

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f23k22-e-so

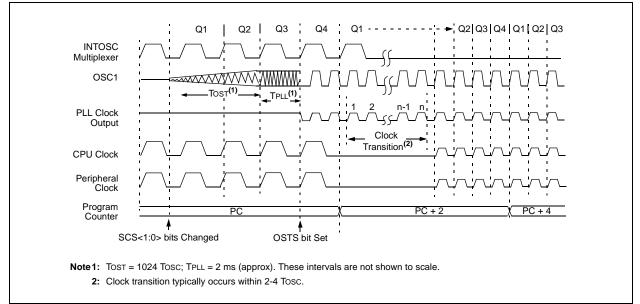
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin N	lumber		D ² 11	Pin	Buffer	
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description
21	40	40	36	RD2/P2B/AN22		•	
				RD2	I/O	ST	Digital I/O
				P2B ⁽¹⁾	0	CMOS	Enhanced CCP2 PWM output.
				AN22	I	Analog	Analog input 22.
22	41	41	37	RD3/P2C/SS2/AN23			
				RD3	I/O	ST	Digital I/O.
				P2C	0	CMOS	Enhanced CCP2 PWM output.
				SS2	I	TTL	SPI slave select input (MSSP).
				AN23	I	Analog	Analog input 23.
27	2	2	2	RD4/P2D/SDO2/AN24			
				RD4	I/O	ST	Digital I/O.
				P2D	0	CMOS	Enhanced CCP2 PWM output.
				SDO2	0	-	SPI data out (MSSP).
				AN24	I	Analog	Analog input 24.
28	3	3	3	RD5/P1B/AN25			
				RD5	I/O	ST	Digital I/O.
				P1B	0	CMOS	Enhanced CCP1 PWM output.
				AN25	I	Analog	Analog input 25.
29	4	4	4	RD6/P1C/TX2/CK2/AN26			
				RD6	I/O	ST	Digital I/O.
				P1C	0	CMOS	Enhanced CCP1 PWM output.
				TX2	0	—	EUSART asynchronous transmit.
				CK2	I/O	ST	EUSART synchronous clock (see related RXx/ DTx).
				AN26	I	Analog	Analog input 26.
30	5	5	5	RD7/P1D/RX2/DT2/AN27		•	
				RD7	I/O	ST	Digital I/O.
				P1D	0	CMOS	Enhanced CCP1 PWM output.
				RX2	I	ST	EUSART asynchronous receive.
				DT2	I/O	ST	EUSART synchronous data (see related TXx/ CKx).
				AN27	I	Analog	Analog input 27.
8	25	25	23	RE0/P3A/CCP3/AN5		•	
				RE0	I/O	ST	Digital I/O.
				P3A ⁽²⁾	0	CMOS	Enhanced CCP3 PWM output.
				CCP3 ⁽²⁾	I/O	ST	Capture 3 input/Compare 3 output/PWM 3 outpu
				AN5	I	Analog	Analog input 5.
9	26	26	24	RE1/P3B/AN6			
				RE1	I/O	ST	Digital I/O.
				P3B	0	CMOS	Enhanced CCP3 PWM output.
				AN6		Analog	Analog input 6.

TABLE 1-3: PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.


Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

IRCF<2:0>	INTSRC	MFIOSEL	Selected Oscillator	Selected Oscillator Stable when:							
000	0	x	LFINTOSC	LFIOFS = 1							
000	1	0	HFINTOSC	HFIOFS = 1							
000	1	1	MFINTOSC	MFIOFS = 1							
010 or 001	x	0	HFINTOSC	HFIOFS = 1							
010 or 001	x	1	MFINTOSC	MFIOFS = 1							
011 - 111	x	x	HFINTOSC	HFIOFS = 1							

TABLE 3-2: INTERNAL OSCILLATOR FREQUENCY STABILITY BITS

9.8 Register Definitions: Interrupt Control

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIE	H PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF
bit 7							bit (
Legend:							
R = Readab		W = Writable b	it	•	ented bit, read as		
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unknow	vn
bit 7	When IPEN = 1 = Enables a 0 = Disables a When IPEN =	II unmasked inter III interrupts inclu- <u>1:</u>	rupts ding peripherals	5			
	0 = Disables a	II high priority inte III interrupts inclue	ding low priority	,			
bit 6	When IPEN = 1 = Enables a 0 = Disables a When IPEN = 1 = Enables a	II unmasked perip II peripheral inter	oheral interrupts rupts rupts	5			
bit 5	1 = Enables th	0 Overflow Interr ne TMR0 overflow he TMR0 overflow	, v interrupt				
bit 4	1 = Enables th	External Interrupt ne INT0 external i he INT0 external	nterrupt				
bit 3	1 = Enables th	nterrupt-On-Cha ne IOCx port char he IOCx port cha	nge interrupt	rrupt Enable bit ⁽²	2)		
bit 2	1 = TMR0 reg	0 Overflow Interr ister has overflow ister did not overf	ved (must be cle	eared by softwar	e)		
bit 1	1 = The INT0	External Interrupt external interrupt external interrupt	occurred (must	t be cleared by s	oftware)		
bit 0	RBIF: Port B I 1 = At least or	nterrupt-On-Chai	nge (IOCx) Inte > (RB<7:4>) pi	ns changed state	e (must be cleare	d by software)	
Note 1:	A mismatch condition			it. Reading POR	TB will end the		
2:	RB port change inte	rrupto olgo roqui	o tha individual	nin IOCB anable	96		

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

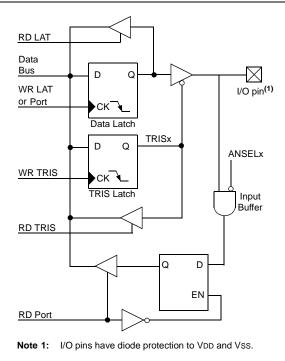
Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE		
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown		
bit 7	OSCFIE: Osc 1 = Enabled 0 = Disabled	illator Fail Inte	rrupt Enable I	bit					
bit 6	C1IE: Compa 1 = Enabled 0 = Disabled	rator C1 Interro	upt Enable bit	t					
bit 5	C2IE: Compa 1 = Enabled 0 = Disabled	rator C2 Interro	upt Enable bit	t					
bit 4	EEIE: Data E 1 = Enabled 0 = Disabled	EPROM/Flash	Write Operat	ion Interrupt Er	nable bit				
bit 3	BCL1IE: MSS 1 = Enabled 0 = Disabled	SP1 Bus Collisi	on Interrupt E	Enable bit					
bit 2	HLVDIE: Low 1 = Enabled 0 = Disabled	-Voltage Detec	t Interrupt En	able bit					
bit 1	TMR3IE: TMI 1 = Enabled 0 = Disabled	TMR3IE: TMR3 Overflow Interrupt Enable bit 1 = Enabled							
bit 0	CCP2IE: CCI 1 = Enabled 0 = Disabled	P2 Interrupt En	able bit						

REGISTER 9-10: PIE2: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 2

10.0 I/O PORTS

Depending on the device selected and features enabled, there are up to five ports available. All pins of the I/O ports are multiplexed with one or more alternate functions from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.


Each port has five registers for its operation. These registers are:

- TRIS register (data direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (output latch)
- ANSEL register (analog input control)
- SLRCON register (port slew rate control)

The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 10-1.

FIGURE 10-1: GENERIC I/O PORT OPERATION

10.1 PORTA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the PORT latch.

The Data Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input and one of the comparator outputs to become the RA4/T0CKI/C1OUT pin. Pins RA6 and RA7 are multiplexed with the main oscillator pins; they are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see **Section 24.1 "Configuration Bits"** for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs, and the comparator voltage reference output. The operation of pins RA<3:0> and RA5 as analog is selected by setting the ANSELA<5, 3:0> bits in the ANSELA register which is the default setting after a Power-on Reset.

Pins RA0 through RA5 may also be used as comparator inputs or outputs by setting the appropriate bits in the CM1CON0 and CM2CON0 registers.

Note: On a Power-on Reset, RA5 and RA<3:0> are configured as analog inputs and read as '0'. RA4 is configured as a digital input.

The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input. All other PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the drivers of the PORTA pins, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs.

MOVLB	0xF	;	Set BSR for banked SFRs
CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
CLRF	LATA	;	Alternate method
		;	to clear output
		;	data latches
MOVLW	E0h	;	Configure I/O
MOVWF	ANSELA	;	for digital inputs
MOVLW	OCFh	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<3:0> as inputs
		;	RA<5:4> as outputs
			_

TABLE 10-11: PORTD I/O SUMMARY

Pin Name	Function	TRIS Setting	ANSEL setting	Pin Type	Buffer Type	Description
RD0/SCK2/SCL2/AN20	RD0	0	0	0	DIG	LATD<0> data output; not affected by analog input.
		1	0	I	ST	PORTD<0> data input; disabled when analog input enabled.
	SCK2	0	0	0	DIG	MSSP2 SPI Clock output.
		1	0	I	ST	MSSP2 SPI Clock input.
	SCL2	0	0	0	DIG	MSSP2 I ² C Clock output.
		1	0	I	l ² C	MSSP2 I ² C Clock input.
	AN20	1	1	I	AN	Analog input 20.
RD1/CCP4/SDI2/SDA2/	RD1	0	0	0	DIG	LATD<1> data output; not affected by analog input.
AN21		1	0	I	ST	PORTD<1> data input; disabled when analog input enabled.
	CCP4	0	0	0	DIG	Compare 4 output/PWM 4 output.
		1	0	I	ST	Capture 4 input.
	SDI2	1	0	I	ST	MSSP2 SPI data input.
	SDA2	0	0	0	DIG	MSSP2 I ² C data output.
		1	0	I	l ² C	MSSP2 I ² C data input.
	AN21	1	1	I	AN	Analog input 21.
RD2/P2B/AN22	RD2	0	0	0	DIG	LATD<2> data output; not affected by analog input.
		1	0	I	ST	PORTD<2> data input; disabled when analog input enabled.
	P2B ⁽¹⁾	0	0	0	DIG	Enhanced CCP2 PWM output 2.
	AN22	1	1	I	AN	Analog input 22.
RD3/P2C/SS2/AN23	RD3	0	0	0	DIG	LATD<3> data output; not affected by analog input.
		1	0	I	ST	PORTD<3> data input; disabled when analog input enabled.
	P2C	0	0	0	DIG	Enhanced CCP2 PWM output 4.
	SS2	1	0	Ι	TTL	MSSP2 SPI slave select input.
	AN23	1	1	I	AN	Analog input 23.
RD4/P2D/SDO2/AN24	RD4	0	0	0	DIG	LATD<4> data output; not affected by analog input.
		1	0	I	ST	PORTD<4> data input; disabled when analog input enabled.
	P2D	0	0	0	DIG	Enhanced CCP2 PWM output 3.
	SDO2	0	0	0	DIG	MSSP2 SPI data output.
	AN24	1	1	I	AN	Analog input 24.
RD5/P1B/AN25	RD5	0	0	0	DIG	LATD<5> data output; not affected by analog input.
		1	0	I	ST	PORTD<5> data input; disabled when analog input enabled.
	P1B	0	0	0	DIG	Enhanced CCP1 PWM output 2.
	AN25	1	1	I	AN	Analog input 25.

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I^2C = Schmitt Trigger input with I^2C .

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

12.13 Register Definitions: Timer1/3/5 Control

REGISTER 12-1: TXCON: TIMER1/3/5 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/0	R/W-0/u
TMRx	CS<1:0>	TxCKP	S<1:0>	TxSOSCEN	TxSYNC	TxRD16	TMRxON
bit 7		÷		· · · ·			bit 0
Legend:	a hit		- i+		antad hit raad		
R = Readabl u = Bit is unc		W = Writable x = Bit is unkr			ented bit, read t POR and BO		othar Basata
u = Bit is und (1' = Bit is se	-	x = Bit is unknown is clear the second sec			I FOR and BO	R/ Value at all	
1 - Dit 13 36	ι						
bit 7-6	TMRxCS<1:	0>: Timer1/3/5	Clock Source	Select bits			
bit 5-4	10 = Timer1/2 <u>If TxSO</u> Externa <u>If TxSO</u> Crystal 01 = Timer1/2 00 = Timer1/2 TxCKPS<1:(CKI pin (on the SCI/SOSCO e is system clo e is instruction	e rising edge) pins ock (Fosc)	ts		
	11 = 1:8 Pres 10 = 1:4 Pres 01 = 1:2 Pres 00 = 1:1 Pres	scale value scale value					
bit 3	TxSOSCEN:	Secondary Os	cillator Enable	Control bit			
		ed Secondary of ed Secondary of					
bit 2	TMRxCS<1:0	0 > = 1X		Synchronization	n Control bit		
		synchronize exte nize external clo		ut system clock (F	OSC)		
	<u>TMRxCS<1:(</u> This bit is ign		5 uses the int	ernal clock whe	n TMRxCS<1:()> = 1X.	
bit 1	1 = Enables	•	rite of Timer1/	bit '3/5 in one 16-bi '3/5 in two 8-bit (•		
bit 0	1 = Enables 0 = Stops Ti						

	0. KEO								
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
ANSELB	_	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	150
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	_	150
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
IPR5	—	_	—		_	TMR6IP	TMR5IP	TMR4IP	124
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIE5		_		_	—	TMR6IE	TMR5IE	TMR4IE	120
PIR1		ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PIR5		_		_	—	TMR6IF	TMR5IF	TMR4IF	116
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
T1CON	TMR1C	S<1:0>	T1CK	PS<1:0>	T1SOSCEN	T1SYNC	T1RD16	TMR10N	166
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS	S<1:0>	167
T3CON	TMR3C	S<1:0>	T3CK	PS<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	166
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GSS	S<1:0>	167
T5CON	TMR5C	S<1:0>	T5CKI	PS<1:0>	T5SOSCEN	T5SYNC	T5RD16	TMR5ON	166
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GSS	S<1:0>	167
TMR1H		Holdin	g Register fo	r the Most Sign	ificant Byte of the 1	6-bit TMR1 Reg	gister		_
TMR1L			Least S	ignificant Byte	of the 16-bit TMR1	Register			_
TMR3H		Holdin	g Register fo	r the Most Sign	ificant Byte of the 1	6-bit TMR3 Reg	gister		_
TMR3L			Least S	ignificant Byte	of the 16-bit TMR3	Register			
TMR5H		Holdin	g Register fo	r the Most Sign	ificant Byte of the 1	6-bit TMR5 Reg	gister		_
TMR5L			Least S	ignificant Byte	of the 16-bit TMR5	Register			_
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151

TABLE 12-6: REGISTERS ASSOCIATED WITH TIMER1/3/5 AS A TIMER/COUNTER

TABLE 12-7: CONFIGURATION REGISTERS ASSOCIATED WITH TIMER1/3/5

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
CONFIG3H	MCLRE		P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

- 6. Configure and start the 8-bit TimerX resource:
 - Clear the TMRxIF interrupt flag bit of the PIR2 or PIR4 register. See Note 1 below.
 - Configure the TxCKPS bits of the TxCON register with the Timer prescale value.
 - Enable the Timer by setting the TMRxON bit of the TxCON register.
- 7. Enable PWM output pin:
 - Wait until the Timer overflows and the TMRxIF bit of the PIR2 or PIR4 register is set. See Note 1 below.
 - Enable the CCPx pin output driver by clearing the associated TRIS bit.

Note 1:	In order to send a complete duty cycle
	and period on the first PWM output, the
	above steps must be included in the
	setup sequence. If it is not critical to start
	with a complete PWM signal on the first
	output, then step 6 may be ignored.

14.3.3 PWM TIMER RESOURCE

The PWM standard mode makes use of one of the 8-bit Timer2/4/6 timer resources to specify the PWM period.

Configuring the CxTSEL<1:0> bits in the CCPTMRS0 or CCPTMRS1 register selects which Timer2/4/6 timer is used.

14.3.4 PWM PERIOD

The PWM period is specified by the PRx register of 8-bit TimerX. The PWM period can be calculated using the formula of Equation 14-1.

EQUATION 14-1: PWM PERIOD

 $PWM Period = [(PRx) + 1] \bullet 4 \bullet Tosc \bullet$ (TMRx Prescale Value)

Note 1: Tosc = 1/Fosc

When TMRx is equal to PRx, the following three events occur on the next increment cycle:

- TMRx is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

Note: The Timer postscaler (see Section 13.0 "Timer2/4/6 Module") is not used in the determination of the PWM frequency.

14.3.5 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PRx and TMRx registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 14-2 is used to calculate the PWM pulse width.

Equation 14-3 is used to calculate the PWM duty cycle ratio.

EQUATION 14-2: PULSE WIDTH

$$Pulse Width = (CCPRxL:CCPxCON < 5:4>) \bullet$$

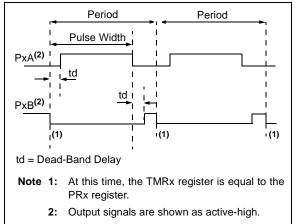
TOSC • (TMRx Prescale Value)

EQUATION 14-3: DUTY CYCLE RATIO

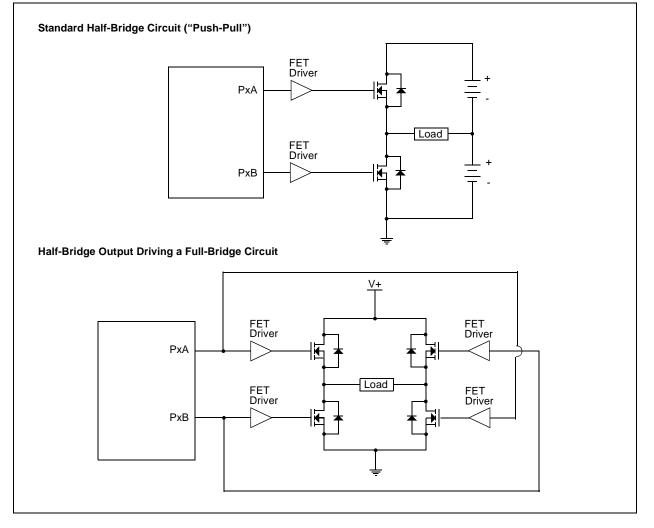
 $Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4>)}{4(PRx + 1)}$

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMRx register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the TimerX prescaler is set to 1:1.


When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (see Figure 14-4).

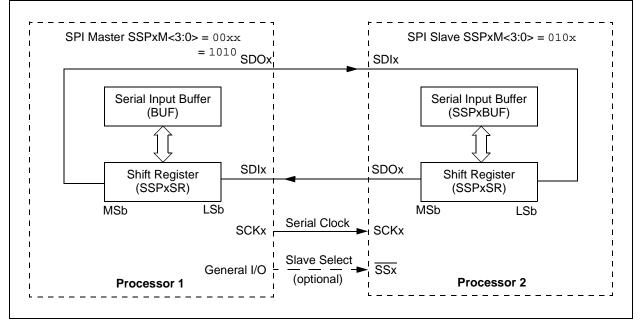
14.4.1 HALF-BRIDGE MODE


In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCPx/PxA pin, while the complementary PWM output signal is output on the PxB pin (see Figure 14-9). This mode can be used for half-bridge applications, as shown in Figure 14-9, or for full-bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in halfbridge power devices. The value of the PDC<6:0> bits of the PWMxCON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 14.4.5 "Programmable Dead-Band Delay Mode"** for more details of the dead-band delay operations. Since the PxA and PxB outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure PxA and PxB as outputs.

FIGURE 14-8: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 14-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS


Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

The MSSPx consists of a transmit/receive shift register (SSPxSR) and a buffer register (SSPxBUF). The SSPxSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPxSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full Detect bit, BF of the SSPxSTAT register, and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPxBUF register during transmission/reception of data will be ignored and the write collision detect bit, WCOL of the SSPxCON1 register, will be

set. User software must clear the WCOL bit to allow the following write(s) to the SSPxBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF of the SSPxSTAT register, indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSPx interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

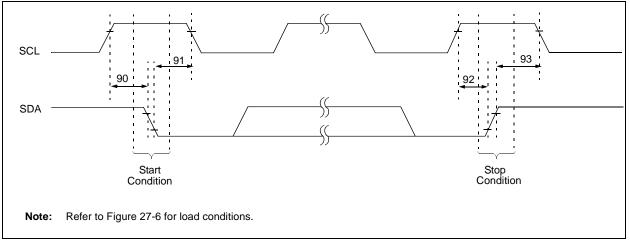
R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
MCLRE		P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX
bit 7				·			bit (
Legend:							
R = Reada	able bit	P = Program	nable bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value	when device is un	programmed		x = Bit is unki	nown		
bit 7		R Pin Enable					
		enabled; RE3					
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	P2BMX: P2B 1 = P2B is on P2B is on 0 = P2B is on	RD2 ⁽²⁾					
bit 4	T3CMX: Time 1 = T3CKI is 0 0 = T3CKI is 0		MUX bit				
bit 3	1 = HFINTOS		ng the CPU wi	thout waiting fo		to stabilize	
bit 2	0 = CCP3 inp	CP3 MUX bit ut/output is mu ut/output is mu ut/output is mu	ltiplexed with	RC6 ⁽¹⁾			
bit 1	1 = ANSELB<		1, PORTB<5:	0> pins are cor 0> pins are cor			
bit 0		P2 MUX bit ut/output is mu ut/output is mu					
Note 1:	PIC18(L)F2XK22	devices only.					
2:	PIC18(L)F4XK22	devices only.					

REGISTER 24-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH

	Complement f						
Syntax:	COMF f	{,d {,a}}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	$\begin{array}{l} 0\leq f\leq 255\\ d\in [0,1] \end{array}$					
Operation:	$(\overline{f}) \rightarrow dest$	$(\overline{f}) \rightarrow dest$					
Status Affected:	N, Z						
Encoding:	0001	11da	ffff	ffff			
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed						
	Literal Offs	set Mode	" for deta	uls.			
Words:	1						
Cycles:	1						
-							
Q Cycle Activity:							
Q Cycle Activity: Q1	Q2	Q3		Q4			
Q Cycle Activity:	Q2 Read register 'f'	Q3 Proce Data		Q4 Write to estination			
Q Cycle Activity: Q1	Read register 'f' COMF tion = 13h	Proce Data		Write to			

CPFSEQ Compare f with W, skip if f = W							
	-		ID IT T = W				
Syntax:	CPFSEQ	f {,a}					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$					
Operation:	(f) – (W),						
	skip if $(f) = ($						
Statua Affaatad	None	comparison)					
Status Affected:		001a fff	f ffff				
Encoding: Description:	0110	001a fff					
Description.		o the contents					
	performing	an unsigned s	ubtraction.				
	,	en the fetched and a NOP is ex					
		king this a 2-c					
	instruction.	5					
		he Access Bar					
	GPR bank.	he BSR is use	d to select the				
		nd the extende	ed instruction				
		ed, this instruc					
		Literal Offset A iever f ≤ 95 (5F	0				
		.2.3 "Byte-Ori	,				
		d Instruction					
		set Mode" for	details.				
Words:	1						
Cycles:	1(2) Note: 3 cv	ycles if skip an	d followed				
		a 2-word instru					
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read	Process	No				
lf skip:	register 'f'	Data	operation				
Q1	Q2	Q3	Q4				
No	No	No	No				
operation If skip and followe	operation	operation	operation				
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
No operation	No operation	No operation	No operation				
Example:	HERE NEOUAL	CPFSEQ REG	, 0				
	EQUAL	:					
Before Instruc	ction						
PC Addr							
W	= ?						
REG After Instructi	= ?						
If REG	= W;						
PC	,						
If REG		,					
PC	PC = Address (NEQUAL)						

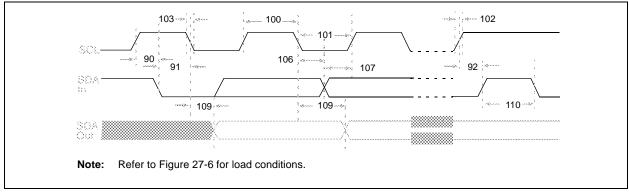
XORWF	Exclusive OR W with f						
Syntax:	XORWF	f {,d {,a}}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	d ∈ [0,1]					
Operation:	(W) .XOR. ((W) .XOR. (f) \rightarrow dest					
Status Affected:	N, Z						
Encoding:	0001	10da fff	f ffff				
Description:	Exclusive OR the contents of W with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in the register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write to destination				
Example:	Example: XORWF REG, 1, 0						
Before Instruct							
REG W	= AFh = B5h						
VV After Instruction							
REG	= 1Ah						

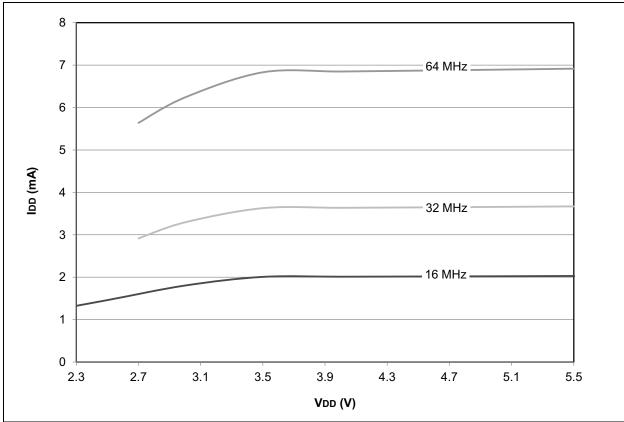

B5h

=

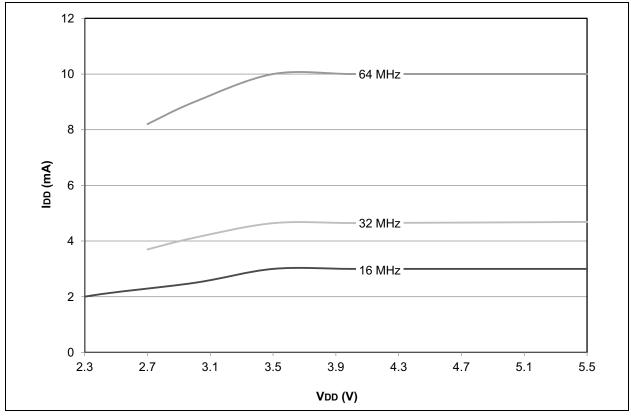
 $\ensuremath{\textcircled{}^{\odot}}$ 2010-2016 Microchip Technology Inc.

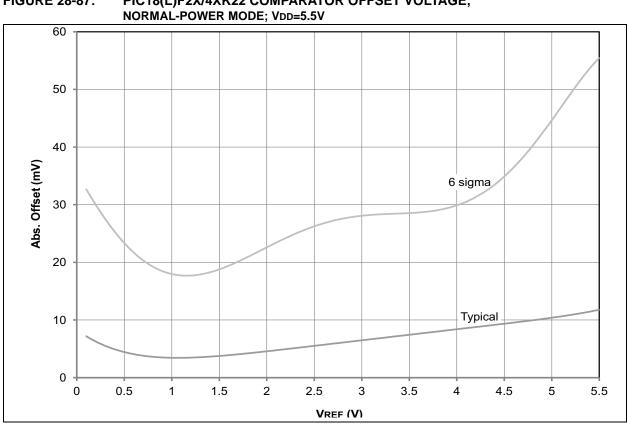
W

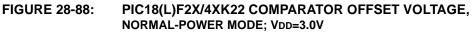



Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		Repeated Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		generated
92	TSU:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.


FIGURE 27-20: MASTER SSP I²C BUS DATA TIMING





© 2010-2016 Microchip Technology Inc.

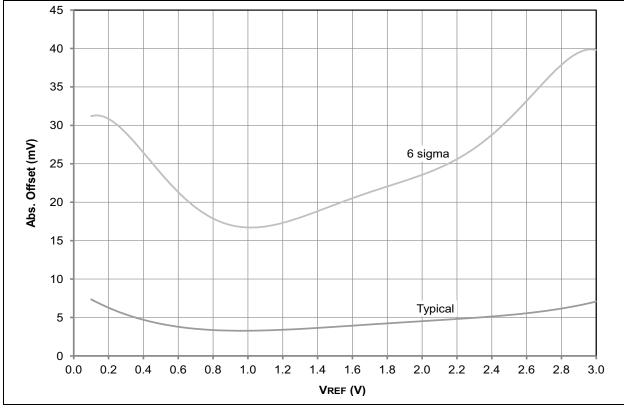
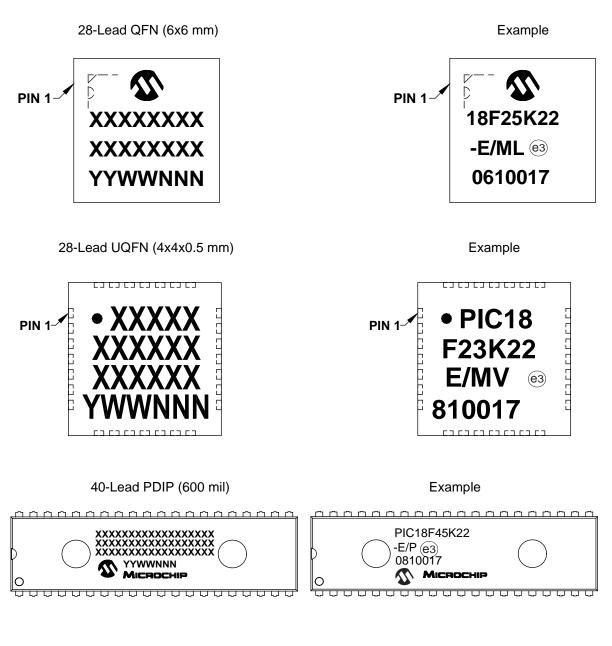
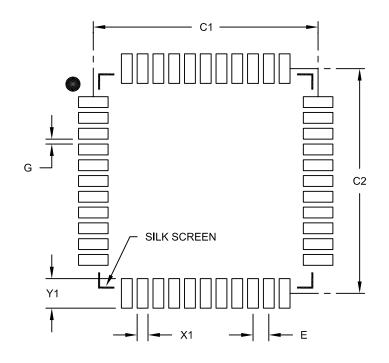



FIGURE 28-87: PIC18(L)F2X/4XK22 COMPARATOR OFFSET VOLTAGE,


Package Marking Information (Continued)

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
	be carried	nt the full Microchip part number cannot be marked on one line, it will I over to the next line, thus limiting the number of available for customer-specific information.

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensio	MIN	NOM	MAX	
Contact Pitch	0.80 BSC			
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

								1
Features ⁽¹⁾	PIC18F23K22 PIC18LF23K2 2	PIC18F24K22 PIC18LF24K2 2	PIC18F25K22 PIC18LF25K22	PIC18F26K22 PIC18LF26K22	PIC18F43K22 PIC18LF43K22	PIC18F44K22 PIC18LF44K22	PIC18F45K22 PIC18LF45K22	PIC18F46K22 PIC18LF46K22
Program Memory (Bytes)	8192	16384	32768	65536	8192	16384	32768	65536
SRAM (Bytes)	512	768	1536	3896	512	768	1536	3896
EEPROM (Bytes)	256	256	256	1024	256	256	256	1024
Interrupt Sources	26	26	33	33	26	26	33	33
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E			
Capture/Compare/PWM Modules (CCP)	2	2	2	2	2	2	2	2
Enhanced CCP Modules (ECCP) Full Bridge	1	1	1	1	2	2	2	2
ECCP Module Half Bridge	2	2	2	2	1	1	1	1
10-bit Analog-to-Digital Module	17 input channels	17 input channels	17 input channels	17 input channels	28 input channels	28 input channels	28 input channels	28 input channels
Packages	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN			

TABLE B-1: DEVICE DIFFERENCES

Note 1: PIC18FXXK22: operating voltage, 2.3V-5.5V. PIC18LFXXK22: operating voltage, 1.8V-3.6V.