **DJNZ 335** dst 331

Ε

EI 333 electrical characteristics 349 ADC 360 flash memory and timing 359 GPIO input data sample timing 366 watch-dog timer 359, 361 electrical noise 186 enable interrupt 333 ER 330 extended addressing register 330 external pin reset 37 eZ8 CPU features 4 eZ8 CPU instruction classes 331 eZ8 CPU instruction notation 330 eZ8 CPU instruction set 328 eZ8 CPU instruction summary 336

F

FCTL register 272, 281 features, Z8 Encore! 1 first opcode map 347 FLAGS 331 flags register 331 flash controller 4 option bit configuration - reset 276 flash memory 262 arrangement 263, 264, 265 byte programming 269 code protection 267 configurations 262 control register definitions 271, 278 controller bypass 270 electrical characteristics and timing 359 flash control register 272, 281 flash option bits 268 flash status register 272 flow chart 266 frequency high and low byte registers 274 mass erase 270 operation 265 operation timing 267 page erase 270 page select register 273, 274 FPS register 273, 274 FSTAT register 272

G

gated mode 114 general-purpose I/O 46 GPIO 4, 46 alternate functions 47 architecture 47 control register definitions 58

Z8 Encore! XP[®] F1680 Series Product Specification