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Figure 5. General Purpose Working Registers

Most of the instructions operating on the Register File are single cycle instructions with direct access to all registers.

As shown in Figure 5, each register is also assigned a Data memory address, mapping them directly into the first 32 
locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory 
organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index 
any register in the file.

4.4.1 The X-register, Y-register, and Z-register

The registers R26..R31 have added functions to their general purpose usage. These registers are 16-bit address 
pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as 
described in Figure 6 below.

Figure 6. The X-, Y-, and Z-registers

7 0 Addr. Special Function

R0 0x00

R1 0x01

R2 0x02

R3 0x03

… ...

R12 0x0C

R13 0x0D

R14 0x0E

R15 0x0F

R16 0x10

R17 0x11

… ...

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte

15 0

X-register 7 XH 0 7 XL 0

R27 R26

15 0

Y-register 7 YH 0 7 YL 0

R29 R28

15 0

Z-register 7 ZH 0 7 ZL 0

R31 R30
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Figure 22. General Digital I/O(1)

Note: 1. WEx, WRx, WPx, WDx, REx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, and SLEEP 
are common to all ports.

10.2.1 Configuring the Pin

Each port pin consists of four register bits: DDxn, PORTxn, PUExn, and PINxn. As shown in “Register Description” on 
page 81, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits at the PORTx I/O address, the PUExn 
bits at the PUEx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one, Pxn is configured as an 
output pin. If DDxn is written logic zero, Pxn is configured as an input pin.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If PORTxn is 
written logic zero when the pin is configured as an output pin, the port pin is driven low (zero).
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PB1

PUOE 0

PUOV 0

DDOE 0

DDOV 0

PVOE 0

PVOV 0

PTOE 0

DIEOE (PCINT9 • PCIE1) + ADC9D

DIEOV PCINT9 • PCIE1

DI PCINT9 Input

AIO ADC9 Input

PB2

PUOE 0

PUOV 0

DDOE 0

DDOV 0

PVOE 0

PVOV 0

PTOE 0

DIEOE (PCINT10 • PCIE1) + ADC10D

DIEOV PCINT10 • PCIE1

DI PCINT10 Input

AIO ADC10 Input

Pin Signal Composition
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10.4.13 PINB – Port B Input Pins

Bits 7:0 – PINB[7:0]: Port Input Data

Regardless of the setting of the data direction bit, the value of the port pin PBn can be read through the PINBn bit.

Writing a logic one to PINBn toggles the value of PORTBn, regardless of the value in DDBn.

10.4.14 PUEA – Port A Pull-Up Enable Control Register

Bits 7:0 – PUEA[7:0]: Pull-Up Enable Bits

When a pull-up enable bit, PUEAn, is set the pull-up resistor on the equivalent port pin, PAn, is enabled.

10.4.15 PORTA – Port A Data Register

Bits 7:0 – PORTA[3:0]: Port Data Bits

When pin PAn is configured as an output, setting PORTAn will drive PAn high. Clearing PORTAn will drive PAn low.

When the pin is configured as an input the value of the PORTxn bit doesn’t matter. See Table 19 on page 61.

10.4.16 DDRA – Port A Data Direction Register

Bits 7:0 – DDA[7:0]: Data Direction Bits

When DDAn is set, the pin PAn is configured as an output. When DDAn is cleared, the pin is configured as an input.

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) PUEA7 PUEA6 PUEA5 PUEA4 PUEA3 PUEA2 PUEA1 PUEA0 PUEA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x02 (0x22) PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x01 (0x21) DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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At the very start of period 2 in Figure 32 on page 95 OCnx has a transition from high to low even though there is no 
Compare Match. The point of this transition is to guaratee symmetry around BOTTOM. There are two cases that give a 
transition without Compare Match.

OCR0x changes its value from TOP, like in Figure 32 on page 95. When the OCR0x value is TOP the OCnx pin 
value is the same as the result of a down-counting Compare Match. To ensure symmetry around BOTTOM the 
OCnx value at TOP must correspond to the result of an up-counting Compare Match.
The timer starts counting from a value higher than the one in OCR0x, and for that reason misses the Compare 
Match and hence the OCnx change that would have happened on the way up.

11.8 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a clock enable signal in the 
following figures. The figures include information on when Interrupt Flags are set. Figure 33 on page 96 contains timing 
data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other 
than phase correct PWM mode.

Figure 33. Timer/Counter Timing Diagram, no Prescaling

Figure 34 on page 96 shows the same timing data, but with the prescaler enabled.

Figure 34. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 35 on page 97 shows the setting of OCF0B in all modes and OCF0A in all modes except CTC mode and PWM 
mode, where OCR0A is TOP.

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
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12.11.3 TCCR1C – Timer/Counter1 Control Register C

Bit 7 – FOC1A: Force Output Compare for Channel A
Bit 6 – FOC1B: Force Output Compare for Channel B

The FOC1A/FOC1B bits are only active when the WGM1[3:0] bits specifies a non-PWM mode. However, for ensuring 
compatibility with future devices, these bits must be set to zero when TCCR1A is written when operating in a PWM mode. 
When writing a logical one to the FOC1A/FOC1B bit, an immediate compare match is forced on the Waveform 
Generation unit. The OC1A/OC1B output is changed according to its COM1x[1:0] bits setting. Note that the 
FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the COM1x[1:0] bits that determine 
the effect of the forced compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on Compare match (CTC) 
mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.

Bits 5:0 – Res: Reserved Bit

These bits are reserved for future use. To ensure compatibility with future devices, these bits must be set to zero when 
the register is written.

12.11.4 TOCPMSA1 and TOCPMSA0 – Timer/Counter Output Compare Pin Mux Selection Registers

Bits 7:0 – TOCCnS1 and TOCCnS0: Timer/Counter Output Compare Channel Select

TOCCnS1 and TOCCnS bits select which Timer/Counter compare output is routed to the corresponding TOCCn pin. The 
two timer/counters provide four possible compare outputs that can be routed to output pins, as shown in the table below.

Table 44. Selecting Timer/Counter Compare Output for TOCCn Pins

Note: 1. See “Alternative Functions of Port C” on page 73.

Bit 7 6 5 4 3 2 1 0

(0x82) FOC1A FOC1B – – – – – – TCCR1C

Read/Write W W R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xE9) TOCC7S1 TOCC7S0 TOCC6S1 TOCC6S0 TOCC5S1 TOCC5S0 TOCC4S1 TOCC4S0 TOCPMSA1

(0xE8) TOCC3S1 TOCC3S0 TOCC2S1 TOCC2S0 TOCC1S1 TOCC1S0 TOCC0S1 TOCC0S0 TOCPMSA0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

TOCCnS1 TOCCnS0 TOCCn Output (1)

0 0 OC0A

0 1 OC0B

1 0 OC1A

1 1 OC1B
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13. Timer/Counter Prescaler
Timer/Counter0 and Timer/Counter1 share the same prescaler module, but the Timer/Counters can have different 
prescaler settings. The description below applies to both Timer/Counters. Tn is used as a general name, n = 0, 1. 

The Timer/Counter can be clocked directly by the system clock (by setting the CSn[2:0] = 1). This provides the fastest 
operation, with a maximum Timer/Counter clock frequency equal to system clock frequency (fCLK_I/O). Alternatively, one 
of four taps from the prescaler can be used as a clock source. The prescaled clock has a frequency of either fCLK_I/O/8, 
fCLK_I/O/64, fCLK_I/O/256, or fCLK_I/O/1024.

13.1 Prescaler Reset
The prescaler is free running, i.e., operates independently of the Clock Select logic of the Timer/CounterCounter, and it is 
shared by the Timer/Counter Tn. Since the prescaler is not affected by the Timer/Counter’s clock select, the state of the 
prescaler will have implications for situations where a prescaled clock is used. One example of prescaling artifacts occurs 
when the timer is enabled and clocked by the prescaler (CSn[2:0] = 2, 3, 4, or 5). The number of system clock cycles 
from when the timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles, where N equals the 
prescaler divisor (8, 64, 256, or 1024).

It is possible to use the Prescaler Reset for synchronizing the Timer/Counter to program execution.

13.2 External Clock Source
An external clock source applied to the Tn pin can be used as Timer/Counter clock (clkTn). The Tn pin is sampled once 
every system clock cycle by the pin synchronization logic. The synchronized (sampled) signal is then passed through the 
edge detector. Figure 50 shows a functional equivalent block diagram of the Tn synchronization and edge detector logic. 
The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch is transparent in the high 
period of the internal system clock.

The edge detector generates one clkT0 pulse for each positive (CSn[2:0] = 7) or negative (CSn[2:0] = 6) edge it detects.

Figure 50. T0 Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge has been 
applied to the Tn pin to the counter is updated.

Enabling and disabling of the clock input must be done when Tn has been stable for at least one system clock cycle, 
otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sampling. 
The external clock must be guaranteed to have less than half the system clock frequency (fExtClk < fclk_I/O/2) given a 
50/50% duty cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it can detect is 
half the sampling frequency (Nyquist sampling theorem). However, due to variation of the system clock frequency and 
duty cycle caused by oscillator source tolerances, it is recommended that maximum frequency of an external clock 
source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Tn_sync
(To Clock
Select Logic)

Edge DetectorSynchronization

D QD Q

LE

D QTn

clkI/O
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Bit 0 – MUX5: Analog Channel and Gain Selection Bit

This bit together with MUX[4:0] in ADMUXA select which analog input is connected to the ADC. See Table 51 on page 
149.

15.13.3 ADCL and ADCH – ADC Data Register

15.13.3.1ADLAR = 0

15.13.3.2ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if the result is left adjusted 
and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise, ADCL must be read first, then 
ADCH.

The ADLAR bit and the MUX bits affect the way the result is read from the registers. If ADLAR is set, the result is left 
adjusted. If ADLAR is cleared (default), the result is right adjusted.

ADC[9:0]: ADC Conversion Result

These bits represent the result from the conversion, as detailed in “ADC Conversion Result” on page 148.

15.13.4 ADCSRA – ADC Control and Status Register A

Bit 7 – ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the ADC off while a 
conversion is in progress, will terminate this conversion.

Bit 15 14 13 12 11 10 9 8

(0x79) – – – – – – ADC9 ADC8 ADCH

(0x78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

(0x79) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

(0x78) ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x7A) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Note: 1. See “Code Examples” on page 7.

More advanced initialization routines can be made that include frame format as parameters, disable interrupts and so on. 
However, many applications use a fixed setting of the baud and control registers, and for these types of applications the 
initialization code can be placed directly in the main routine, or be combined with initialization code for other I/O modules.

17.6 Data Transmission – The USART Transmitter
The USART transmitter is enabled by setting the Transmit Enable bit (TXEN) (see “UCSRB – USART Control and Status 
Register B” on page 185). When the transmitter is enabled, the normal port operation of the TxDn pin is overridden by the 
USART and given the function as the transmitter’s serial output. The baud rate, mode of operation and frame format 
must be set up once before doing any transmissions. If synchronous operation is used, the clock on the XCK pin will be 
overridden and used as transmission clock.

17.6.1 Sending Frames with 5 to 8 Data Bits

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The CPU can load the 
transmit buffer by writing to the UDR register. The buffered data in the transmit buffer will be moved to the shift register 
when the it is ready to send a new frame. The shift register is loaded with new data if it is in idle state (no ongoing 
transmission), or immediately after the last stop bit of the previous frame is transmitted. When the shift register is loaded 
with new data, it will transfer one complete frame at the rate given by the Baud Rate Register, the U2X bit or by XCK, 
depending on the mode of operation.

The following code examples show a simple USART transmit function based on polling of the Data Register Empty flag 
(UDRE). When using frames with less than eight bits, the most significant bits written to UDR are ignored. The USART 
has to be initialized before the function can be used. For the assembly code, the data to be sent is assumed to be stored 
in register R16

C Code Example(1)

void USART_Init( unsigned int baud )
{

/* Set baud rate */
UBRRH = (unsigned char)(baud>>8);
UBRRL = (unsigned char)baud;

/* Enable receiver and transmitter */
UCSRB = (1<<RXEN)|(1<<TXEN);

/* Set frame format: 8 data bits, 2 stop bits */
UCSRC = (1<<USBS)|(3<<UCSZ0);

}

Assembly Code Example(1)

USART_Transmit:
; Wait for empty transmit buffer
sbis UCSRA,UDRE
rjmp USART_Transmit

; Put data (r16) into buffer, sends the data
out UDR,r16
ret
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17.6.5 Disabling the Transmitter

Clearing TXEN will disable the transmitter but the change will not become effective before any ongoing and pending 
transmissions are completed, i.e. not before the transmit shift register and transmit buffer register are cleared of data to 
be transmitted. When disabled, the transmitter will no longer override the TxD pin.

17.7 Data Reception – The USART Receiver
The USART receiver is enabled by writing the Receive Enable bit (RXEN) (see “UCSRB – USART Control and Status 
Register B” on page 185). When the receiver is enabled, the normal operation of the RxD pin is overridden by the 
USART and given the function as the receiver’s serial input. The baud rate, mode of operation and frame format must be 
set up once before any serial reception can be done. If synchronous operation is used, the clock on the XCK pin will be 
used as transfer clock.

17.7.1 Receiving Frames with 5 to 8 Data Bits

The receiver starts data reception when it detects a valid start bit. Each bit that follows the start bit will be sampled at the 
baud rate, or XCK clock, and then shifted into the receive shift register until the first stop bit of a frame is received. A 
second stop bit will be ignored by the receiver. When the first stop bit is received, i.e., a complete serial frame is present 
in the receive shift register, the contents of it will be moved into the receive buffer. The receive buffer can then be read by 
reading UDR.

The following code example shows a simple USART receive function based on polling of the Receive Complete flag 
(RXC). When using frames with less than eight bits the most significant bits of the data read from the UDR will be 
masked to zero. The USART has to be initialized before the function can be used.

Note: 1. See “Code Examples” on page 7.

The function simply waits for data to be present in the receive buffer by checking the RXC flag, before reading the buffer 
and returning the value.

Assembly Code Example(1)

USART_Receive:
; Wait for data to be received
sbis UCSRA, RXC
rjmp USART_Receive

; Get and return received data from buffer
in r16, UDR
ret

C Code Example(1)

unsigned char USART_Receive( void )
{

/* Wait for data to be received */
while ( !(UCSRA & (1<<RXC)) )

;

/* Get and return received data from buffer */
return UDR;

}
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17.8 Asynchronous Data Reception
The USART includes a clock recovery and a data recovery unit for handling asynchronous data reception. The clock 
recovery logic is used for synchronizing the internally generated baud rate clock to the incoming asynchronous serial 
frames at the RxD pin. The data recovery logic samples and low pass filters each incoming bit, thereby improving the 
noise immunity of the receiver. The asynchronous reception operational range depends on the accuracy of the internal 
baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

17.8.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes the internal clock to the incoming serial frames. Figure 74 illustrates the sampling 
process of the start bit of an incoming frame. In normal mode the sample rate is 16 times the baud rate, in double speed 
mode eight times. The horizontal arrows illustrate the synchronization variation due to the sampling process. Note the 
larger time variation when using the double speed mode of operation (U2X = 1). Samples denoted zero are samples 
done when the RxD line is idle (i.e., no communication activity).

Figure 74. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD line, the start bit detection 
sequence is initiated. In Figure 74, samples are indicated with numbers inside boxes and sample number 1 denotes the 
first zero-sample. The clock recovery logic then uses samples 8, 9, and 10 (in normal mode), or samples 4, 5, and 6 (in 
double speed mode), to decide if a valid start bit is received. If two or more of these three samples have logical high 
levels (the majority wins), the start bit is rejected as a noise spike and the receiver starts looking for the next high to low-
transition. If, however, a valid start bit is detected, the clock recovery logic is synchronized and the data recovery can 
begin. The synchronization process is repeated for each start bit.

17.8.2 Asynchronous Data Recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data recovery unit uses a state 
machine that has 16 states for each bit in normal mode and eight states for each bit in double speed mode. Figure 75 
shows the sampling of the data bits and the parity bit. Each of the samples is given a number that is equal to the state of 
the recovery unit.

Figure 75. Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of the logic value to the three samples 
in the center of the received bit. In the figure, the center samples are emphasized by having the sample number inside 
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Figure 78. TWI Bus Topology

A unique address is assigned to all slave devices connected to the bus, and the master will use this to address a slave 
and initiate a data transaction. 7-bit or 10-bit addressing can be used.

Several masters can be connected to the same bus, and this is called a multi-master environment. An arbitration 
mechanism is provided for resolving bus ownership between masters since only one master device may own the bus at 
any given time.

A device can contain both master and slave logic, and can emulate multiple slave devices by responding to more than 
one address.

A master indicates the start of transaction by issuing a START condition (S) on the bus. An address packet with a slave 
address (ADDRESS) and an indication whether the master wishes to read or write data (R/W), is then sent. After all data 
packets (DATA) are transferred, the master issues a STOP condition (P) on the bus to end the transaction. The receiver 
must acknowledge (A) or not-acknowledge (A) each byte received.

Figure 79 shows a TWI transaction.

Figure 79. Basic TWI Transaction Diagram Topology 
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19.4.1 Receiving Address Packets

When the TWI slave is properly configured, it will wait for a START condition to be detected. When this happens, the 
successive address byte will be received and checked by the address match logic, and the slave will ACK the correct 
address. If the received address is not a match, the slave will not acknowledge the address and wait for a new START 
condition. 

The slave Address/Stop Interrupt Flag is set when a START condition succeeded by a valid address packet is detected. 
A general call address will also set the interrupt flag.

A START condition immediately followed by a STOP condition, is an illegal operation and the Bus Error flag is set. 

The R/W Direction flag reflects the direction bit received with the address. This can be read by software to determine the 
type of operation currently in progress. 

Depending on the R/W direction bit and bus condition one of four distinct cases (1 to 4) arises following the address 
packet. The different cases must be handled in software.

19.4.1.1 Case 1: Address packet accepted - Direction bit set

If the R/W Direction flag is set, this indicates a master read operation. The SCL line is forced low, stretching the bus 
clock. If ACK is sent by the slave, the slave hardware will set the Data Interrupt Flag indicating data is needed for 
transmit. If NACK is sent by the slave, the slave will wait for a new START condition and address match.

19.4.1.2 Case 2: Address packet accepted - Direction bit cleared

If the R/W Direction flag is cleared this indicates a master write operation. The SCL line is forced low, stretching the bus 
clock. If ACK is sent by the slave, the slave will wait for data to be received. Data, Repeated START or STOP can be 
received after this. If NACK is indicated the slave will wait for a new START condition and address match.

19.4.1.3 Case 3: Collision

If the slave is not able to send a high level or NACK, the Collision flag is set and it will disable the data and acknowledge 
output from the slave logic. The clock hold is released. A START or repeated START condition will be accepted.

19.4.1.4 Case 4: STOP condition received.

Operation is the same as case 1 or 2 above with one exception. When the STOP condition is received, the Slave 
Address/Stop flag will be set indicating that a STOP condition and not an address match occurred.

19.4.2 Receiving Data Packets

The slave will know when an address packet with R/W direction bit cleared has been successfully received. After 
acknowledging this, the slave must be ready to receive data. When a data packet is received the Data Interrupt Flag is 
set, and the slave must indicate ACK or NACK. After indicating a NACK, the slave must expect a STOP or Repeated 
START condition.

19.4.3 Transmitting Data Packets

The slave will know when an address packet, with R/W direction bit set, has been successfully received. It can then start 
sending data by writing to the Slave Data register. When a data packet transmission is completed, the Data Interrupt Flag 
is set. If the master indicates NACK, the slave must stop transmitting data, and expect a STOP or Repeated START 
condition.
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19.5.5 TWSD – TWI Slave Data Register

The data register is used when transmitting and received data. During transfer, data is shifted from/to the TWSD register 
and to/from the bus. Therefore, the data register cannot be accessed during byte transfers. This is protected in hardware. 
The data register can only be accessed when the SCL line is held low by the slave, i.e. when TWCH is set.

When a master reads data from a slave, the data to be sent must be written to the TWSD register. The byte transfer is 
started when the master starts to clock the data byte from the slave. It is followed by the slave receiving the acknowledge 
bit from the master. The TWDIF and the TWCH bits are then set.

When a master writes data to a slave, the TWDIF and the TWCH flags are set when one byte has been received in the 
data register. If Smart Mode is enabled, reading the data register will trigger the bus operation, as set by the TWAA bit in 
TWSCRB.

Accessing TWSD will clear the slave interrupt flags and the TWCH bit.

19.5.6 TWSAM – TWI Slave Address Mask Register

Bits 7:1 – TWSAM[7:1]: TWI Address Mask

These bits can act as a second address match register, or an address mask register, depending on the TWAE setting.

If TWAE is set to zero, TWSAM can be loaded with a 7-bit slave address mask. Each bit in TWSAM can mask (disable) 
the corresponding address bit in the TWSA register. If the mask bit is one the address match between the incoming 
address bit and the corresponding bit in TWSA is ignored. In other words, masked bits will always match.

If TWAE is set to one, TWSAM can be loaded with a second slave address in addition to the TWSA register. In this 
mode, the slave will match on 2 unique addresses, one in TWSA and the other in TWSAM.

Bit 0 – TWAE: TWI Address Enable

By default, this bit is zero and the TWSAM bits acts as an address mask to the TWSA register. If this bit is set to one, the 
slave address match logic responds to the two unique addresses in TWSA and TWSAM.

Bit 7 6 5 4 3 2 1 0

(0xBD) TWSD[7:0] TWSD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xBB) TWSAM[7:1] TWAE TWSAM

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Table 114. Parallel Programming Characteristics, T = 25°C, VCC = 5V

Notes: 1.  tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits commands.
2.  tWLRH_CE is valid for the Chip Erase command.

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

tDVXH Data and Control Valid before CLKI High 67 ns

tXLXH CLKI Low to CLKI High 200 ns

tXHXL CLKI Pulse Width High 150 ns

tXLDX Data and Control Hold after CLKI Low 67 ns

tXLWL CLKI Low to WR Low 0 ns

tXLPH CLKI Low to PAGEL high 0 ns

tPLXH PAGEL low to CLKI high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL CLKI Low to OE Low 0 ns

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns
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25.5 Current Consumption of Peripheral Units

Figure 124. Current Consumption of Peripherals at 4MHz vs. VCC

Figure 125. Current Consumption of Peripherals at 3V vs. Frequency
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Figure 128. Sampled Brownout Detector Current vs. VCC

25.6 Pull-up Resistors

25.6.1 I/O Pins

Figure 129. I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)
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Figure 148. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 3V)

Figure 149. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 5V)
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Figure 166. BOD Threshold vs Temperature (BODLEVEL = 2.7V)

Figure 167. BOD Threshold vs Temperature (BODLEVEL = 1.8V)
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Figure 170. Sampled BOD Threshold vs Temperature (BODLEVEL = 1.8V)

25.11 Bandgap Voltage

Figure 171. Bandgap Voltage vs. Supply Voltage
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