

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k22-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABL	_E 3:	P	PIC18((L)F4)	(K22 F	PIN SUM	MARY									
40-PDIP	40-UQFN	44-TQFP	44-QFN	0/	Analog	Comparator	СТМИ	SR Latch	Reference	(E)CCP	EUSART	MSSP	Timers	Interrupts	Pull-up	Basic
2	17	19	19	RA0	AN0	C12IN0-										
3	18	20	20	RA1	AN1	C12IN1-										
4	19	21	21	RA2	AN2	C2IN+			VREF- DACOU T							
5	20	22	22	RA3	AN3	C1IN+			VREF+							
6	21	23	23	RA4		C10UT		SRQ					TOCKI			
7	22	24	24	RA5	AN4	C2OUT		SRNQ	HLVDIN			SS1				
14	29	31	33	RA6												OSC2 CLKO
13	28	30	32	RA7												OSC1 CLKI
33	8	8	9	RB0	AN12			SRI		FLT0				INT0	Υ	
34	9	9	10	RB1	AN10	C12IN3-								INT1	Υ	
35	10	10	11	RB2	AN8		CTED1							INT2	Υ	
36	11	11	12	RB3	AN9	C12IN2-	CTED2			CCP2 P2A ⁽¹⁾					Y	
37	12	14	14	RB4	AN11								T5G	IOC	Υ	
38	13	15	15	RB5	AN13					ССР3 РЗА ⁽³⁾			T1G T3CKI ⁽²⁾	IOC	Y	
39	14	16	16	RB6										IOC	Υ	PGC
40	15	17	17	RB7										IOC	Y	PGD
15	30	32	34	RC0						P2B ⁽⁴⁾			SOSCO T1CKI T3CKI ⁽²⁾ T3G			
16	31	35	35	RC1						CCP2 ⁽¹⁾ P2A			SOSCI			
17	32	36	36	RC2	AN14		CTPLS			CCP1 P1A			T5CKI			
18	33	37	37	RC3	AN15							SCK1 SCL1				
23	38	42	42	RC4	AN16							SDI1 SDA1				
24	39	43	43	RC5	AN17							SDO1				
25	40	44	44	RC6	AN18						TX1 CK1					
26	1	1	1	RC7	AN19						RX1 DT1					
19	34	38	38	RD0	AN20							SCK2 SCL2				
20	35	39	39	RD1	AN21					CCP4		SDI2 SDA2				
21	36	40	40	RD2	AN22					P2B ⁽⁴⁾						
22	37	41	41	RD3	AN23					P2C		SS2				
27	2	2	2	RD4	AN24					P2D		SD02				
28	3	3	3	RD5	AN25					P1B						
29	4	4	4	RD6	AN26					P1C	TX2 CK2					
30	5	5	5	RD7	AN27					P1D	RX2 DT2					
8	23	25	25	RE0	AN5					ССР3 РЗА ⁽³⁾						

TABLE 3:	PIC18(L	.)F4XK22	PIN	SUMMA	ARY
	1 10 10(L				\ \

 Note
 1:
 CCP2 multiplexed in fuses.

 2:
 T3CKI multiplexed in fuses.

 3:
 CCP3/P3A multiplexed in fuses.

 4:
 P2B multiplexed in fuses.

OSC Mode	OSC1 Pin	OSC2 Pin
RC, INTOSC with CLKOUT	Floating, external resistor should pull high	At logic low (clock/4 output)
RC with IO	Floating, external resistor should pull high	Configured as PORTA, bit 6
INTOSC with IO	Configured as PORTA, bit 7	Configured as PORTA, bit 6
EC with IO	Floating, pulled by external clock	Configured as PORTA, bit 6
EC with CLKOUT	Floating, pulled by external clock	At logic low (clock/4 output)
LP, XT, HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level

TABLE 2-3:OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Note: See Table 4-2 in Section 4.0 "Reset" for time-outs due to Sleep and MCLR Reset.

2.11 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS<1:0>) bits of the OSCCON register.

PIC18(L)F2X/4XK22 devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 3.1.2 "Entering Power-Managed Modes"**.

2.11.1 SYSTEM CLOCK SELECT (SCS<1:0>) BITS

The System Clock Select (SCS<1:0>) bits of the OSCCON register select the system clock source that is used for the CPU and peripherals.

- When SCS<1:0> = 00, the system clock source is determined by configuration of the FOSC<3:0> bits in the CONFIG1H Configuration register.
- When SCS<1:0> = 10, the system clock source is chosen by the internal oscillator frequency selected by the INTSRC bit of the OSCTUNE register, the MFIOSEL bit of the OSCCON2 register and the IRCF<2:0> bits of the OSCCON register.
- When SCS<1:0> = 01, the system clock source is the 32.768 kHz secondary oscillator shared with Timer1, Timer3 and Timer5.

After a Reset, the SCS<1:0> bits of the OSCCON register are always cleared.

Note: Any automatic clock switch, which may occur from Two-Speed Start-up or Fail-Safe Clock Monitor, does not update the SCS<1:0> bits of the OSCCON register. The user can monitor the SOSCRUN, MFIOFS and LFIOFS bits of the OSCCON2 register, and the HFIOFS and OSTS bits of the OSCCON register to determine the current system clock source.

2.11.2 OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT

The Oscillator Start-up Time-out Status (OSTS) bit of the OSCCON register indicates whether the system clock is running from the external clock source, as defined by the FOSC<3:0> bits in the CONFIG1H Configuration register, or from the internal clock source. In particular, when the primary oscillator is the source of the primary clock, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes.

EXAMPLE 5-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR
	;SAVED IN FAST REGISTER
	; STACK
•	
•	
SUB1 •	
•	
RETURN, FAST	
	;IN FAST REGISTER STACK

5.2.2 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

5.2.2.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 5-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of two (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 5-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF	OFFSET,	W
	CALL	TABLE	
ORG	nn00h		
TABLE	ADDWF	PCL	
	RETLW	nnh	
	RETLW	nnh	
	RETLW	nnh	
	•		
	•		
	•		

5.2.2.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 6.1 "Table Reads and Table Writes".

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR	
F68h	CCPR2H			Capture/C	ompare/PWM	Register 2, Hig	gh Byte			xxxx xxxx	
F67h	CCPR2L			Capture/C	ompare/PWM	Register 2, Lo	w Byte			xxxx xxxx	
F66h	CCP2CON	P2M<	<1:0>	DC2E	3<1:0>		CCP2N	1<3:0>		0000 0000	
F65h	PWM2CON	P2RSEN				P2DC<6:0>				0000 0000	
F64h	ECCP2AS	CCP2ASE		CCP2AS<2:0	>	PSS2A	AC<1:0>	PSS2B	D<1:0>	0000 0000	
F63h	PSTR2CON	I	—	—	STR2SYNC	STR2D	STR2C	STR2B	STR2A	0 0001	
F62h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	—	-	—	_	1111	
F61h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	
Feah	SLRCON ⁽²⁾		_	-	_	—	SLRC	SLRB	SLRA	111	
F60h	SLRCON ⁽¹⁾	I	—	—	SLRE	SLRD	SLRC	SLRB	SLRA	1 1111	
F5Fh	CCPR3H			Capture/	Compare/PWN	/I Register 3, H	ligh Byte			xxxx xxxx	
F5Eh	CCPR3L			Capture/	Compare/PWN	/I Register 3, L	ow Byte			xxxx xxxx	
F5Dh	CCP3CON	P3M<	P3M<1:0> DC3B<1:0> CCP3M<3:0>								
F5Ch	PWM3CON	P3RSEN	BRSEN P3DC<6:0>								
F5Bh	ECCP3AS	CCP3ASE		CCP3AS<2:0	>	PSS3A	AC<1:0>	PSS3B	D<1:0>	0000 0000	
F5Ah	PSTR3CON	_	_	_	STR3SYNC	STR3D	STR3C	STR3B	STR3A	0 0001	
F59h	CCPR4H		Capture/Compare/PWM Register 4, High Byte							xxxx xxxx	
F58h	CCPR4L			Capture/	Compare/PWI	VI Register 4, L	_ow Byte			xxxx xxxx	
F57h	CCP4CON		DC4B<1:0> CCP4M<3:0>								
F56h	CCPR5H		Capture/Compare/PWM Register 5, High Byte								
F55h	CCPR5L		Capture/Compare/PWM Register 5, Low Byte								
F54h	CCP5CON		— — DC5B<1:0> CCP5M<3:0>								
F53h	TMR4		Timer4 Register								
F52h	PR4				Timer4 Pe	riod Register				1111 1111	
F51h	T4CON			T4OUT	PS<3:0>		TMR4ON	T4CKP	S<1:0>	-000 0000	
F50h	TMR5H		Holding R	egister for the	Most Significa	ant Byte of the	16-bit TMR5 R	egister		0000 0000	
F4Fh	TMR5L			Least Signif	icant Byte of th	ne 16-bit TMR5	5 Register			0000 0000	
F4Eh	T5CON	TMR5C	S<1:0>	T5CKF	PS<1:0>	T5SOSCEN	T5SYNC	T5RD16	TMR5ON	0000 0000	
F4Dh	T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T <u>5GGO</u> / DONE	T5GVAL	T5GSS	S<1:0>	0000 0x00	
F4Ch	TMR6		•	•	Timer6 Regist	er	•	•		0000 0000	
F4Bh	PR6				Timer6 Period	Register				1111 1111	
F4Ah	T6CON			T6OUT	PS<3:0>		TMR6ON	T6CKP	S<1:0>	-000 0000	
F49h	CCPTMRS0	C3TSE	L<1:0>	_	C2TSE	L<1:0>	_	C1TSE	L<1:0>	00-0 0-00	
F48h	CCPTMRS1		_	_	_	C5TSE	EL<1:0>	C4TSE	L<1:0>	0000	
F47h	SRCON0	SRLEN		SRCLK<2:0>	•	SRQEN	SRNQEN	SRPS	SRPR	0000 0000	
F46h	SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000	
F45h	CTMUCONH	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	0000 0000	
F44h	CTMUCONL	EDG2POL	EDG2S	EL<1:0>	EDG1POL	EDG1S	EL<1:0>	EDG2STAT	EDG1STAT	0000 0000	
F43h	CTMUICON			ITRI	M<5:0>			IRNG	<1:0>	0000 0000	
F42h	VREFCON0	FVREN	FVRST	FVRS	S<1:0>	_	_	—	_	0001	
F41h	VREFCON1	DACEN	DACLPS	DACOE	_	DACPS	SS<1:0>	—	DACNSS	000- 00-0	
F40h	VREFCON2	_	—	—			DACR<4:0>			0 0000	
F3Fh	PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	0000 0000	
F3Eh	PMD1	MSSP2MD	MSSP1MD	_	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	00-0 0000	
F3Dh	PMD2	_	_	_	_	CTMUMD	CMP2MD	CMP1MD	ADCMD	0000	
F3Ch	ANSELE ⁽¹⁾	_	_	_	_	_	ANSE2	ANSE1	ANSE0	111	
F3Bh	ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	

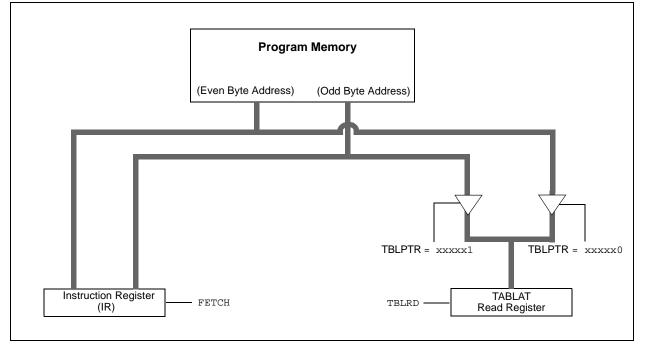
TABLE 5-2: REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES (CONTINUED)

 $\label{eq:Legend: Legend: Legend: Legend: u = unchanged, --= unimplemented, q = value depends on condition$

Note 1: PIC18(L)F4XK22 devices only.

2: PIC18(L)F2XK22 devices only.

3: PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.


4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

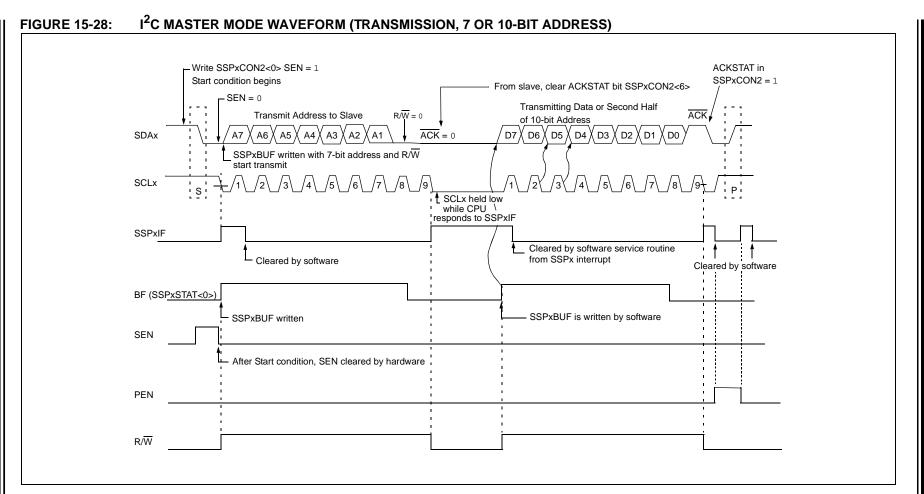
6.4 Reading the Flash Program Memory

The TBLRD instruction retrieves data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD


	MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU		Load TBLPTR with the base address of the word
	MOVLW	CODE_ADDR_HIGH	'	address of the word
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVFW	TABLAT, W	;	get data
	MOVF	WORD_ODD		

IADLE 12	0. KEO								
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
ANSELB	_	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	150
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	_	150
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
IPR5	—	_	—		_	TMR6IP	TMR5IP	TMR4IP	124
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIE5		_		_	—	TMR6IE	TMR5IE	TMR4IE	120
PIR1		ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PIR5		_		_	—	TMR6IF	TMR5IF	TMR4IF	116
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
T1CON	TMR1C	S<1:0>	T1CK	PS<1:0>	T1SOSCEN	T1SYNC	T1RD16	TMR10N	166
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS	167	
T3CON	TMR3C	S<1:0>	T3CK	PS<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	166
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GSS	S<1:0>	167
T5CON	TMR5C	S<1:0>	T5CKI	PS<1:0>	T5SOSCEN	T5SYNC	T5RD16	TMR5ON	166
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GSS	S<1:0>	167
TMR1H		Holdin	g Register fo	r the Most Sign	ificant Byte of the 1	6-bit TMR1 Reg	gister		_
TMR1L			Least S	ignificant Byte	of the 16-bit TMR1	Register			_
TMR3H		Holdin	g Register fo	r the Most Sign	ificant Byte of the 1	6-bit TMR3 Reg	gister		_
TMR3L			Least S	ignificant Byte	of the 16-bit TMR3	Register			
TMR5H		Holdin	g Register fo	r the Most Sign	ificant Byte of the 1	6-bit TMR5 Reg	gister		_
TMR5L			Least S	ignificant Byte	of the 16-bit TMR5	Register			_
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151

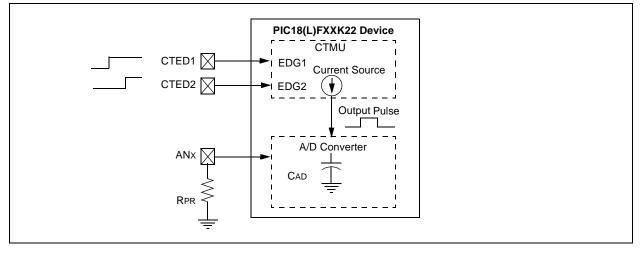
TABLE 12-6: REGISTERS ASSOCIATED WITH TIMER1/3/5 AS A TIMER/COUNTER

TABLE 12-7: CONFIGURATION REGISTERS ASSOCIATED WITH TIMER1/3/5

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
CONFIG3H	MCLRE		P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

EXAMPLE 19-3: CAPACITANCE CALIBRATION ROUTINE

```
#include "p18cxxx.h"
#define COUNT 25
                                            //@ 8MHz INTFRC = 62.5 us.
#define ETIME COUNT*2.5
                                            //time in uS
#define DELAY for(i=0;i<COUNT;i++)</pre>
#define ADSCALE 1023
                                            //for unsigned conversion 10 sig
bits
#define ADREF 3.3
                                            //Vdd connected to A/D Vr+
#define RCAL .027
                                            //R value is 4200000 (4.2M)
                                            //scaled so that result is in
                                            //1/100th of uA
int main(void)
{
   int i;
   int j = 0;
                                            //index for loop
   unsigned int Vread = 0;
   float CTMUISrc, CTMUCap, Vavg, VTot, Vcal;
//assume CTMU and A/D have been set up correctly
//see Example 25-1 for CTMU & A/D setup
setup();
CTMUCONHbits.CTMUEN = 1;
                                            //Enable the CTMU
CTMUCONLbits.EDG1STAT = 0;
                                            // Set Edge status bits to zero
CTMUCONLbits.EDG2STAT = 0;
   for(j=0;j<10;j++)</pre>
    {
       CTMUCONHbits.IDISSEN = 1;
                                           //drain charge on the circuit
                                            //wait 125us
       DELAY;
       CTMUCONHbits.IDISSEN = 0;
                                            //end drain of circuit
       CTMUCONLbits.EDG1STAT = 1;
                                            //Begin charging the circuit
                                            //using CTMU current source
                                            //wait for 125us
       DELAY;
       CTMUCONLbits.EDG1STAT = 0;
                                           //Stop charging circuit
       PIR1bits.ADIF = 0;
                                           //make sure A/D Int not set
       ADCON0bits.GO=1;
                                            //and begin A/D conv.
       while(!PIR1bits.ADIF);
                                            //Wait for A/D convert complete
       Vread = ADRES;
                                            //Get the value from the A/D
       PIR1bits.ADIF = 0;
                                            //Clear A/D Interrupt Flag
       VTot += Vread;
                                            //Add the reading to the total
   }
   Vavg = (float)(VTot/10.000);
                                            //Average of 10 readings
   Vcal = (float)(Vavg/ADSCALE*ADREF);
                                            //CTMUISrc is in 1/100ths of uA
   CTMUISrc = Vcal/RCAL;
   CTMUCap = (CTMUISrc*ETIME/Vcal)/100;
```


19.5 Measuring Time with the CTMU Module

Time can be precisely measured after the ratio (C/I) is measured from the current and capacitance calibration step by following these steps:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT.
- 3. Set EDG2STAT.
- 4. Perform an A/D conversion.
- 5. Calculate the time between edges as T = (C/I) * V, where *I* is calculated in the current calibration step (Section 19.3.1 "Current Source Calibration"), *C* is calculated in the capacitance calibration step (Section 19.3.2 "Capacitance Calibration") and *V* is measured by performing the A/D conversion.

It is assumed that the time measured is small enough that the capacitance, *C*OFFSET, provides a valid voltage to the A/D Converter. For the smallest time measurement, always set the A/D Channel Select register (AD1CHS) to an unused A/D channel; the corresponding pin for which is not connected to any circuit board trace. This minimizes added stray capacitance, keeping the total circuit capacitance close to that of the A/D Converter itself (4-5 pF). To measure longer time intervals, an external capacitor may be connected to an A/D channel and this channel selected when making a time measurement.

FIGURE 19-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

24.2 Register Definitions: Configuration Word

REGISTER 24-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH

REGISTE	R 24-1: CONF R/P-0	R/P-1	R/P-0		1 HIGH R/P-1	R/P-0					
IESO	FCMEN	PRICLKEN	R/P-0 PLLCFG	R/P-0		R/P-0 <3:0>	R/P-1				
bit 7	FOWEIN	FRIGEREN	FLLCFG		FUSC	<0.0>	bit C				
Legend:											
R = Reada	able bit	P = Programr	nable bit	U = Unimple	mented bit, read	d as '0'					
-n = Value	when device is un	programmed		x = Bit is unk	nown						
bit 7	1 = Oscillator	rnal/External O	ode enabled	nover bit							
bit 6	FCMEN ⁽¹⁾ : F 1 = Fail-Safe	ail-Safe Clock I Clock Monitor Clock Monitor	Monitor Enable enabled	e bit							
bit 5	1 = Primary (PRICLKEN: Primary Clock Enable bit 1 = Primary Clock is always enabled 0 = Primary Clock can be disabled by software									
bit 4	1 = 4 x PLL a	PLL Enable bi always enabled s under softwar	, Oscillator mu		E<6>)						
bit 3-0	1111 = Exte 1110 = Exte 1101 = EC c 1100 = EC c 1011 = EC c 1010 = EC c 1010 = Inter 1000 = Inter 0111 = Exte 0110 = Exte 0101 = EC c 0100 = EC c 0100 = EC c	sscillator (medi oscillator, CLKC nal oscillator bl nal oscillator bl rnal RC oscillator rnal RC oscillator coscillator (high oscillator (medi oscillator (high	tor, CLKOUT f tor, CLKOUT f power, ≤500 k OUT function o um power, 50 OUT function o ock, CLKOUT ock tor tor, CLKOUT f power, >16 M OUT function o um power, 4 I	unction on RA Hz) n OSC2 (low j 0 kHz-16 MHz n OSC2 (med function on OS unction on OS Hz) n OSC2 (high MHz-16 MHz)	6 power, ≤500 kH :) ium power, 500 SC2) kHz-16 MHz)					
Noto 1	0000 = LP o				nd ECMEN hit :	a cat than the					
Note 1:	When FOSC<3:0>				NO FOMEN DIT I						

should also be set to prevent a false failed clock indication and to enable automatic clock switch over from the internal oscillator block to the external oscillator when the OST times out.

REGISTER 24-7: CONFIG5H: CONFIGURATION REGISTER 5 HIGH

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
CPD	CPB	—	—	—	_	_	—
bit 7							bit 0
Legend:							

R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

bit 7	CPD: Data EEPROM Code Protection bit
	1 = Data EEPROM not code-protected
	0 = Data EEPROM code-protected
bit 6	CPB: Boot Block Code Protection bit
	1 = Boot Block not code-protected
	0 = Boot Block code-protected
bit 5-0	Unimplemented: Read as '0'

REGISTER 24-8: CONFIG6L: CONFIGURATION REGISTER 6 LOW

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
—	—	—	—	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0
bit 7							bit 0

Legend:	
R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

bit 7-4	Unimplemented: Read as '0'
bit 3	WRT3: Write Protection bit ⁽¹⁾
	1 = Block 3 not write-protected 0 = Block 3 write-protected
bit 2	WRT2: Write Protection bit ⁽¹⁾
	 1 = Block 2 not write-protected 0 = Block 2 write-protected
L :4	
bit 1	WRT1: Write Protection bit 1 = Block 1 not write-protected
	0 = Block 1 write-protected
bit 0	WRT0: Write Protection bit
	1 = Block 0 not write-protected 0 = Block 0 write-protected

Note 1: Available on PIC18(L)FX5K22 and PIC18(L)FX6K22 devices.

CPFSGT Compare f with W, skip if f > W									
Syntax:	CPFSGT	f {,a}							
Operands:	0 ≤ f ≤ 255	0-0							
opolalido.	a ∈ [0,1]								
Operation:	(f) - (W),								
	skip if (f) > ((W)							
	(unsigned c	omparison)							
Status Affected:	None								
Encoding:	0110	0110 010a ffff ffff							
Description:	Compares t	Compares the contents of data memory							
		o the contents							
		an unsigned s							
		nts of 'f' are gre							
		WREG, then t s discarded ar							
		s discarded ar stead, making							
	2-cycle inst		uno u						
		he Access Bar	nk is selected.						
	,	ne BSR is used	d to select the						
	GPR bank.		d to star others						
		nd the extende ed, this instruc							
		Literal Offset A	•						
		ever f ≤ 95 (5F	0						
		.2.3 "Byte-Ori							
		d Instruction							
		et Mode" for	details.						
Words:	1								
Cycles:	1(2)								
	•	cles if skip and 2-word instrue							
	by a								
Q Cycle Activity:	02	03	04						
Q1 Decode	Q2 Read	Q3 Process	Q4 No						
Decoue	register 'f'	Data	operation						
If skip:	. egietei i	2444	oporation						
Q1	Q2	Q3	Q4						
No	No	No	No						
operation	operation	operation operation							
If skip and followe									
Q1	Q2	Q3	Q4						
No	No	No	No						
operation No	operation No	operation No	operation No						
operation	operation	operation	operation						
oporation	oporation	oporation	oporation						
Example:	HERE	CPFSGT RE	G, 0						
	NGREATER	:							
	GREATER	:							
Before Instruc	tion								
PC		dress (HERE))						
W	= ?								
After Instruction									
If REG	> W;		、						
PC If REG	= Ad	dress (GREAT	l'ER)						

	Compare	f with W,	skip if $f < W$			
Syntax:	CPFSLT f	{,a}				
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]					
Operation:	(f) – (W), skip if (f) < ((unsigned o	. ,				
Status Affected:	None	. ,				
Encoding:	0110	000a f	fff ffff			
Description:	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank.					
Words:	1					
Cycles: 1(2) Note: 3 cycles if skip and followe by a 2-word instruction.						
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	No operation			
If skip:	register i	Dala	operation			
Q1	Q2	Q3	Q4			
No	No	No	No			
operation	operation	operation	operation			
If skip and followed	d by 2-word in	struction:				
Q1	Q2	Q3	Q4			
No	No	No	No			
operation	operation	operation	operation			
No	No	No	No			
operation	operation	operation	operation			
Example:	HERE (NLESS LESS		G, 1			
Before Instruct		dress (HEF) E)			
PC			(E)			
	= ?		CE)			
PC W After Instructio	= ? on	、	(E)			
PC W	= ? on < W;	、				

If REG

PC

≤ W;

= Address (NGREATER)

ADDWF	ADD W to Indexed (Indexed Literal Offset mode)						
Syntax:	ADDWF	[k] {,d}					
Operands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$						
Operation:	on: (W) + ((FSR2) + k) \rightarrow dest						
Status Affected: N, OV, C, DC, Z							
Encoding:	0010	01d0	kkkk	kkkk			
Description:	The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read 'k'	Proces Data	•	Vrite to stination			
Example:	ADDWF [[OFST],	0				
Before Instructi	ion						
W OFST FSR2 Contents of 0A2Ch After Instruction	= = = 1	17h 2Ch 0A00h 20h					
W Contents of 0A2Ch	=	37h 20h					

BSF		Bit Set Ir (Indexed		Offset n	node)			
Synta	ax:	BSF [k], I	b					
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$						
Oper	ation:	$1 \rightarrow ((FSF)$	2) + k) <b< td=""><td>></td><td></td></b<>	>				
Statu	is Affected:	None						
Enco	oding:	1000	bbb0	kkkk	kkkk			
Desc	ription:		Bit 'b' of the register indicated by FSR2, offset by the value 'k', is set.					
Word	ls:	1						
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3	5	Q4			
	Decode	Read register 'f'	Proce Dat		Write to estination			
Exan		BSF	[FLAG_C	FST], 7	,			
	Before Instruc FLAG_O FSR2 Contents of 0A0Ah After Instructio	FST = =	0A00ł	ı				
	Contents of 0A0Ah		D5h					

SET	F		Set Indexed (Indexed Literal Offset mode)						
Synta	ax:	SETF	[k]						
Oper	ands:	$0 \le k \le 1$	95						
Oper	ation:	$FFh \to$	((F\$	SR2) + k))				
Statu	s Affected:	None							
Enco	ding:	0110		1000	kkk	k	kkkk		
Desc	ription:			its of the i et by 'k',	•		licated by FFh.		
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2		Q3	3		Q4		
	Decode	Read 'k	ť	Proce Dat			Write egister		
<u>Exan</u>	nple:	SETF		[OFST]					
	Before Instruct OFST FSR2 Contents of 0A2Ch After Instructio Contents of 0A2Ch	= = n	20 0A 00 FF	NOOH Nh					

TABLE 27-3: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments			
VR01	Vrout	VR voltage output to ADC	0.973	1.024	1.085	V	1x output, VDD \ge 2.5V			
			1.946	2.048	2.171	V	$2x$ output, VDD $\ge 2.5V$			
			3.891	4.096	4.342	V	$4x$ output, VDD \ge 4.75V (PIC18F2X/4XK22)			
VR02	VROUT	VR voltage output all other	0.942	1.024	1.096	V	$1x$ output, VDD $\ge 2.5V$			
		modules	1.884	2.048	2.191	V	$2x$ output, VDD $\ge 2.5V$			
			3.768	4.096	4.383	V	$4x$ output, VDD \ge 4.75V (PIC18F2X/4XK22)			
VR04*	TSTABLE	Settling Time	_	25	100	μs	0 to 125°C			

* These parameters are characterized but not tested.

TABLE 27-4: CHARGE TIME MEASUREMENT UNIT (CTMU) SPECIFICATIONS

Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)								
Param No.	Sym	Characteristics	Min	Typ ⁽¹⁾	Max	Units	Comments	
CT01	Ιουτ1	CTMU Current Source, Base Range	_	0.55	_	μA	IRNG<1:0>=01	
CT02	Ιουτ2	CTMU Current Source, 10X Range	—	5.5	_	μA	IRNG<1:0>=10	
CT03	Ιουτ3	CTMU Current Source, 100X Range		55		μΑ	IRNG<1:0>=11 VDD ≥ 3.0V	

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2>=000000).

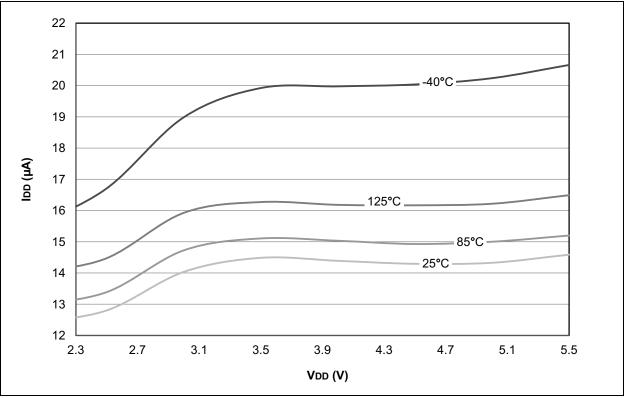
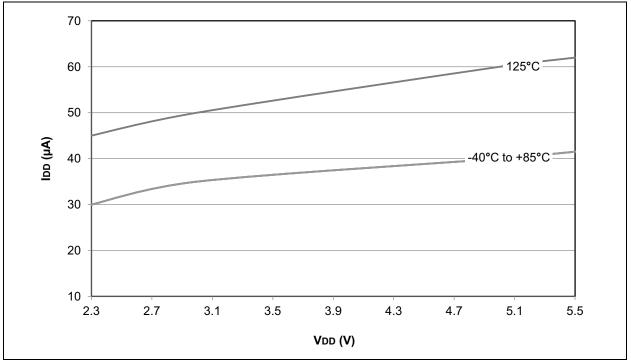



FIGURE 28-37: PIC18F2X/4XK22 MAXIMUM IDD: RC_IDLE LF-INTOSC 31 kHz

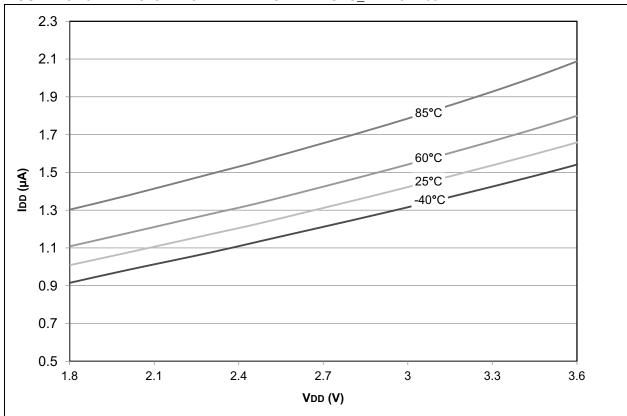
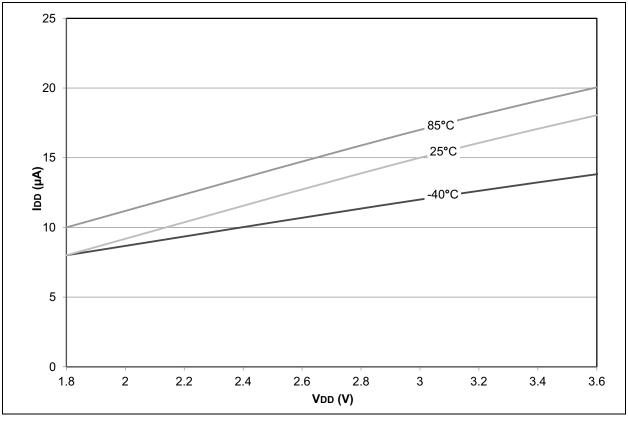
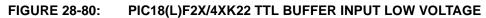
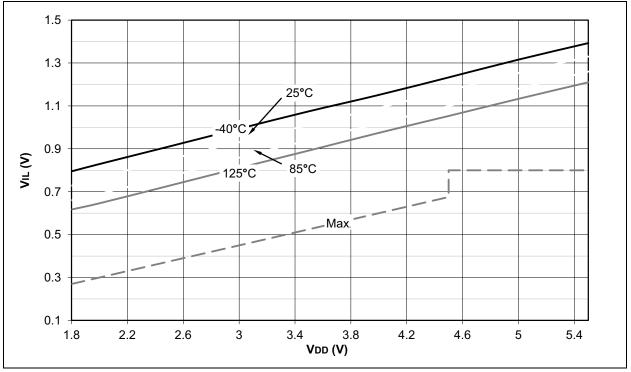
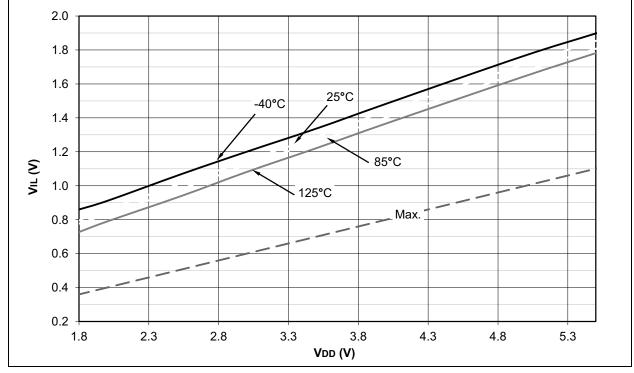





FIGURE 28-76: PIC18LF2X/4XK22 TYPICAL IDD: SEC_IDLE 32.768 kHz


FIGURE 28-77: PIC18LF2X/4XK22 MAXIMUM IDD: SEC_IDLE 32.768 kHz

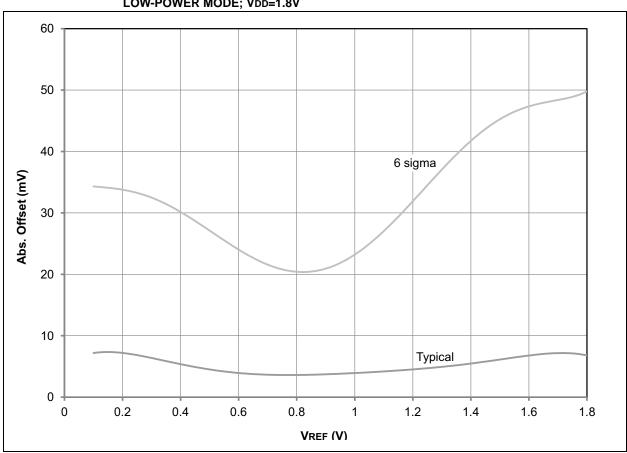
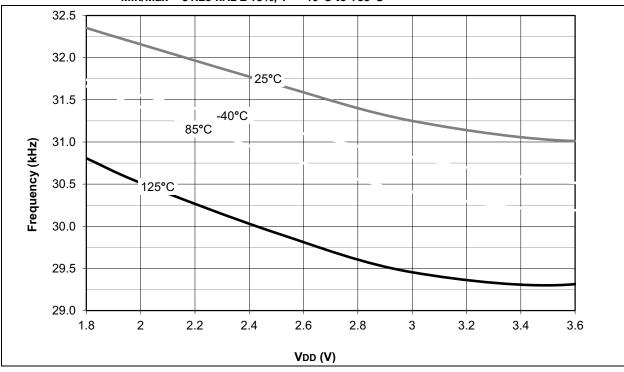
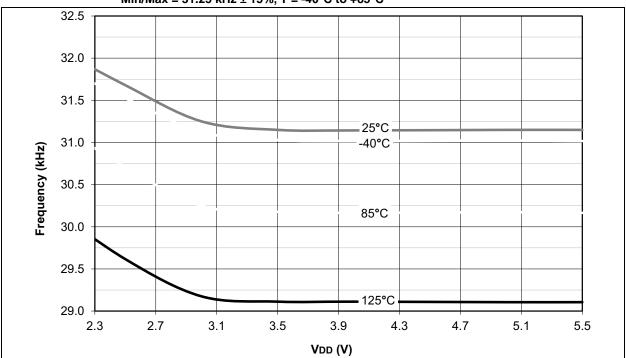
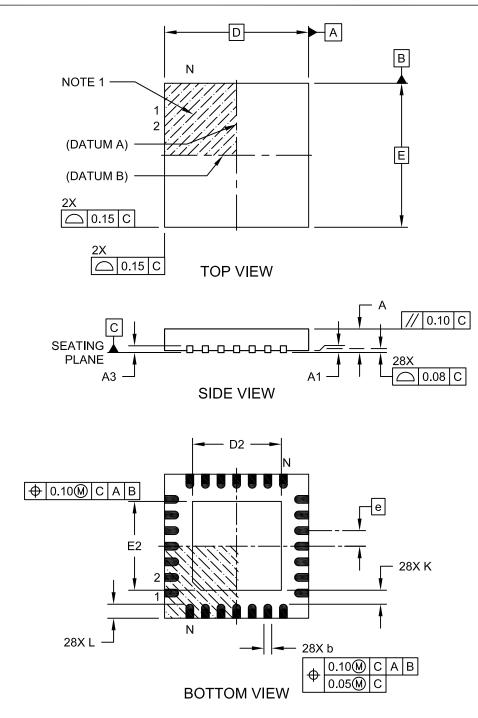


FIGURE 28-92: PIC18LF2X/4XK22 COMPARATOR OFFSET VOLTAGE, LOW-POWER MODE; VDD=1.8V


FIGURE 28-101: PIC18LF2X/4XK22 TYPICAL LF-INTOSC FREQUENCY vs. VDD Min/Max = 31.25 kHz ± 15%, T = -40°C to +85°C

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-105C Sheet 1 of 2