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5.3 Data Memory (EEPROM)
ATtiny828 contains 256 bytes of non-volatile data memory. This EEPROM is organized as a separate data space, in 
which single bytes can be read and written. All access registers are located in the I/O space.

The EEPROM memory layout is summarised in Table 4, below.

Table 4. Size of Non-Volatile Data Memory (EEPROM)

The internal 8MHz oscillator is used to time EEPROM operations. The frequency of the oscillator must be within the 
requirements described in “OSCCAL0 – Oscillator Calibration Register” on page 32.

When powered by heavily filtered supplies, the supply voltage, VCC, is likely to rise or fall slowly on power-up and power-
down. Slow rise and fall times may put the device in a state where it is running at supply voltages lower than specified. To 
avoid problems in situations like this, see “Preventing EEPROM Corruption” on page 20.

The EEPROM has a minimum endurance of 100,000 write/erase cycles.

5.3.1 Programming Methods

There are two methods for EEPROM programming:
Atomic byte programming. This is the simple mode of programming, where target locations are erased and written 
in a single operation. In this mode of operation the target is guaranteed to always be erased before writing but 
programmin times are longer.
Split byte programming. It is possible to split the erase and write cycle in two different operations. This is useful 
when short access times are required, for example when supply voltage is falling. In order to take advantage of this 
method target locations must be erased before writing to them. This can be done at times when the system allows 
time-critical operations, typically at start-up and initialisation.

The programming method is selected using the EEPROM Programming Mode bits (EEPM1 and EEPM0) in EEPROM 
Control Register (EECR). See Table 5 on page 24. Write and erase times are given in the same table.

Since EEPROM programming takes some time the application must wait for one operation to complete before starting 
the next. This can be done by either polling the EEPROM Program Enable bit (EEPE) in EEPROM Control Register 
(EECR), or via the EEPROM Ready Interrupt. The EEPROM interrupt is controlled by the EEPROM Ready Interrupt 
Enable (EERIE) bit in EECR.

5.3.2 Read

To read an EEPROM memory location follow the procedure below:
Poll the EEPROM Program Enable bit (EEPE) in EEPROM Control Register (EECR) to make sure no other 
EEPROM operations are in process. If set, wait to clear.
Write target address to EEPROM Address Registers (EEARH/EEARL).
Start the read operation by setting the EEPROM Read Enable bit (EERE) in the EEPROM Control Register 
(EECR). During the read operation, the CPU is halted for four clock cycles before executing the next instruction.
Read data from the EEPROM Data Register (EEDR).

Device EEPROM Size Address Range

ATtiny828 256B 0x00 – 0xFF
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To ensure stable operation of the MCU it is required to avoid sudden changes in the external clock frequency . A 
variation in frequency of more than 2% from one clock cycle to the next can lead to unpredictable behavior. It is required 
to ensure that the MCU is kept in Reset during such changes in the clock frequency.

Stable operation for large step changes in system clock frequency is guaranteed when using the system clock prescaler. 
See “System Clock Prescaler” on page 30.

6.2.2 Calibrated Internal 8MHz Oscillator

The internal 8MHz oscillator operates with no external components and, by default, provides a clock source with an 
approximate frequency of 8MHz. Though voltage and temperature dependent, this clock can be very accurately 
calibrated by the user. See Table 104 on page 249 and “Internal Oscillator Speed” on page 293 for more details.

During reset, hardware loads the pre-programmed calibration value into the OSCCAL0 register and thereby 
automatically calibrates the oscillator. The accuracy of this calibration is referred to as “Factory Calibration” in Table 104 
on page 249. For more information on automatic loading of pre-programmed calibration value, see section “Calibration 
Bytes” on page 229.

It is possible to reach higher accuracies than factory defaults, especially when the application allows temperature and 
voltage ranges to be narrowed. The firmware can reprogram the calibration data in OSCCAL0 either at start-up or during 
run-time. The continuous, run-time calibration method allows firmware to monitor voltage and temperature and 
compensate for any detected variations. See “OSCCAL0 – Oscillator Calibration Register” on page 32, “Temperature 
Measurement” on page 148, and Table 52 on page 150. The accuracy of this calibration is referred to as “User 
Calibration” in Table 104 on page 249.

The oscillator temperature calibration registers, OSCTCAL0A and OSCTCAL0B, can be used for one-time temperature 
calibration of oscillator frequency. See “OSCTCAL0A – Oscillator Temperature Calibration Register A” on page 33 and 
“OSCTCAL0B – Oscillator Temperature Calibration Register B” on page 33.

When this oscillator is used as the chip clock, it will still be used for the Watchdog Timer and for the Reset Time-out.

Start-up time for this clock source is determined by the SUT fuse bit, as shown in Table 7 on page 30.

6.2.3 Internal 32kHz Ultra Low Power (ULP) Oscillator

The internal 32kHz oscillator is a low power oscillator that operates with no external components. It provides a clock 
source with an approximate frequency of 32kHz. The frequency depends on supply voltage, temperature and batch 
variations. See Table 105 on page 250 for accuracy details.

During reset, hardware loads the pre-programmed calibration value into the OSCCAL1 register and thereby 
automatically calibrates the oscillator. The accuracy of this calibration is referred to as “Factory Calibration” in Table 105 
on page 250. For more information on automatic loading of pre-programmed calibration value, see section “Calibration 
Bytes” on page 229.

Start-up time for this clock source is determined by the SUT fuse bit, as shown in Table 7 on page 30.

6.2.4 Default Clock Settings

The device is shipped with following fuse settings:
Calibrated Internal 8MHz Oscillator (see CKSEL fuse bits in Table 6 on page 28)
Longest possible start-up time (see SUT fuse bits in Table 7 on page 30)
System clock prescaler set to 8 (see CKDIV8 fuse bit on page 32)

The default setting gives a 1MHz system clock and ensures all users can make their desired clock source setting using 
an in-system or high-voltage programmer.
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the ACD bit in ACSRA. See “ACSRA – Analog Comparator Control and Status Register” on page 134. This will reduce 
power consumption in Idle mode.

If the ADC is enabled, a conversion starts automatically when this mode is entered. 

7.1.2 ADC Noise Reduction Mode

This sleep mode halts clkI/O, clkCPU, and clkFLASH, while allowing other clocks to run. In ADC Noise Reduction mode, the 
CPU is stopped but the following peripherals continue to operate:

Watchdog (if enabled), and external interrupts
ADC
USART start frame detector, and TWI

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is enabled, a 
conversion starts automatically when this mode is entered.

The following events can wake up the MCU:
Watchdog reset, external reset, and brown-out reset
External level interrupt on INT0, and pin change interrupt
ADC conversion complete interrupt, and SPM/EEPROM ready interrupt
USART start frame detection, and TWI slave address match

7.1.3 Power-Down Mode

This sleep mode halts all generated clocks, allowing operation of asynchronous modules, only. In Power-down Mode the 
oscillator is stopped, while the following peripherals continue to operate:

Watchdog (if enabled), external interrupts

The following events can wake up the MCU:
Watchdog reset, external reset, and brown-out reset
External level interrupt on INT0, and pin change interrupt
USART start frame detection, and TWI slave address match

7.2 Power Reduction Register
The Power Reduction Register (PRR), see “PRR – Power Reduction Register” on page 37, provides a method to reduce 
power consumption by stopping the clock to individual peripherals. When the clock for a peripheral is stopped then:

The current state of the peripheral is frozen.
The associated registers can not be read or written.
Resources used by the peripheral will remain occupied.

The peripheral should in most cases be disabled before stopping the clock. Clearing the PRR bit wakes up the peripheral 
and puts it in the same state as before shutdown.

Peripheral shutdown can be used in Idle mode and Active mode to significantly reduce the overall power consumption. 
See “Current Consumption of Peripheral Units” on page 266 for examples. In all other sleep modes, the clock is already 
stopped.

7.3 Minimizing Power Consumption
There are several issues to consider when trying to minimize the power consumption in an AVR controlled system. In 
general, sleep modes should be used as much as possible, and the sleep mode should be selected so that as few as 
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Figure 25. Alternative Port Functions

Note: WEx, WRx, WPx, WDx, REx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, and SLEEP are 
common to all ports. All other signals are unique for each pin.
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For actual placement of I/O pins, refer to Figure 1 on page 2 (MLF), and Figure 2 on page 2 (TQFP). Also, see 
“TOCPMSA1 and TOCPMSA0 – Timer/Counter Output Compare Pin Mux Selection Registers” on page 127, and 
“TOCPMCOE – Timer/Counter Output Compare Pin Mux Channel Output Enable” on page 128. 

Most register and bit references in this section are written in general form. A lower case “n” replaces the Timer/Counter 
number, and a lower case “x” replaces the Output Compare unit channel. However, when using the register or bit defines 
in a program, the precise form must be used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.

12.2.1 Registers

The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Register (ICR1) are all 16-bit 
registers. Special procedures must be followed when accessing the 16-bit registers. These procedures are described in 
section “Accessing 16-bit Registers” on page 120. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers 
and have no CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all visible in the 
Timer Interrupt Flag Register (TIFR). All interrupts are individually masked with the Timer Interrupt Mask Register 
(TIMSK). TIFR and TIMSK are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T1 pin. The Clock 
Select logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. 
The Timer/Counter is inactive when no clock source is selected. The output from the Clock Select logic is referred to as 
the timer clock (clkT1).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Counter value at all time. The 
result of the compare can be used by the Waveform Generator to generate a PWM or variable frequency output on the 
Output Compare pin (OC1A/B). See “Output Compare Units” on page 108. The compare match event will also set the 
Compare Match Flag (OCF1A/B) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge triggered) event on either the 
Input Capture pin (ICP1) or on the Analog Comparator pins (See “Analog Comparator” on page 133). The Input Capture 
unit includes a digital filtering unit (Noise Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined by either the OCR1A 
Register, the ICR1 Register, or by a set of fixed values. When using OCR1A as TOP value in a PWM mode, the OCR1A 
Register can not be used for generating a PWM output. However, the TOP value will in this case be double buffered 
allowing the TOP value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used as an 
alternative, freeing the OCR1A to be used as PWM output.

12.2.2 Definitions

The following definitions are used extensively throughout the section:

Table 38. Definitions

12.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the Clock 
Select logic which is controlled by the Clock Select (CS1[2:0]) bits located in the Timer/Counter control Register B 
(TCCR1B). For details on clock sources and prescaler, see “Timer/Counter Prescaler” on page 131.

Constant Description

BOTTOM The counter reaches BOTTOM when it becomes 0x00

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255)

TOP
The counter reaches TOP when it becomes equal to the highest value in the count sequence. The TOP 
value can be assigned to be the fixed value 0xFF (MAX), the value stored in the OCR1A register, or the 
value stored in the ICR1 register. The assignment depends on the mode of operation
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Figure 45. Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x Registers are updated with 
the double buffer value (at BOTTOM). When either OCR1A or ICR1 is used for defining the TOP value, the OC1A or 
ICF1 flag set when TCNT1 has reached TOP. The interrupt flags can then be used to generate an interrupt each time the 
counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of 
the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match will never occur 
between the TCNT1 and the OCR1x.

As Figure 45 shows the output generated is, in contrast to the phase correct mode, symmetrical in all periods. Since the 
OCR1x Registers are updated at BOTTOM, the length of the rising and the falling slopes will always be equal. This gives 
symmetrical output pulses and is therefore frequency correct.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using ICR1, the OCR1A Register 
is free to be used for generating a PWM output on OC1A. However, if the base PWM frequency is actively changed by 
changing the TOP value, using the OCR1A as TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. 
Setting the COM1x[1:0] bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by 
setting the COM1x[1:0] to three (See Table 41 on page 124). The actual OC1x value will only be visible on the port pin if 
the data direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) 
the OC1x Register at the compare match between OCR1x and TCNT1 when the counter increments, and clearing (or 
setting) the OC1x Register at compare match between OCR1x and TCNT1 when the counter decrements. The PWM 
frequency for the output when using phase and frequency correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM waveform output in the 
phase correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and if set equal to 
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13. Timer/Counter Prescaler
Timer/Counter0 and Timer/Counter1 share the same prescaler module, but the Timer/Counters can have different 
prescaler settings. The description below applies to both Timer/Counters. Tn is used as a general name, n = 0, 1. 

The Timer/Counter can be clocked directly by the system clock (by setting the CSn[2:0] = 1). This provides the fastest 
operation, with a maximum Timer/Counter clock frequency equal to system clock frequency (fCLK_I/O). Alternatively, one 
of four taps from the prescaler can be used as a clock source. The prescaled clock has a frequency of either fCLK_I/O/8, 
fCLK_I/O/64, fCLK_I/O/256, or fCLK_I/O/1024.

13.1 Prescaler Reset
The prescaler is free running, i.e., operates independently of the Clock Select logic of the Timer/CounterCounter, and it is 
shared by the Timer/Counter Tn. Since the prescaler is not affected by the Timer/Counter’s clock select, the state of the 
prescaler will have implications for situations where a prescaled clock is used. One example of prescaling artifacts occurs 
when the timer is enabled and clocked by the prescaler (CSn[2:0] = 2, 3, 4, or 5). The number of system clock cycles 
from when the timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles, where N equals the 
prescaler divisor (8, 64, 256, or 1024).

It is possible to use the Prescaler Reset for synchronizing the Timer/Counter to program execution.

13.2 External Clock Source
An external clock source applied to the Tn pin can be used as Timer/Counter clock (clkTn). The Tn pin is sampled once 
every system clock cycle by the pin synchronization logic. The synchronized (sampled) signal is then passed through the 
edge detector. Figure 50 shows a functional equivalent block diagram of the Tn synchronization and edge detector logic. 
The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch is transparent in the high 
period of the internal system clock.

The edge detector generates one clkT0 pulse for each positive (CSn[2:0] = 7) or negative (CSn[2:0] = 6) edge it detects.

Figure 50. T0 Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge has been 
applied to the Tn pin to the counter is updated.

Enabling and disabling of the clock input must be done when Tn has been stable for at least one system clock cycle, 
otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sampling. 
The external clock must be guaranteed to have less than half the system clock frequency (fExtClk < fclk_I/O/2) given a 
50/50% duty cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it can detect is 
half the sampling frequency (Nyquist sampling theorem). However, due to variation of the system clock frequency and 
duty cycle caused by oscillator source tolerances, it is recommended that maximum frequency of an external clock 
source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.
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Table 45. ACIS1/ACIS0 Settings

When changing these bits, the analog comparator interrupt must be disabled. Otherwise, an interrupt can occur when the 
bits are changed.

14.1.2 ACSRB – Analog Comparator Control and Status Register B

Bit 7 – HSEL: Hysteresis Select

When this bit is written logic one, the hysteresis of the analog comparator is enabled. The level of hysteresis is selected 
by the HLEV bit.

Bit 6 – HLEV: Hysteresis Level

When enabled via the HSEL bit, the level of hysteresis can be set using the HLEV bit, as shown in Table 46.

Table 46. Selecting Level of Analog Comparator Hysteresis

Bit 4 – Res: Reserved Bit

This bit is reserved and will always read as zero.

Bits 3:2 – ACNMUX[1:0]: Analog Comparator Negative Input Multiplexer

These bits select the source for the negative input of the analog comparator, as shown in Table 47, below.

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.

Bit 7 6 5 4 3 2 1 0

0x2F (0x4F) HSEL HLEV – – ACNMUX1 ACNMUX0 ACPMUX1 ACPMUX0 ACSRB

Read/Write R/W R/W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

HSEL HLEV Hysteresis of Analog Comparator

0 X Not enabled

1
0 20 mV

1 50 mV
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Notes: 1. These transmit functions are written to be general functions. They can be optimized if the contents of the 
UCSRB is static. For example, only the TXB8 bit of UCSRB is used after initialization.

2. See “Code Examples” on page 7.

The ninth bit can be used for indicating an address frame when using multi processor communication mode or for other 
protocol handling as for example synchronization.

17.6.3 Transmitter Flags and Interrupts

The USART transmitter has two flags that indicate its state: USART Data Register Empty (UDRE) and Transmit 
Complete (TXC). Both flags can be used for generating interrupts.

The Data Register Empty flag (UDRE) indicates whether the transmit buffer is ready to receive new data. This bit is set 
when the transmit buffer is empty, and cleared when the transmit buffer contains data to be transmitted that has not yet 
been moved into the shift register. For compatibility with future devices, always write this bit to zero when writing UCSRA.

When the Data Register Empty Interrupt Enable bit (UDRIE) is set, the USART Data Register Empty Interrupt will be 
executed as long as UDRE is set (and provided that global interrupts are enabled). UDRE is cleared by writing UDR. 
When interrupt-driven data transmission is used, the Data Register Empty interrupt routine must either write new data to 
UDR in order to clear UDRE or disable the Data Register Empty interrupt, otherwise a new interrupt will occur once the 
interrupt routine terminates.

The Transmit Complete flag (TXC) is set when the entire frame in the transmit shift register has been shifted out and 
there are no new data currently present in the transmit buffer. The TXC flag is automatically cleared when a transmit 
complete interrupt is executed, or it can be cleared by writing a one to its location. The TXC flag is useful in half-duplex 
communication interfaces (like the RS-485 standard), where a transmitting application must enter receive mode and free 
the communication bus immediately after completing the transmission.

When the Transmit Compete Interrupt Enable bit (TXCIE) is set, the USART Transmit Complete Interrupt will be 
executed when the TXC flag becomes set (and provided that global interrupts are enabled). When the transmit complete 
interrupt is used, the interrupt handling routine does not have to clear the TXC flag, since this is done automatically when 
the interrupt is executed.

17.6.4 Parity Generator

The parity generator calculates the parity bit for the serial frame data. When parity bit is enabled (UPM1 = 1), the 
transmitter control logic inserts the parity bit between the last data bit and the first stop bit of the frame that is sent.

C Code Example(1)(2)

void USART_Transmit( unsigned int data )
{

/* Wait for empty transmit buffer */
while ( !( UCSRA & (1<<UDRE))) )

;

/* Copy 9th bit to TXB8 */
UCSRB &= ~(1<<TXB8);
if ( data & 0x0100 )

UCSRB |= (1<<TXB8);

/* Put data into buffer, sends the data */
UDR = data;

}
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Table 66. Examples of UBRR Settings for Commonly Used Oscillator Frequencies

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max. (1) 0.5 Mbps 1 Mbps 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps

1. UBRR = 0, Error = 0.0%

Baud 
Rate 
(bps)

fosc = 8.0000MHz fosc = 11.0592MHz fosc = 14.7456MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

Baud 
Rate 
(bps)

fosc = 16.0000MHz fosc = 18.4320MHz fosc = 20.0000MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%

4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%

9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%

14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%

19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%

28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%

38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%

57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%

76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%

115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%

230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%

250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%

0.5M 1 0.0% 3 0.0% – – 4 -7.8% – – 4 0.0%

1M 0 0.0% 1 0.0% – – – – – – – –

Max. (1) 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

1. UBRR = 0, Error = 0.0%
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Given that the slave acknowledges the address, the master can start receiving data from the slave. There are no 
limitations to the number of data packets that can be transferred. The slave transmits the data while the master signals 
ACK or NACK after each data byte. The master terminates the transfer with a NACK before issuing a STOP condition.

Figure 84 illustrates a combined transaction. A combined transaction consists of several read and write transactions 
separated by a Repeated START conditions (Sr).

Figure 84. Combined Transaction

19.3.7 Clock and Clock Stretching

All devices connected to the bus are allowed to stretch the low period of the clock to slow down the overall clock 
frequency or to insert wait states while processing data. A device that needs to stretch the clock can do this by 
holding/forcing the SCL line low after it detects a low level on the line.

Three types of clock stretching can be defined as shown in Figure 85.

Figure 85. Clock Stretching

If the device is in a sleep mode and a START condition is detected the clock is stretched during the wake-up period for 
the device.

A slave device can slow down the bus frequency by stretching the clock periodically on a bit level. This allows the slave 
to run at a lower system clock frequency. However, the overall performance of the bus will be reduced accordingly. Both 
the master and slave device can randomly stretch the clock on a byte level basis before and after the ACK/NACK bit. 
This provides time to process incoming or prepare outgoing data, or performing other time critical tasks. 

In the case where the slave is stretching the clock the master will be forced into a wait-state until the slave is ready and 
vice versa.

19.3.8 Arbitration

A master can only start a bus transaction if it has detected that the bus is idle. As the TWI bus is a multi master bus, it is 
possible that two devices initiate a transaction at the same time. This results in multiple masters owning the bus 
simultaneously. This is solved using an arbitration scheme where the master loses control of the bus if it is not able to 
transmit a high level on the SDA line. The masters who lose arbitration must then wait until the bus becomes idle (i.e. 
wait for a STOP condition) before attempting to reacquire bus ownership. Slave devices are not involved in the arbitration 
procedure.
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19.5.2 TWSCRB – TWI Slave Control Register B

Bits 7:3 – Res: Reserved Bits

These bits are reserved and will always read as zero.

Bit 2 – TWAA: TWI Acknowledge Action

This bit defines the slave's acknowledge behavior after an address or data byte has been received from the master. 
Depending on the TWSME bit in TWSCRA the Acknowledge Action is executed either when a valid command has been 
written to TWCMDn bits, or when the data register has been read. Acknowledge action is also executed if clearing 
TWAIF flag after address match or TWDIF flag during master transmit. See Table 77 for details.

Table 77. Acknowledge Action of TWI Slave

Bits 1:0 – TWCMD[1:0]: TWI Command

Writing these bits triggers the slave operation as defined by Table 78. The type of operation depends on the TWI slave 
interrupt flags, TWDIF and TWASIF. The Acknowledge Action is only executed when the slave receives data bytes or 
address byte from the master.

Table 78. TWI Slave Command

Bit 7 6 5 4 3 2 1 0

(0xB9) – – – – – TWAA TWCMD1 TWCMD0 TWSCRB

Read/Write R R R R R R/W W W

Initial Value 0 0 0 0 0 0 0 0

TWAA Action TWSME When

0 Send ACK
0 When TWCMDn bits are written to 10 or 11

1 When TWSD is read

1 Send NACK
0 When TWCMDn bits are written to 10 or 11

1 When TWSD is read

TWCMD[1:0] TWDIR Operation

00 X No action

01 X Reserved

10

Used to complete transaction

0 Execute Acknowledge Action, then wait for any START (S/Sr) condition

1 Wait for any START (S/Sr) condition
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In addition to the application and boot loader areas, the Flash is also divided into two fixed sections; the Read-While-
Write (RWW) and the No Read-While-Write (NRWW) section. The main difference between the RWW and NRWW 
sections are:

When erasing or writing a page located inside the RWW section, the NRWW section can be read during the 
operation
When erasing or writing a page located inside the NRWW section, the CPU is halted during the entire operation

Note that during a boot loader operation, software can never read code located in the RWW section. See Table 79, 
below.

Table 79. Read-While-Write Features

The term “read-while-write section” refers to the section being programmed (i.e. erased, or written), not the section that is 
being read during a software update by the boot loader.

Figure 90. Read-While-Write vs. No Read-While-Write

RWW and NRWW sections are defined in Table 82 on page 217 and illustrated in Figure 90.

 Section that Z-pointer addresses 
during programming

Section that can be read during 
programming? CPU halted

Read-while-write 
supported

RWW NRWW No Yes

NRWW None Yes No

Read-While-Write
(RWW) Section

No Read-While-Write 
(NRWW) Section

Z-pointer
Addresses RWW
Section

Z-pointer
Addresses NRWW
Section

CPU is Halted
During the Operation

Code Located in 
NRWW Section
Can be Read During
the Operation
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Table 90. High Fuse Byte

Notes: 1. Programming this fuse bit will change the functionality of the RESET pin and render further programming via 
the serial interface impossible. The fuse bit can be unprogrammed using the parallel programming algorithm 
(see page 232).

2. This fuse bit is not accessible in serial programming mode.
3. This setting enables SPI programming.
4. This setting does not preserve EEPROM.

Table 91. Low Fuse Byte

Note: 1. Unprogramming this fuse at low voltages may result in overclocking. See Section 24.3 on page 249 for 
device speed versus supply voltage.

2. This setting results in maximum start-up time for the default clock source.

3 – – 1 (unprogrammed)

2 BOOTSZ1
Sets size of boot loader section Page 216

1 (unprogrammed)

1 BOOTSZ0 1 (unprogrammed)

0 BOOTRST Defines boot reset vector Page 216 1 (unprogrammed)

Bit #  Bit Name Use See Default Value

7 RSTDISBL Disables external reset (1) Page 79 1 (unprogrammed)

6 DWEN Enables debugWIRE (1) Page 212 1 (unprogrammed)

5 SPIEN Enables serial programming and 
downloading of data to device (2) 0 (programmed) (3)

4 WDTON Sets watchdog timer permanently on Page 46 1 (unprogrammed)

3 EESAVE Preserves EEPROM memory during Chip 
Erase operation Page 235 1 (unprogrammed) (4)

2 BODLEVEL2

Sets BOD trigger level Page 251

1 (unprogrammed)

1 BODLEVEL1 1 (unprogrammed)

0 BODLEVEL0 1 (unprogrammed)

Bit #  Bit Name Use See Default Value

7 CKDIV8 Divides clock by 8 (1) Page 30 0 (programmed)

6 CKOUT Outputs system clock on port pin Page 30 1 (unprogrammed)

5 SUT1
Sets system start-up time Page 30

1 (unprogrammed) (2)

4 SUT0 0 (programmed) (2)

3 – – 1 (unprogrammed)

2 – – 1 (unprogrammed)

1 CKSEL1
Selects clock source Page 28

1 (unprogrammed) (3)

0 CKSEL0 0 (programmed) (3)

Bit #  Bit Name Use See Default Value
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22.3.1 Signature Bytes

All Atmel microcontrollers have a three-byte signature code which identifies the device. This code can be read in both 
serial and parallel mode, also when the device is locked.

Signature bytes can also be read by the device firmware. See section “Reading Lock, Fuse and Signature Data from 
Software” on page 229.

The three signature bytes reside in a separate address space called the device signature imprint table. The signature 
data for ATtiny828 is given in Table 93.

Table 93. Device Signature Bytes

22.3.2 Calibration Bytes

The device signature imprint table of ATtiny828 contains calibration data for the internal oscillators, as shown in Table 92 
on page 228. During reset, calibration data is automatically copied to the calibration registers (OSCCAL0, OSCCAL1) to 
ensure correct frequency of the calibrated oscillators. See “OSCCAL0 – Oscillator Calibration Register” on page 32, and 
“OSCCAL1 – Oscillator Calibration Register” on page 33.

Calibration bytes can also be read by the device firmware. See section “Reading Lock, Fuse and Signature Data from 
Software” on page 229.

22.4 Reading Lock, Fuse and Signature Data from Software
Fuse and lock bits can be read by device firmware. Programmed fuse and lock bits read zero. unprogrammed as one. 
See “Lock Bits” on page 225 and “Fuse Bits” on page 226.

In addition, firmware can also read data from the device signature imprint table. See “Device Signature Imprint Table” on 
page 228.

22.4.1 Lock Bit Read

Lock bit values are returned in the destination register after an LPM instruction has been issued within three CPU cycles 
after RWFLB and SPMEN bits have been set in SPMCSR (see page 223). The RWFLB and SPMEN bits automatically 
clear upon completion of reading the lock bits, or if no LPM instruction is executed within three CPU cycles, or if no SPM 
instruction is executed within four CPU cycles. When RWFLB and SPMEN are cleared LPM functions normally.

To read the lock bits, follow the below procedure:
1. Load the Z-pointer with 0x0001.
2. Set RWFLB and SPMEN bits in SPMCSR.
3. Issue an LPM instruction within three clock cycles.
4. Read the lock bits from the LPM destination register.

If successful, the contents of the destination register are as follows.

See section “Lock Bits” on page 225 for more information.

Part Signature Byte 0 Signature Byte 1 Signature Byte 0

ATtiny828 0x1E 0x93 0x14

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1
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5. Wait until VCC actually reaches 4.5 – 5.5V before giving any parallel programming commands.
6. Exit programming mode by powering the device down or by bringing RESET pin to 0V.

23.2.2 Considerations for Efficient Programming

Loaded commands and addresses are retained in the device during programming. For efficient programming, the 
following should be considered.

When writing or reading multiple memory locations, the command needs only be loaded once
Do not write the data value 0xFF, since this already is the contents of the entire Flash and EEPROM (unless the 
EESAVE Fuse is programmed) after a Chip Erase
Address high byte needs only be loaded before programming or reading a new 256 word window in Flash or 256 
byte EEPROM. This also applies to reading signature bytes

23.2.3 Chip Erase

A Chip Erase must be performed before the Flash and/or EEPROM are reprogrammed. The Chip Erase command will 
erase all Flash and EEPROM plus lock bits. If the EESAVE fuse is programmed, the EEPROM is not erased.

Lock bits are not reset until the program memory has been completely erased. Fuse bits are not changed.

The Chip Erase command is loaded as follows:
1. Set XA1, XA0 to “10”. This enables command loading
2. Set BS1 to “0”
3. Set DATA to “1000 0000”. This is the command for Chip Erase
4. Give CLKI a positive pulse. This loads the command
5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low
6. Wait until RDY/BSY goes high before loading a new command

23.2.4 Programming the Flash

Flash is organized in pages, as shown in Table 94 on page 232. When programming the Flash, the program data is first 
latched into a page buffer. This allows one page of program data to be programmed simultaneously. The following 
procedure describes how to program the entire Flash memory:

A. Load Command “Write Flash”
1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “0001 0000”. This is the command for Write Flash.
4. Give CLKI a positive pulse. This loads the command.

B. Load Address Low byte
1. Set XA1, XA0 to “00”. This enables address loading.
2. Set BS1 to “0”. This selects low address.
3. Set DATA = Address low byte (0x00 – 0xFF).
4. Give CLKI a positive pulse. This loads the address low byte.

C. Load Data Low Byte
1. Set XA1, XA0 to “01”. This enables data loading.
2. Set DATA = Data low byte (0x00 – 0xFF).
235ATtiny828 [DATASHEET]
8371A–AVR–08/12



25.2 Current Consumption in Idle Mode

Figure 114. Idle Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

Figure 115. Idle Supply Current vs. Frequency (1 - 20 MHz)
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Figure 168. Sampled BOD Threshold vs Temperature (BODLEVEL = 4.3V)

Figure 169. Sampled BOD Threshold vs Temperature (BODLEVEL = 2.7V)
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Figure 176. Analog Comparator Offset vs. VCC (VIN = 1.1V)

Figure 177. Analog Comparator Hysteresis vs. VIN (VCC = 5.0V)
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Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory 
addresses should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In 
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and 
SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status 
Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

0x15 (0x35) TIFR0 – – – – – OCF0B OCF0A TOV0 Page 103
0x14 (0x34) PHDE – – – – – PHDEC – – Page 81
0x13 (0x33) Reserved – – – – – – – –
0x12 (0x32) Reserved – – – – – – – –
0x11 (0x31) Reserved – – – – – – – –
0x10 (0x30) Reserved – – – – – – – –
0x0F (0x2F) PUED – – – – PUED3 PUED2 PUED1 PUED0 Page 82
0x0E (0x2E) PORTD – – – – PORTD3 PORTD2 PORTD1 PORTD0 Page 82
0x0D (0x2D) DDRD – – – – DDD3 DDD2 DDD1 DDD0 Page 82
0x0C (0x2C) PIND – – – – PIND3 PIND2 PIND1 PIND0 Page 83
0x0B (0x2B) PUEC PUEC7 PUEC6 PUEC5 PUEC4 PUEC3 PUEC2 PUEC1 PUEC0 Page 83
0x0A (0x2A) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 Page 83
0x09 (0x29) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 Page 83
0x08 (0x28) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 Page 84
0x07 (0x27) PUEB PUEB7 PUEB6 PUEB5 PUEB4 PUEB3 PUEB2 PUEB1 PUEB0 Page 84
0x06 (0x26) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 Page 84
0x05 (0x25) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 Page 84
0x04 (0x24) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 Page 85
0x03 (0x23) PUEA PUEA7 PUEA6 PUEA5 PUEA4 PUEA3 PUEA2 PUEA1 PUEA0 Page 85
0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 Page 85
0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 Page 85
0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 Page 86

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page(s)
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