

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k22-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-3: PLL_SELECT BLOCK DIAGRAM

TABLE 2-1: PLL_SELECT TRUTH TABLE

Primary Clock MUX Source	FOSC<3:0>	PLLCFG	PLLEN	PLL_Select
FOSC (any source)	0000-1111	0	0	0
OSC1/OSC2 (external source)	0000-0111	1	х	1
	1010-1111	0	1	1
INTOSC (internal source)	1000-1001	x	0	0
		x	1	1

2.3 Register Definitions: Oscillator Control

REGISTER 2-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0	F	R/W-0	R/W-1	R/W-1	R-q	R-0	R/W-0	R/W-	-0
IDLEN			IRCF<2:0>		OSTS ⁽¹⁾	HFIOFS	SCS<	:1:0>	
bit 7									bit 0
Legend:									
R = Reada	able bit	W = V	Writable bit	U = Unimpl	emented bit, re	ad as '0'	q = depends on	conditio	on
-n = Value	at POR	'1' =	Bit is set	'0' = Bit is c	leared		x = Bit is unkno	wn	
bit 7	IDLE	EN: Idle E	nable bit						
	1 = 0 =	Device el Device el	nters Idle mode nters Sleep mo	e on SLEEP ins Ide on SLEEP i	struction Instruction				
bit 6-4	IRCI	F <2:0>: Iı	nternal RC Osc	illator Frequer	ncy Select bits ⁽	2)			
	111	= HFINT	- OSC – (16 M⊢	lz)	-				
	110	= HFINT	OSC/2 – (8 MI	Hz)					
	101		0SC/4 – (4 MI OSC/8 – (2 MI	⊐z) ⊣z)					
	011	= HFINT	OSC/16 – (1 N	12) 1Hz) ⁽³⁾					
	IF INT	TODC -							
	010	= HFINT	0 and MF103E OSC/32 – (500	:∟ = 0.) kHz)					
	001	= HFINT	OSC/64 - (250) kHz)					
	000	= LFINT	OSC – (31.25	kHz)					
	If IN	TSRC = 1	L and MFIOSE	L = 0:					
	010	= HFINT	OSC/32 - (500) kHz)					
	001	= HFINT	OSC/64 – (250) kHz) 1 25 kHz)					
	000		000/012 - (0	1.20 KHZ)					
	If IN	TSRC = 0	and MFIOSE	L = 1:					
	010	= MFINT	FOSC – (500 kl	Hz) vuz)					
	000	= LFINT	OSC – (31.25	kHz)					
			, , , , , , , , , , , , , , , , , , , ,	,					
	If IN	TSRC = 1	L and MFIOSE	L = 1:					
	010	= MFINT	TOSC – (500 ki TOSC/2 – (250	⊓∠) kHz)					
	000	= MFINT	TOSC/16 – (31	.25 kHz)					
bit 3	OST	'S: Oscilla	ator Start-up Ti	me-out Status	bit				
	1 =	Device is	running from t	he clock define	ed by FOSC<3	:0> of the CO	VFIG1H register	•	
1.11.0	0 =	Device is	running from t	he internal osc	cillator (HFINTC	DSC, MFINTO	SC or LFINTOS	C)	
bit 2	HFIC			ency Stable bit					
	1 = 0 =	HFINTOS	SC frequency is	s stable s not stable					
bit 1-0	SCS	SCS<1:0>: System Clock Select bit							
	1x =	Internal	oscillator block						
	01 =	Seconda	ary (SOSC) osc	cillator					
	00 =	Primary	CIOCK (determin	ned by FOSC<	3:0> in CONFI	IG1H).			
Note 1:	Reset sta	ate depen	ds on state of t	he IESO Conf	iguration bit.				

- 2: INTOSC source may be determined by the INTSRC bit in OSCTUNE and the MFIOSEL bit in OSCCON2.
- **3:** Default output frequency of HFINTOSC on Reset.

OSC Mode	OSC1 Pin	OSC2 Pin
RC, INTOSC with CLKOUT	Floating, external resistor should pull high	At logic low (clock/4 output)
RC with IO	Floating, external resistor should pull high	Configured as PORTA, bit 6
INTOSC with IO	Configured as PORTA, bit 7	Configured as PORTA, bit 6
EC with IO	Floating, pulled by external clock	Configured as PORTA, bit 6
EC with CLKOUT	Floating, pulled by external clock	At logic low (clock/4 output)
LP, XT, HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level

TABLE 2-3:OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Note: See Table 4-2 in Section 4.0 "Reset" for time-outs due to Sleep and MCLR Reset.

2.11 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS<1:0>) bits of the OSCCON register.

PIC18(L)F2X/4XK22 devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 3.1.2 "Entering Power-Managed Modes"**.

2.11.1 SYSTEM CLOCK SELECT (SCS<1:0>) BITS

The System Clock Select (SCS<1:0>) bits of the OSCCON register select the system clock source that is used for the CPU and peripherals.

- When SCS<1:0> = 00, the system clock source is determined by configuration of the FOSC<3:0> bits in the CONFIG1H Configuration register.
- When SCS<1:0> = 10, the system clock source is chosen by the internal oscillator frequency selected by the INTSRC bit of the OSCTUNE register, the MFIOSEL bit of the OSCCON2 register and the IRCF<2:0> bits of the OSCCON register.
- When SCS<1:0> = 01, the system clock source is the 32.768 kHz secondary oscillator shared with Timer1, Timer3 and Timer5.

After a Reset, the SCS<1:0> bits of the OSCCON register are always cleared.

Note: Any automatic clock switch, which may occur from Two-Speed Start-up or Fail-Safe Clock Monitor, does not update the SCS<1:0> bits of the OSCCON register. The user can monitor the SOSCRUN, MFIOFS and LFIOFS bits of the OSCCON2 register, and the HFIOFS and OSTS bits of the OSCCON register to determine the current system clock source.

2.11.2 OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT

The Oscillator Start-up Time-out Status (OSTS) bit of the OSCCON register indicates whether the system clock is running from the external clock source, as defined by the FOSC<3:0> bits in the CONFIG1H Configuration register, or from the internal clock source. In particular, when the primary oscillator is the source of the primary clock, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG2L	—			BORV	<1:0>	BOREI	N<1:0>	PWRTEN	346
CONFIG2H	—	—		WDPS<3:0>			WDTEI	N<1:0>	347
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348
CONFIG4L	DEBUG	XINST			_	LVP		STRVEN	349

TABLE 4-5: CONFIGURATION REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for Resets.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
	_	—	—	—	CCP5IE	CCP4IE	CCP3IE	
bit 7	bit 7 bit 0							
Legend:								
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7-3	Unimplement	ted: Read as '	כ'					
bit 2	CCP5IE: CCF	25 Interrupt En	able bit					
	1 = Enabled							
	0 = Disabled							
bit 1	CCP4IE: CCF	P4 Interrupt En	able bit					
	1 = Enabled							
	0 = Disabled							
bit 0 CCP3IE: CCP3 Interrupt Enable bit								
1 = Enabled								
	0 = Disabled							

REGISTER 9-12: PIE4: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 4

REGISTER 9-13: PIE5: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 5

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	TMR6IE	TMR5IE	TMR4IE
bit 7 bit (bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3	Unimplemented: Read as '0'
bit 2	TMR6IE: TMR6 to PR6 Match Interrupt Enable bit
	1 = Enables the TMR6 to PR6 match interrupt0 = Disables the TMR6 to PR6 match interrupt
bit 1	TMR5IE: TMR5 Overflow Interrupt Enable bit
	1 = Enables the TMR5 overflow interrupt0 = Disables the TMR5 overflow interrupt
bit 0	TMR4IE: TMR4 to PR4 Match Interrupt Enable bit
	1 = Enables the TMR4 to PR4 match interrupt0 = Disables the TMR4 to PR4 match interrupt

12.1 Timer1/3/5 Operation

The Timer1/3/5 module is a 16-bit incrementing counter which is accessed through the TMRxH:TMRxL register pair. Writes to TMRxH or TMRxL directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1/3/5 is enabled by configuring the TMRxON and TMRxGE bits in the TxCON and TxGCON registers, respectively. Table 12-1 displays the Timer1/3/5 enable selections.

TABLE 12-1:TIMER1/3/5 ENABLESELECTIONS

TMRXON	TMRxGE	Timer1/3/5 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

12.2 Clock Source Selection

The TMRxCS<1:0> and TxSOSCEN bits of the TxCON register are used to select the clock source for Timer1/3/5. The dedicated Secondary Oscillator circuit can be used as the clock source for Timer1, Timer3 and Timer5, simultaneously. Any of the TxSOSCEN bits will enable the Secondary Oscillator circuit and select it as the clock source for that particular timer. Table 12-2 displays the clock source selections.

12.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMRxH:TMRxL register pair will increment on multiples of Fosc as determined by the Timer1/3/5 prescaler.

When the Fosc internal clock source is selected, the Timer1/3/5 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1/3/5 value. To utilize the full resolution of Timer1/3/5, an asynchronous input signal must be used to gate the Timer1/3/5 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the TxG pin to Timer1/3/5 Gate
- C1 or C2 comparator input to Timer1/3/5 Gate

12.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1/3/5 module may work as a timer or a counter.

When enabled to count, Timer1/3/5 is incremented on the rising edge of the external clock input of the TxCKI pin. This external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated secondary internal oscillator circuit.

Note:	In Counter mode, a falling edge must be
	registered by the counter prior to the first
	incrementing rising edge after any one or
	more of the following conditions:

- Timer1/3/5 enabled after POR
- Write to TMRxH or TMRxL
- Timer1/3/5 is disabled
- Timer1/3/5 is disabled (TMRxON = 0) when TxCKI is high then Timer1/3/5 is enabled (TMRxON=1) when TxCKI is low.

TMRxCS1	TMRxCS0	TxSOSCEN	Clock Source
0	1	x	System Clock (Fosc)
0	0	х	Instruction Clock (Fosc/4)
1	0	0	External Clocking on TxCKI Pin
1	0	1	Osc.Circuit On SOSCI/SOSCO Pins

TABLE 12-2: CLOCK SOURCE SELECTIONS

14.4.4 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit in the PWMxCON register.

If auto-restart is enabled, the CCPxASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the CCPxASE bit will be cleared via hardware and normal operation will resume.

REGISTER 14-2: CCPxCON: ENHANCED CCPx CONTROL REGISTER (CONTINUED)

- bit 3-0 CCPxM<3:0>: ECCPx Mode Select bits
 - 0000 = Capture/Compare/PWM off (resets the module)
 - 0001 = Reserved
 - 0010 = Compare mode: toggle output on match
 - 0011 = Reserved
 - 0100 = Capture mode: every falling edge
 - 0101 = Capture mode: every rising edge
 - 0110 = Capture mode: every 4th rising edge
 - 0111 = Capture mode: every 16th rising edge
 - 1000 = Compare mode: set output on compare match (CCPx pin is set, CCPxIF is set)
 - 1001 = Compare mode: clear output on compare match (CCPx pin is cleared, CCPxIF is set)
 - 1010 = Compare mode: generate software interrupt on compare match (CCPx pin is unaffected, CCPxIF is set)
 - 1011 = Compare mode: Special Event Trigger (CCPx pin is unaffected, CCPxIF is set) TimerX is reset

Half-Bridge ECCP Modules⁽¹⁾:

- 1100 = PWM mode: PxA active-high; PxB active-high
- 1101 = PWM mode: PxA active-high; PxB active-low
- 1110 = PWM mode: PxA active-low; PxB active-high
- 1111 = PWM mode: PxA active-low; PxB active-low

Full-Bridge ECCP Modules⁽¹⁾:

- 1100 = PWM mode: PxA, PxC active-high; PxB, PxD active-high
- 1101 = PWM mode: PxA, PxC active-high; PxB, PxD active-low
- 1110 = PWM mode: PxA, PxC active-low; PxB, PxD active-high
- 1111 = PWM mode: PxA, PxC active-low; PxB, PxD active-low
- Note 1: See Table 14-1 to determine full-bridge and half-bridge ECCPs for the device being used.

16.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (HFINTOSC). However, the HFINTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the HFINTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 2.6** "Internal Clock Modes" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 16.4.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

	-					-				
R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
ABDOVF	RCIDL	DTRXP	CKTXP	BRG16		WUE	ABDEN			
bit 7							bit 0			
Legend:						(-)				
R = Readable b	oit	W = Writable k	Dit	U = Unimplem	nented bit, read	as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 7	ABDOVF: Aut Asynchronous 1 = Auto-baud 0 = Auto-baud Synchronous Don't care	to-Baud Detect (<u>s mode</u> : d timer overflowe d timer did not ov <u>mode</u> :	Overflow bit ed verflow							
bit 6	RCIDL: Recei	ve Idle Flag bit								
	Asynchronous 1 = Receiver i 0 = Start bit ha Synchronous Don't care	<u>s mode</u> : s Idle as been detecte <u>mode</u> :	d and the rece	eiver is active						
bit 5	DTRXP: Data/	Receive Polarit	y Select bit							
	Asynchronous	<u>s mode</u> :								
	1 = Receive d	ata (RXx) is inve ata (RXx) is not	erted (active-lo	ow) ve-biab)						
	Synchronous mode:									
	1 = Data (DTx	x) is inverted (ac	tive-low)							
	0 = Data (DTx	 is not inverted 	(active-high)							
bit 4	CKTXP: Clock	<pre>k/Transmit Polar .</pre>	ity Select bit							
	1 = Idle state f 0 = Idle state f	<u>s mode</u> : for transmit (TX) for transmit (TX)	κ) is low κ) is high							
	Synchronous	mode:	, .							
	1 = Data chan 0 = Data chan	iges on the fallin iges on the risin	g edge of the g edge of the	clock and is sar clock and is san	npled on the ris npled on the fal	ing edge of the c ling edge of the c	lock lock			
bit 3	BRG16: 16-bi 1 = 16-bit Ba 0 = 8-bit Bau	t Baud Rate Ge ud Rate Genera d Rate Generate	nerator bit itor is used (Sl or is used (SP	PBRGHx:SPBR BRGx)	Gx)					
bit 2	Unimplement	ted: Read as '0'								
bit 1	WUE: Wake-u	ıp Enable bit								
	Asynchronous 1 = Receiver i edge. WL 0 = Receiver i Synchronous	<u>s mode</u> : is waiting for a f JE will automations operating norr <u>mode</u> :	alling edge. N cally clear on t nally	o character will he rising edge.	be received bu	t RCxIF will be se	et on the falling			
	Don't care		11.15							
bit 0	ABDEN: Auto	-Baud Detect Er	hable bit							
	Asynchronous 1 = Auto-Bau 0 = Auto-Bau Synchronous Don't care	<u>s mode</u> : Id Detect mode Id Detect mode <u>mode</u> :	is enabled (cle is disabled	ears when auto-	baud is comple	te)				

REGISTER 16-3: BAUDCONX: BAUD RATE CONTROL REGISTER

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	—	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	_	_	_	_	_	_	115.2k	0.00	1	_	_	_

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD RATE	Fosc = 64.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz		
	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	300	0.00	53332	300.0	0.00	15359	300.0	0.00	13332	300.0	0.00	9215
1200	1200	0.00	13332	1200	0.00	3839	1200.1	0.01	3332	1200	0.00	2303
2400	2400	0.00	6666	2400	0.00	1919	2399.5	-0.02	1666	2400	0.00	1151
9600	9598.1	-0.02	1666	9600	0.00	479	9592	-0.08	416	9600	0.00	287
10417	10417	0.00	1535	10425	0.08	441	10417	0.00	383	10433	0.16	264
19.2k	19.21k	0.04	832	19.20k	0.00	239	19.23k	0.16	207	19.20k	0.00	143
57.6k	57.55k	-0.08	277	57.60k	0.00	79	57.97k	0.64	68	57.60k	0.00	47
115.2k	115.11k	-0.08	138	115.2k	0.00	39	114.29k	-0.79	34	115.2k	0.00	23

				SYNC	C = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1							
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0.00	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_

- 16.5.1.5 Synchronous Master Transmission Setup:
- 1. Initialize the SPBRGHx, SPBRGx register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 16.4 "EUSART Baud Rate Generator (BRG)").
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC. Set the TRIS bits corresponding to the RXx/DTx and TXx/CKx I/O pins.

- 4. Disable Receive mode by clearing bits SREN and CREN.
- 5. Enable Transmit mode by setting the TXEN bit.
- 6. If 9-bit transmission is desired, set the TX9 bit.
- 7. If interrupts are desired, set the TXxIE, GIE/ GIEH and PEIE/GIEL interrupt enable bits.
- 8. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 9. Start transmission by loading data to the TXREGx register.

FIGURE 16-10: SYNCHRONOUS TRANSMISSION

FIGURE 16-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

17.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Results formatting

17.1.1 PORT CONFIGURATION

The ANSELx and TRISx registers configure the A/D port pins. Any port pin needed as an analog input should have its corresponding ANSx bit set to disable the digital input buffer and TRISx bit set to disable the digital output driver. If the TRISx bit is cleared, the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the ANSx bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins with their corresponding ANSx bit set read as cleared (a low level). However, analog conversion of pins configured as digital inputs (ANSx bit cleared and TRISx bit set) will be accurately converted.
 - 2: Analog levels on any pin with the corresponding ANSx bit cleared may cause the digital input buffer to consume current out of the device's specification limits.
 - 3: The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the bits in ANSELB are reset.

17.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 17.2** "**ADC Operation**" for more information.

17.1.3 ADC VOLTAGE REFERENCE

The PVCFG<1:0> and NVCFG<1:0> bits of the ADCON1 register provide independent control of the positive and negative voltage references.

The positive voltage reference can be:

- Vdd
- the fixed voltage reference (FVR BUF2)
- an external voltage source (VREF+)

The negative voltage reference can be:

- Vss
- an external voltage source (VREF-)

17.1.4 SELECTING AND CONFIGURING ACQUISITION TIME

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/\overline{DONE} bit is set.

Acquisition time is set with the ACQT<2:0> bits of the ADCON2 register. Acquisition delays cover a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there is no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

Manual acquisition is selected when ACQT<2:0> = 000. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT<2:0> bits and is compatible with devices that do not offer programmable acquisition times.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. When an acquisition time is programmed, there is no indication of when the acquisition time ends and the conversion begins.

FIGURE 17-6: ADC TRANSFER FUNCTION

26.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

26.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

26.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

26.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

26.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

26.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

26.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

26.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

26.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

TABLE 27-19: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock High to Data Out Valid	_	40	ns	
121	Tckrf	Clock Out Rise Time and Fall Time (Master mode)	—	20	ns	
122	Tdtrf	Data Out Rise Time and Fall Time	_	20	ns	

FIGURE 27-22: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 27-20: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TdtV2ckl	SYNC RCV (MASTER & SLAVE) Data Setup before CK \downarrow (DT setup time)	10	_	ns	
126	TckL2dtl	Data Hold after CK \downarrow (DT hold time)	15	_	ns	

© 2010-2016 Microchip Technology Inc.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103D Sheet 1 of 2