
Microchip Technology - ATTINY828-MU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 28

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 1.7V ~ 5.5V

Data Converters A/D 28x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN Exposed Pad

Supplier Device Package 32-VQFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/attiny828-mu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/attiny828-mu-4399858
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

1.1 Pin Description

1.1.1 VCC

Supply voltage.

1.1.2 AVCC

AVCC is the supply voltage pin for the A/D converter and a selection of I/O pins. This pin should be externally connected
to VCC even if the ADC is not used. If the ADC is used, it is recommended this pin is connected to VCC through a low-pass
filter, as described in “Noise Canceling Techniques” on page 145.

All pins of Port A and Port B are powered by AVCC. All other I/O pins take their supply voltage from VCC.

1.1.3 GND

Ground.

1.1.4 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not
running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 107 on page 250.
Shorter pulses are not guaranteed to generate a reset.

The reset pin can also be used as a (weak) I/O pin.

1.1.5 Port A (PA7:PA0)

This is an 8-bit, bi-directional I/O port with internal pull-up resistors (selected for each bit). Output buffers have high sink
and standard source capability. See Table 107 on page 250 for port drive strength.

As inputs, port pins that are externally pulled low will source current provided that pull-up resistors are activated. Port
pins are tri-stated when a reset condition becomes active, even if the clock is not running.

This port has alternative pin functions for pin change interrupts, the analog comparator, and ADC. See “Alternative Port
Functions” on page 63.

1.1.6 Port B (PB7:PB0)

This is an 8-bit, bi-directional I/O port with internal pull-up resistors (selected for each bit). Output buffers have high sink
and standard source capability. See Table 103 on page 247 for port drive strength.

As inputs, port pins that are externally pulled low will source current provided that pull-up resistors are activated. Port
pins are tri-stated when a reset condition becomes active, even if the clock is not running.

This port has alternative pin functions for pin change interrupts, and ADC. See “Alternative Port Functions” on page 63.

1.1.7 Port C (PC7:PC0)

This is an 8-bit, bi-directional I/O port with internal pull-up resistors (selected for each bit). Output buffers have high sink
and standard source capability. Optionally, extra high sink capability can be enabled. See Table 103 on page 247 for port
drive strength.

As inputs, port pins that are externally pulled low will source current provided that pull-up resistors are activated. Port
pins are tri-stated when a reset condition becomes active, even if the clock is not running.

This port has alternative pin functions for pin change interrupts, ADC, timer/counter, external interrupts, and serial
interfaces. See “Alternative Port Functions” on page 63.

1.1.8 Port D (PD3:PD0)

This is a 4-bit, bi-directional I/O port with internal pull-up resistors (selected for each bit). Output buffers of PD0 and PD3
have symmetrical drive characteristics, with both sink and source capability. Output buffer PD1 has high sink and
3ATtiny828 [DATASHEET]
8371A–AVR–08/12

4. CPU Core
This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct
program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and
handle interrupts.

4.1 Architectural Overview

Figure 4. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and
buses for program and data. Instructions in the Program memory are executed with a single level pipelining. While one
instruction is being executed, the next instruction is pre-fetched from the Program memory. This concept enables
instructions to be executed in every clock cycle. The Program memory is In-System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle access time.
This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from
the Register File, the operation is executed, and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing –
enabling efficient address calculations. One of the these address pointers can also be used as an address pointer for
look up tables in Flash Program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described
later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register
operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect
information about the result of the operation.

INTERRUPT
UNIT

STATUS AND
CONTROL

PROGRAM
MEMORY

(FLASH)

DATA
MEMORY

(SRAM)

PROGRAM
COUNTER

INSTRUCTION
REGISTER

INSTRUCTION
DECODER

CONTROL
LINES

GENERAL
PURPOSE

REGISTERS
X
Y
Z

ALU

D
IR

E
C

T
 A

D
D

R
E

S
S

IN
G

IN
D

IR
E

C
T

 A
D

D
R

E
S

S
IN

G

8-BIT DATA BUS
8ATtiny828 [DATASHEET]
8371A–AVR–08/12

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be
executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows
how this can be used to avoid interrupts during the timed EEPROM write sequence.

Note: See “Code Examples” on page 7.

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending
interrupts, as shown in the following example.

Note: See “Code Examples” on page 7.

4.7.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. After four clock cycles
the Program Vector address for the actual interrupt handling routine is executed. During this four clock cycle period, the
Program Counter is pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this jump takes
three clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before
the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles. This increase comes in addition to the start-up time from the selected sleep mode.

Assembly Code Example

in r16, SREG ; store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMPE ; start EEPROM write
sbi EECR, EEPE
out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */
_CLI(); /* disable interrupts during timed sequence */
EECR |= (1<<EEMPE); /* start EEPROM write */
EECR |= (1<<EEPE);
SREG = cSREG; /* restore SREG value (I-bit) */

Assembly Code Example

sei ; set Global Interrupt Enable
sleep ; enter sleep, waiting for interrupt

; note: will enter sleep before any pending interrupt(s)

C Code Example

_SEI(); /* set Global Interrupt Enable */
_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt */
13ATtiny828 [DATASHEET]
8371A–AVR–08/12

5.3.3 Erase

In order to prevent unintentional EEPROM writes, a specific procedure must be followed to erase memory locations. To
erase an EEPROM memory location follow the procedure below:

Poll the EEPROM Program Enable bit (EEPE) in EEPROM Control Register (EECR) to make sure no other
EEPROM operations are in process. If set, wait to clear.
Poll the SPMEN bit in Store Program Memory Control and Status Register (SPMCSR) to make sure no self-
programming opertaions are in process. If set, wait to clear. This step is relevant only if the application contains a
boot loader that programs the Flash memory. If not, this step can be omitted.
Set mode of programming to erase by writing EEPROM Programming Mode bits (EEPM0 and EEPM1) in
EEPROM Control Register (EECR).
Write target address to EEPROM Address Registers (EEARH/EEARL).
Enable erase by setting EEPROM Master Program Enable (EEMPE) in EEPROM Control Register (EECR). Within
four clock cycles, start the erase operation by setting the EEPROM Program Enable bit (EEPE) in the EEPROM
Control Register (EECR). During the erase operation, the CPU is halted for two clock cycles before executing the
next instruction.

The EEPE bit remains set until the erase operation has completed. While the device is busy programming, it is not
possible to perform any other EEPROM operations.

5.3.4 Write

In order to prevent unintentional EEPROM writes, a specific procedure must be followed to write to memory locations.

Before writing data to EEPROM the target location must be erased. This can be done either in the same operation or as
part of a split operation. Writing to an unerased EEPROM location will result in corrupted data.

To write an EEPROM memory location follow the procedure below:
Poll the EEPROM Program Enable bit (EEPE) in EEPROM Control Register (EECR) to make sure no other
EEPROM operations are in process. If set, wait to clear.
Poll the SPMEN bit in Store Program Memory Control and Status Register (SPMCSR) to make sure no self-
programming opertaions are in process. If set, wait to clear. This step is relevant only if the application contains a
boot loader that programs the Flash memory. If not, this step can be omitted.
Set mode of programming by writing EEPROM Programming Mode bits (EEPM0 and EEPM1) in EEPROM Control
Register (EECR). Alternatively, data can be written in one operation or the write procedure can be split up in erase,
only, and write, only.
Write target address to EEPROM Address Registers (EEARH/EEARL).
Write target data to EEPROM Data Register (EEDR).
Enable write by setting EEPROM Master Program Enable (EEMPE) in EEPROM Control Register (EECR). Within
four clock cycles, start the write operation by setting the EEPROM Program Enable bit (EEPE) in the EEPROM
Control Register (EECR). During the write operation, the CPU is halted for two clock cycles before executing the
next instruction.

The EEPE bit remains set until the write operation has completed. While the device is busy with programming, it is not
possible to do any other EEPROM operations.

5.3.5 Preventing EEPROM Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is too low for the CPU and
the EEPROM to operate properly. These issues are the same as for board level systems using EEPROM, and the same
design solutions should be applied.
20ATtiny828 [DATASHEET]
8371A–AVR–08/12

If the watchdog timer is not going to be used in the application, it is important to go through a watchdog disable procedure
in the initialization of the device. If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out
condition, the device will be reset, which in turn will lead to a new watchdog reset. To avoid this situation, the application
software should always clear the WDRF flag and the WDE control bit in the initialization routine.

Bits 5, 2:0 – WDP[3:0]: Watchdog Timer Prescaler 3 - 0

The WDP[3:0] bits determine the Watchdog Timer prescaling when the Watchdog Timer is enabled. The different
prescaling values and their corresponding Timeout Periods are shown in Table 15.

Table 15. Watchdog Timer Prescale Select

Note: 1. If selected, one of the valid settings below 0b1010 will be used.

To avoid unintentional changes of these bits, the following sequence must be followed:
1. Write the required signature to the CCP register. See page 14.
2. Within four instruction cycles, write the desired bit value.

WDP3 WDP2 WDP1 WDP0 Number of WDT Oscillator Cycles Typical Time-out at VCC = 5.0V

0 0 0 0 512 cycles 16 ms

0 0 0 1 1K cycles 32 ms

0 0 1 0 2K cycles 64 ms

0 0 1 1 4K cycles 0.125 s

0 1 0 0 8K cycles 0.25 s

0 1 0 1 16K cycles 0.5 s

0 1 1 0 32K cycles 1.0 s

0 1 1 1 64K cycles 2.0 s

1 0 0 0 128K cycles 4.0 s

1 0 0 1 256K cycles 8.0 s

1 0 1 0

Reserved(1)

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1
47ATtiny828 [DATASHEET]
8371A–AVR–08/12

Bit 0 – INT0: External Interrupt Request 0 Enable

The external interrupt for pin INT0 is enabled when this bit and the I-bit in the Status Register (SREG) are set. The trigger
conditions are set with the ISC0n bits.

Activity on the pin will cause an interrupt request even if INT1 has been configured as an output.

9.3.9 EIFR – External Interrupt Flag Register

Bits 7:2 – Res: Reserved Bits

These bits are reserved and will always read zero.

Bit 1 – INTF1: External Interrupt Flag 0

This bit is set when activity on INT1 has triggered an interrupt request. Provided that the I-bit in SREG and the INT1 bit in
EIMSK are set, the MCU will jump to the corresponding interrupt vector.

The flag is cleared when the interrupt service routine is executed. Alternatively, the flag can be cleared by writing a
logical one to it.

This flag is always cleared when INT1 is configured as a level interrupt.

Bit 0 – INTF0: External Interrupt Flag 0

This bit is set when activity on INT0 has triggered an interrupt request. Provided that the I-bit in SREG and the INT0 bit in
EIMSK are set, the MCU will jump to the corresponding interrupt vector.

The flag is cleared when the interrupt service routine is executed. Alternatively, the flag can be cleared by writing a
logical one to it.

This flag is always cleared when INT0 is configured as a level interrupt.

9.3.10 PCIFR – Pin Change Interrupt Flag Register

Bits 7:4 – Res: Reserved Bits

These bits are reserved and will always read zero.

Bit 3 – PCIF3: Pin Change Interrupt Flag 3

This bit is set when a logic change on any PCINT[27:24] pin has triggered an interrupt request. Provided that the I-bit in
SREG and the PCIE3 bit in PCICR are set, the MCU will jump to the corresponding interrupt vector.

The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to
it.

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) – – – – – – INTF1 INTF0 EIFR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1B (0x3B) – – – – PCIF3 PCIF2 PCIF1 PCIF0 PCIFR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
57ATtiny828 [DATASHEET]
8371A–AVR–08/12

Table 22. Override Signals of Port A

Pin Signal Composition

PA0

PUOE 0

PUOV 0

DDOE 0

DDOV 0

PVOE 0

PVOV 0

PTOE 0

DIEOE (PCINT0 • PCIE0) + ADC0D

DIEOV PCINT0 • PCIE0

DI PCINT0 Input

AIO ADC0 Input

PA1

PUOE 0

PUOV 0

DDOE 0

DDOV 0

PVOE 0

PVOV 0

PTOE 0

DIEOE (PCINT1 • PCIE0) + ADC1D

DIEOV PCINT1 • PCIE0

DI PCINT1 Input

AIO ADC1 Input

PA2

PUOE 0

PUOV 0

DDOE 0

DDOV 0

PVOE 0

PVOV 0

PTOE 0

DIEOE (PCINT2 • PCIE0) + ADC2D

DIEOV PCINT2 • PCIE0

DI PCINT2 Input

AIO ADC2 Input
67ATtiny828 [DATASHEET]
8371A–AVR–08/12

10.4.9 PINC – Port C Input Pins

Bits 7:0 – PINC[7:0]: Port Input Data

Regardless of the setting of the data direction bit, the value of the port pin PCn can be read through the PINCn bit.

Writing a logic one to PINCn toggles the value of PORTCn, regardless of the value in DDCn.

10.4.10 PUEB – Port B Pull-Up Enable Control Register

Bits 7:0 – PUEB[7:0]: Pull-Up Enable Bits

When a pull-up enable bit, PUEBn, is set the pull-up resistor on the equivalent port pin, PBn, is enabled.

10.4.11 PORTB – Port B Data Register

Bits 7:0 – PORTB[3:0]: Port Data Bits

When pin PBn is configured as an output, setting PORTBn will drive PBn high. Clearing PORTBn will drive PBn low.

When the pin is configured as an input the value of the PORTxn bit doesn’t matter. See Table 19 on page 61.

10.4.12 DDRB – Port B Data Direction Register

Bits 7:0 – DDB[7:0]: Data Direction Bits

When DDBn is set, the pin PBn is configured as an output. When DDBn is cleared, the pin is configured as an input.

Bit 7 6 5 4 3 2 1 0

0x08 (0x28) PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x07 (0x27) PUEB7 PUEB6 PUEB5 PUEB4 PUEB3 PUEB2 PUEB1 PUEB0 PUEB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x06 (0x26) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x06 (0x26) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
84ATtiny828 [DATASHEET]
8371A–AVR–08/12

12.4 Counter Unit
The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit. Figure 38 shows a block
diagram of the counter and its surroundings.

Figure 38. Counter Unit Block Diagram

Description of internal signals used in Figure 38:

Count Increment or decrement TCNT1 by 1.
Direction Select between increment and decrement.
Clear Clear TCNT1 (set all bits to zero).
clkT1 Timer/Counter1 clock.
TOP Signalize that TCNT1 has reached maximum value.
BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) containing the upper eight
bits of the counter, and Counter Low (TCNT1L) containing the lower eight bits. The TCNT1H Register can only be
indirectly accessed by the CPU. When the CPU does an access to the TCNT1H I/O location, the CPU accesses the high
byte temporary register (TEMP). The temporary register is updated with the TCNT1H value when the TCNT1L is read,
and TCNT1H is updated with the temporary register value when TCNT1L is written. This allows the CPU to read or write
the entire 16-bit counter value within one clock cycle via the 8-bit data bus. It is important to notice that there are special
cases of writing to the TCNT1 Register when the counter is counting that will give unpredictable results. The special
cases are described in the sections where they are of importance.

Depending on the mode of operation the counter is cleared, incremented, or decremented at each timer clock (clkT1). The
clkT1 can be generated from an external or internal clock source, selected by the Clock Select bits (CS1[2:0]). When no
clock source is selected the timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of
whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits (WGM1[3:0]) located in the
Timer/Counter Control Registers A and B (TCCR1A and TCCR1B). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare outputs OC1x. For more details
about advanced counting sequences and waveform generation, see “Modes of Operation” on page 111.

The Timer/Counter Overflow Flag (TOV1) is set according to the mode of operation selected by the WGM1[3:0] bits.
TOV1 can be used for generating a CPU interrupt.

12.5 Input Capture Unit
The Timer/Counter incorporates an Input Capture unit that can capture external events and give them a time-stamp
indicating time of occurrence. The external signal indicating an event, or multiple events, can be applied via the ICP1 pin

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control Logic

Count

Clear

Direction

TOVn
(Int.Req.)

Clock Select

TOP BOTTOM

Tn
Edge

Detector

(From Prescaler)

clkTn
106ATtiny828 [DATASHEET]
8371A–AVR–08/12

The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control
registers (DDR and PORT) that are affected by the COM1x[1:0] bits are shown. When referring to the OC1x state, the
reference is for the internal OC1x Register, not the OC1x pin. If a system reset occur, the OC1x Register is reset to “0”.

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform Generator if either of the
COM1x[1:0] bits are set. However, the OC1x pin direction (input or output) is still controlled by the Data Direction
Register (DDR) for the port pin. The Data Direction Register bit for the OC1x pin (DDR_OC1x) must be set as output
before the OC1x value is visible on the pin. The port override function is generally independent of the Waveform
Generation mode, but there are some exceptions. See Table 39 on page 124, Table 40 on page 124 and Table 41 on
page 124 for details.

The design of the Output Compare pin logic allows initialization of the OC1x state before the output is enabled. Note that
some COM1x[1:0] bit settings are reserved for certain modes of operation. See “Register Description” on page 123

The COM1x[1:0] bits have no effect on the Input Capture unit.

12.7.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM1x[1:0] bits differently in normal, CTC, and PWM modes. For all modes, setting
the COM1x[1:0] = 0 tells the Waveform Generator that no action on the OC1x Register is to be performed on the next
compare match. For compare output actions in the non-PWM modes refer to Table 39 on page 124. For fast PWM mode
refer to Table 40 on page 124, and for phase correct and phase and frequency correct PWM refer to Table 41 on page
124.

A change of the COM1x[1:0] bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOC1x strobe bits.

12.8 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is defined by the
combination of the Waveform Generation mode (WGM1[3:0]) and Compare Output mode (COM1x[1:0]) bits. The
Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do. The
COM1x[1:0] bits control whether the PWM output generated should be inverted or not (inverted or non-inverted PWM).
For non-PWM modes the COM1x[1:0] bits control whether the output should be set, cleared or toggle at a compare
match (“Compare Match Output Unit” on page 110)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 118.

12.8.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM1[3:0] = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 16-bit value
(MAX = 0xFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag
(TOV1) will be set in the same timer clock cycle as the TCNT1 becomes zero. The TOV1 flag in this case behaves like a
17th bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically
clears the TOV1 flag, the timer resolution can be increased by software. There are no special cases to consider in the
Normal mode, a new counter value can be written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum interval between the external
events must not exceed the resolution of the counter. If the interval between events are too long, the timer overflow
interrupt or the prescaler must be used to extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the Output Compare to
generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time.

12.8.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM1[3:0] = 4 or 12), the OCR1A or ICR1 Register are used to manipulate
the counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT1) matches either the
OCR1A (WGM1[3:0] = 4) or the ICR1 (WGM1[3:0] = 12). The OCR1A or ICR1 define the top value for the counter, hence
111ATtiny828 [DATASHEET]
8371A–AVR–08/12

Figure 51. Prescaler for Timer/Counter0

Note: 1. The synchronization logic on the input pins (T0) is shown in Figure 50 on page 131.

13.3 Register Description

13.3.1 GTCCR – General Timer/Counter Control Register

Bit 7 – TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the value that is written to
the PSR bit is kept, hence keeping the Prescaler Reset signal asserted. This ensures that the Timer/Counter is halted
and can be configured without the risk of advancing during configuration.

When the TSM bit is written to zero, the PSR bit is cleared by hardware, and the Timer/Counter starts counting.

Bit 0 – PSR: Prescaler Reset

When this bit is one, the Timer/Counter prescaler will be Reset. This bit is normally cleared immediately by hardware,
except if the TSM bit is set.

PSR

Clear

clkT0

Tn

clk I/O

Synchronization

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – – PSR GTCCR

Read/Write R/W R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
132ATtiny828 [DATASHEET]
8371A–AVR–08/12

Figure 58. ADC Timing Diagram, Auto Triggered Conversion

In Free Running mode, a new conversion will be started immediately after the conversion completes, while ADSC
remains high. See Figure 59.

Figure 59. ADC Timing Diagram, Free Running Conversion

For a summary of conversion times, see Table 49 on page 143.

1 2 3 4 5 6 7 8 9 13 14 15

Sign and MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
CompletePrescaler

Reset

ADATE

Prescaler
Reset

Sample &
Hold

MUX and REFS
Update

13 14 15

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number
1 2

One Conversion Next Conversion

3 4

Conversion
Complete

Sample & Hold

MUX and REFS
Update

5

142ATtiny828 [DATASHEET]
8371A–AVR–08/12

Bits 5:1 – Res: Reserved Bits

These bits are reserved and will always read as zero.

Bit 0 – SPI2X: Double SPI Speed Bit

When this bit is set the SPI speed (SCK Frequency) will be doubled when the SPI is in Master mode (see Table 59 on
page 162). This means that the minimum SCK period will be two I/O clock periods. When the SPI is configured as Slave,
the SPI is only guaranteed to work at fclk_I/O/4 or lower.

16.5.3 SPDR – SPI Data Register

The SPI Data Register is a read/write register used for data transfer between the Register File and the SPI Shift Register.
Writing to the register initiates data transmission. Reading the register causes the Shift Register Receive buffer to be
read.

Bit 7 6 5 4 3 2 1 0

0x2E (0x4E) MSB LSB SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined
163ATtiny828 [DATASHEET]
8371A–AVR–08/12

Normal asynchronous mode
Double speed asynchronous mode
Master synchronous mode
Slave synchronous mode

The UMSEL bit (see “UCSRC – USART Control and Status Register C” on page 186) selects between asynchronous
and synchronous operation. In asynchronous mode, the speed is controlled by the U2X bit (see “UCSRA – USART
Control and Status Register A” on page 184).

In synchronous mode (UMSEL = 1), the direction bit of the XCK pin (DDR_XCK) in the Data Direction Register where the
XCK pin is located (DDRx) controls whether the clock source is internal (master mode), or external (slave mode). The
XCK pin is active in synchronous mode, only.

17.3.1 Internal Clock Generation – The Baud Rate Generator

Internal clock generation is used in asynchronous and synchronous master modes of operation. The description in this
section refers to Figure 71 on page 165.

The USART Baud Rate Register (UBRR) and the down-counter connected to it function as a programmable prescaler, or
baud rate generator. The down-counter, running at system clock (fosc) is loaded with the UBRR value each time the
counter has counted down to zero, or when UBRR0L is written.

A clock is generated each time the counter reaches zero. This is the baud rate generator clock output and has a
frequency of fosc/(UBRR+1). Depending on the mode of operation the transmitter divides the baud rate generator clock
output by 2, 8 or 16. The baud rate generator output is used directly by the receiver’s clock and data recovery units.
However, the recovery units use a state machine that uses 2, 8 or 16 states, depending on mode set by UMSEL, U2X
and DDR_XCK bits.

Table 60 contains equations for calculating the baud rate (in bits per second) and for calculating the UBRR value for each
mode of operation using an internally generated clock source.

Table 60. Equations for Calculating Baud Rate Register Setting

Note: 1. Baud rate is defined as the transfer rate in bits per second (bps)

Signal description for Table 60:

BAUD Baud rate (in bits per second, bps)
fOSC System Oscillator clock frequency
UBRR Contents of the UBRRH and UBRRL Registers, (0-4095)

Some examples of UBRR values for selected system clock frequencies are shown in Table 63 on page 181.

Operating Mode Baud Rate(1) UBRR Value

Asynchronous Normal
mode (U2Xn = 0)

Asynchronous Double Speed
mode (U2Xn = 1)

Synchronous Master
mode

BAUD
fOSC

16 UBRR 1+()×
---= UBRR

fOSC
16 BAUD×
----------------------------- 1–=

BAUD
fOSC

8 UBRR 1+()×
--= UBRR

fOSC
8 BAUD×
-------------------------- 1–=

BAUD
fOSC

2 UBRR 1+()×
--= UBRR

fOSC
2 BAUD×
-------------------------- 1–=
166ATtiny828 [DATASHEET]
8371A–AVR–08/12

Bit 4 – FE: Frame Error

This bit is set if the next character in the receive buffer had a frame error when received (i.e. when the first stop bit of the
next character in the receive buffer is zero). This bit is valid until the receive buffer (UDR) is read. The FE bit is zero when
the stop bit of received data is one.

Always set this bit to zero when writing the register.

Bit 3 – DOR: Data OverRun

This bit is set if a Data OverRun condition is detected. A data overrun occurs when the receive buffer is full (two
characters), there is a new character waiting in the receive shift register, and a new start bit is detected. This bit is valid
until the receive buffer (UDR) is read.

Always set this bit to zero when writing the register.

Bit 2 – UPE: USART Parity Error

This bit is set if the next character in the receive buffer had a parity error when received and the parity checking was
enabled at that point (UPM1 = 1). This bit is valid until the receive buffer (UDR) is read.

Always set this bit to zero when writing the register.

Bit 1 – U2X: Double the USART Transmission Speed

This bit only has effect for the asynchronous operation. Write this bit to zero when using synchronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling the transfer rate for
asynchronous communication.

Bit 0 – MPCM: Multi-processor Communication Mode

This bit enables the Multi-processor Communication Mode. When the bit is written to one, all the incoming frames
received by the USART receiver that do not contain address information will be ignored. The transmitter is unaffected by
the MPCM bit. For more detailed information, see “Multi-processor Communication Mode” on page 180.

17.11.3 UCSRB – USART Control and Status Register B

Bit 7 – RXCIE: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXC flag. A USART Receive Complete interrupt will be generated only if
the RXCIE bit, the Global Interrupt Flag, and the RXC bits are set.

Bit 6 – TXCIE: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXC flag. A USART Transmit Complete interrupt will be generated only if
the TXCIE bit, the Global Interrupt Flag, and the TXC bit are set.

Bit 5 – UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRE flag. A Data Register Empty interrupt will be generated only if the
UDRIE bit, the Global Interrupt Flag, and the TXC bit are set.

Bit 7 6 5 4 3 2 1 0

(0xC1) RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 UCSRB

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
185ATtiny828 [DATASHEET]
8371A–AVR–08/12

18. USART in SPI Mode

18.1 Features
Full Duplex, Three-wire Synchronous Data Transfer
Master Operation
Supports all four SPI Modes of Operation (Mode 0, 1, 2, and 3)
LSB First or MSB First Data Transfer (Configurable Data Order)
Queued Operation (Double Buffered)
High Resolution Baud Rate Generator
High Speed Operation (fXCKmax = fCK/2)
Flexible Interrupt Generation

18.2 Overview
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) can be set to a master SPI
compliant mode of operation.

Setting both UMSEL[1:0] bits to one enables the USART in MSPIM logic. In this mode of operation the SPI master
control logic takes direct control over the USART resources. These resources include the transmitter and receiver shift
register and buffers, and the baud rate generator. The parity generator and checker, the data and clock recovery logic,
and the RX and TX control logic is disabled. The USART RX and TX control logic is replaced by a common SPI transfer
control logic. However, the pin control logic and interrupt generation logic is identical in both modes of operation.

The I/O register locations are the same in both modes. However, some of the functionality of the control registers
changes when using MSPIM.

18.3 Clock Generation
The clock generation logic generates the base clock for the transmitter and receiver. For USART MSPIM mode of
operation only internal clock generation (i.e. master operation) is supported. Therefore, for the USART in MSPIM to
operate correctly, the Data Direction Register (DDRx) where the XCK pin is located must be configured to set the pin as
output (DDR_XCK = 1) . Preferably the DDR_XCK should be set up before the USART in MSPIM is enabled (i.e. before
TXEN and RXEN bits are set).

The internal clock generation used in MSPIM mode is identical to the USART synchronous master mode. The baud rate
or UBRR setting can therefore be calculated using the same equations, see Table 73:

Table 73. Equations for Calculating Baud Rate Register Setting

Note: 1. The baud rate is defined as the transfer rate in bits per second (bps)

BAUD Baud rate (in bits per second, bps)
fOSC System oscillator clock frequency
UBRRn Contents of UBRRH and UBRRL, (0-4095)

Operating Mode Calculating Baud Rate(1) Calculating UBRR Value

Synchronous Master mode BAUD
fOSC

2 UBRR 1+()
-----------------------------------= UBRR

fOSC
2BAUD
-------------------- 1–=
190ATtiny828 [DATASHEET]
8371A–AVR–08/12

Note: 1. See “Code Examples” on page 7.

18.6 Data Transfer
Using the USART in MSPI mode requires the transmitter to be enabled, i.e. the TXEN bit to be set. When the transmitter
is enabled, the normal port operation of the TxD pin is overridden and given the function as the transmitter's serial output.
Enabling the receiver is optional and is done by setting the RXEN bit. When the receiver is enabled, the normal pin
operation of the RxD pin is overridden and given the function as the receiver's serial input. The XCK will in both cases be
used as the transfer clock.

After initialization the USART is ready for doing data transfers. A data transfer is initiated by writing to UDR. This is the
case for both sending and receiving data since the transmitter controls the transfer clock. The data written to UDR is
moved from the transmit buffer to the shift register when the shift register is ready to send a new frame.
Note: To keep the input buffer in sync with the number of data bytes transmitted, UDR must be read once for each byte trans-

mitted. The input buffer operation is identical to normal USART mode, i.e. if an overflow occurs the character last
received will be lost, not the first data in the buffer. This means that if four bytes are transferred, byte 1 first, then byte
2, 3, and 4, and the UDR is not read before all transfers are completed, then byte 3 to be received will be lost, and not
byte 1.

The following code examples show a simple USART in MSPIM mode transfer function based on polling of the Data
Register Empty flag (UDRE) and the Receive Complete flag (RXC). The USART has to be initialized before the function
can be used. For the assembly code, the data to be sent is assumed to be stored in register R16 and the data received
will be available in the same register (R16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDRE flag, before loading it with new data
to be transmitted. The function then waits for data to be present in the receive buffer by checking the RXC flag, before
reading the buffer and returning the value..

C Code Example(1)

void USART_Init(unsigned int baud)
{

UBRR = 0;

/* Setting the XCK port pin as output, enables master mode. */
XCK_DDR |= (1<<XCK);

/* Set MSPI mode of operation and SPI data mode 0. */
UCSRC = (1<<UMSEL1)|(1<<UMSEL0)|(0<<UCPHA)|(0<<UCPOL);

/* Enable receiver and transmitter. */
UCSRB = (1<<RXEN)|(1<<TXEN);

/* Set baud rate. */
/* IMPORTANT: Baud Rate must be set after transmitter is enabled */
UBRR = baud;

}

193ATtiny828 [DATASHEET]
8371A–AVR–08/12

Given that the slave acknowledges the address, the master can start receiving data from the slave. There are no
limitations to the number of data packets that can be transferred. The slave transmits the data while the master signals
ACK or NACK after each data byte. The master terminates the transfer with a NACK before issuing a STOP condition.

Figure 84 illustrates a combined transaction. A combined transaction consists of several read and write transactions
separated by a Repeated START conditions (Sr).

Figure 84. Combined Transaction

19.3.7 Clock and Clock Stretching

All devices connected to the bus are allowed to stretch the low period of the clock to slow down the overall clock
frequency or to insert wait states while processing data. A device that needs to stretch the clock can do this by
holding/forcing the SCL line low after it detects a low level on the line.

Three types of clock stretching can be defined as shown in Figure 85.

Figure 85. Clock Stretching

If the device is in a sleep mode and a START condition is detected the clock is stretched during the wake-up period for
the device.

A slave device can slow down the bus frequency by stretching the clock periodically on a bit level. This allows the slave
to run at a lower system clock frequency. However, the overall performance of the bus will be reduced accordingly. Both
the master and slave device can randomly stretch the clock on a byte level basis before and after the ACK/NACK bit.
This provides time to process incoming or prepare outgoing data, or performing other time critical tasks.

In the case where the slave is stretching the clock the master will be forced into a wait-state until the slave is ready and
vice versa.

19.3.8 Arbitration

A master can only start a bus transaction if it has detected that the bus is idle. As the TWI bus is a multi master bus, it is
possible that two devices initiate a transaction at the same time. This results in multiple masters owning the bus
simultaneously. This is solved using an arbitration scheme where the master loses control of the bus if it is not able to
transmit a high level on the SDA line. The masters who lose arbitration must then wait until the bus becomes idle (i.e.
wait for a STOP condition) before attempting to reacquire bus ownership. Slave devices are not involved in the arbitration
procedure.
203ATtiny828 [DATASHEET]
8371A–AVR–08/12

21.7 Boot Loader Lock Bits
The boot loader has two separate sets of lock bits, which can be set independently. This gives the user a unique flexibility
to select different levels of protection.

The user can choose any of the following:
Protect the entire Flash from a software update by the MCU
Protect only the Boot Loader Flash section from a software update by the MCU
Protect only the Application Flash section from a software update by the MCU
Allow software update in the entire Flash.

For more details on lock bits, see “Lock Bits” on page 225.

21.7.1 Programming Boot Loader Lock Bits by SPM

To set boot loader and general lock bits:
Write the desired data to R0. A cleared bit indicates the corresponding lock bit is to be programmed. See bit
mapping of R0 below
Write “X0001001” to SPMCSR
Execute SPM within four clock cycles after writing SPMCSR

During lock bit programming, the contents of R0 is treated as shown below.

During the operation, the value of Z-pointer is ignored, but for future compatibility it is recommended to load the Z-pointer
with 0x0001 (same as used for reading the lock bits). For future compatibility, it is also recommended to set bits 7 and 6
in R0 to “1” when writing the Lock bits.

When programming the Lock bits the entire Flash can be read during the operation.

See Table 87 on page 226 and Table 88 on page 226 for how different settings of the boot loader lock bits affect Flash
access. See “Lock Bits” on page 225 for lock bit layout.

21.7.2 Updating the BLS

Special care must be taken if boot lock bit BLB11 is left unprogrammed, allowing the BLS to be updated. An accidental
write to the BLS can corrupt the entire boot loader, making further software updates impossible. If boot loader software
does not need to be updated, it is recommended to program boot lock bit BLB11 to protect the BLS from being changed
by software.

21.8 Self-Programming the Flash
The device provides a self-programming mechanism for downloading and uploading program code by the MCU itself.
Self-Programming can use any available data interface and associated protocol to read code and write (program) that
code into program memory.

Program memory is updated in a page by page fashion. Before programming a page with the data stored in the
temporary page buffer, the page must be erased. The temporary page buffer is filled one word at a time using SPM and
the buffer can be filled either before the Page Erase command or between a Page Erase and a Page Write operation:

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1
218ATtiny828 [DATASHEET]
8371A–AVR–08/12

Figure 176. Analog Comparator Offset vs. VCC (VIN = 1.1V)

Figure 177. Analog Comparator Hysteresis vs. VIN (VCC = 5.0V)

85

25

-40

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

O
ffs

et
 [V

]

85
25

-40

0

0,02

0,04

0,06

0,08

0,1

0,12

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5
Vin [V]

H
ys

te
re

si
s

[V
]

292ATtiny828 [DATASHEET]
8371A–AVR–08/12

