

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k22-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18(L)F2X/4XK22

2.3 Register Definitions: Oscillator Control

REGISTER 2-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0	F	R/W-0	R/W-1	R/W-1	R-q	R-0	R/W-0	R/W-	-0
IDLEN			IRCF<2:0>		OSTS ⁽¹⁾	HFIOFS	SCS<	:1:0>	
bit 7									bit 0
Legend:									
R = Reada	R = Readable bit W = Writable bit			U = Unimpl	emented bit, re	ad as '0'	q = depends on	conditio	on
-n = Value	at POR	'1' =	Bit is set	'0' = Bit is c	leared		x = Bit is unkno	wn	
bit 7	IDLE	EN: Idle E	nable bit						
	1 = 0 =	Device el Device el	nters Idle mode nters Sleep mo	e on SLEEP ins Ide on SLEEP i	struction Instruction				
bit 6-4	IRCI	F <2:0>: Iı	nternal RC Osc	illator Frequer	ncy Select bits ⁽	2)			
	111	= HFINT	- OSC – (16 M⊢	lz)	-				
	110	= HFINT	OSC/2 – (8 MI	Hz)					
	101		0SC/4 – (4 MI OSC/8 – (2 MI	⊐z) ⊣z)					
	011	= HFINT	OSC/16 – (1 N	12) 1Hz) ⁽³⁾					
	IF INT	TODC -							
	010	= HFINT	0 and MF103E OSC/32 – (500	:∟ = 0.) kHz)					
	001	= HFINT	OSC/64 - (250) kHz)					
	000	= LFINT	OSC – (31.25	kHz)					
	If IN	TSRC = 1	L and MFIOSE	L = 0:					
	010	= HFINT	OSC/32 - (500) kHz)					
	001	= HFINT	OSC/64 – (250) kHz) 1 25 kHz)					
	000		000/012 - (0	1.20 KHZ)					
	If IN	TSRC = 0	and MFIOSE	L = 1:					
	010	= MFINT	FOSC – (500 kl	Hz) vuz)					
	000	= LFINT	OSC – (31.25	kHz)					
			, , , , , , , , , , , , , , , , , , , ,	,					
	If IN	TSRC = 1	L and MFIOSE	L = 1:					
	010	= MFINT	TOSC – (500 ki TOSC/2 – (250	⊓∠) kHz)					
	000	= MFINT	TOSC/16 – (31	.25 kHz)					
bit 3	OST	'S: Oscilla	ator Start-up Ti	me-out Status	bit				
	1 =	Device is	running from t	he clock define	ed by FOSC<3	:0> of the CO	VFIG1H register	•	
1.11.0	0 =	Device is	running from t	he internal osc	cillator (HFINTC	DSC, MFINTO	SC or LFINTOS	C)	
bit 2	HFIC			ency Stable bit					
	1 = 0 =	HFINTOS	SC frequency is	s stable s not stable					
bit 1-0	SCS	<1:0>: S	ystem Clock Se	elect bit					
	1x =	Internal	oscillator block						
	01 =	Seconda	ary (SOSC) osc	cillator					
	00 =	Primary	CIOCK (determin	ned by FOSC<	3:0> in CONFI	IG1H).			
Note 1:	Reset sta	ate depen	ds on state of t	he IESO Conf	iguration bit.				

- 2: INTOSC source may be determined by the INTSRC bit in OSCTUNE and the MFIOSEL bit in OSCCON2.
- **3:** Default output frequency of HFINTOSC on Reset.

4.0 RESET

The PIC18(L)F2X/4XK22 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR and covers the operation of the various start-up timers. Stack Reset events are covered in Section 5.2.0.1 "Stack Full and Underflow Resets". WDT Resets are covered in Section 24.3 "Watchdog Timer (WDT)". A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 4-1.

4.1 RCON Register

Device Reset events are tracked through the RCON register (Register 4-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 4.7 "Reset State of Registers"**.

The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 9.0 "Interrupts". BOR is covered in Section 4.5 "Brown-out Reset (BOR)".

4.5 Brown-out Reset (BOR)

PIC18(L)F2X/4XK22 devices implement a BOR circuit that provides the user with a number of configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> bits of the CONFIG2L Configuration register. There are a total of four BOR configurations which are summarized in Table 4-1.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below VBOR for greater than TBOR will reset the device. A Reset may or may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR.

If the Power-up Timer is enabled, it will be invoked after VDD rises above VBOR; it then will keep the chip in Reset for an additional time delay, TPWRT. If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay.

BOR and the Power-on Timer (PWRT) are independently configured. Enabling BOR Reset does not automatically enable the PWRT.

The BOR circuit has an output that feeds into the POR circuit and rearms the POR within the operating range of the BOR. This early rearming of the POR ensures that the device will remain in Reset in the event that VDD falls below the operating range of the BOR circuitry.

4.5.1 DETECTING BOR

When BOR is enabled, the $\overline{\text{BOR}}$ bit always resets to '0' on any BOR or POR event. This makes it difficult to determine if a BOR event has occurred just by reading the state of $\overline{\text{BOR}}$ alone. A more reliable method is to simultaneously check the state of both POR and $\overline{\text{BOR}}$. This assumes that the POR and $\overline{\text{BOR}}$ bits are reset to '1' by software immediately after any POR event. If $\overline{\text{BOR}}$ is '0' while $\overline{\text{POR}}$ is '1', it can be reliably assumed that a BOR event has occurred.

4.5.2 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the SBOREN control bit of the RCON register. Setting SBOREN enables the BOR to function as previously described. Clearing SBOREN disables the BOR entirely. The SBOREN bit operates only in this mode; otherwise it is read as '0'.

Placing the BOR under software control gives the user the additional flexibility of tailoring the application to the environment without having to reprogram the device to change BOR configuration. It also allows the user to tailor device power consumption in software by eliminating the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

Note:	Even	when	BOR	is	under	software
	contro	l, the B0	OR Res	set v	oltage le	evel is still
	set by	the BO	RV<1:	0> (Configur	ation bits.
	lt canr	not be c	hanged	d by	softwar	e.

4.5.3 DISABLING BOR IN SLEEP MODE

When BOREN<1:0> = 10, the BOR remains under hardware control and operates as previously described. Whenever the device enters Sleep mode, however, the BOR is automatically disabled. When the device returns to any other operating mode, BOR is automatically re-enabled.

This mode allows for applications to recover from brown-out situations, while actively executing code, when the device requires BOR protection the most. At the same time, it saves additional power in Sleep mode by eliminating the small incremental BOR current.

4.5.4 MINIMUM BOR ENABLE TIME

Enabling the BOR also enables the Fixed Voltage Reference (FVR) when no other peripheral requiring the FVR is active. The BOR becomes active only after the FVR stabilizes. Therefore, to ensure BOR protection, the FVR settling time must be considered when enabling the BOR in software or when the BOR is automatically enabled after waking from Sleep. If the BOR is disabled, in software or by reentering Sleep before the FVR stabilizes, the BOR circuit will not sense a BOR condition. The FVRST bit of the VREFCON0 register can be used to determine FVR stability.

5.4.5 STATUS REGISTER

The STATUS register, shown in Register 5-2, contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for any instruction.

If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the STATUS register is updated according to the instruction performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged ('000u u1uu'). It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions that do not affect Status bits, see the instruction set summaries in **Section 25.2 "Extended Instruction Set"** and Table 25-3.

Note: The C and DC bits operate as the borrow and digit borrow bits, respectively, in subtraction.

5.5 Register Definitions: Status

REGISTER 5-2: STATUS: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	Ν	OV	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7	·			÷			bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7-5	Unimplemen	ted: Read as 'd)'				
bit 4	N: Negative b	it					
	I his bit is use (ALU MSB = 1	d for signed ari 1).	thmetic (two's	s complement).	It indicates wh	ether the result	was negative
	〕= Result wa	s negative					
	0 = Result wa	s positive					
bit 3	OV: Overflow	bit					
	This bit is used for signed arithmetic (two's complement). It indicates an overflow of the 7-bit magnitude which causes the sign bit (bit 7 of the result) to change state.					e 7-bit	
	1 = Overflow	occurred for sig	gned arithmet	tic (in this arithr	netic operation)	
	0 = No overflow occurred						
bit 2	Z: Zero bit						
	1 = The result	t of an arithmet	ic or logic op	eration is zero			
L:1 4	0 = 1 he result	t of an arithmet	ic or logic op	eration is not zo	ero	(1)	
DIT	1 = A carry-ou	ry/Borrow bit (A ut from the 4th	Iow-order bit	of the result oc	ve instructions)	(.)	
	0 = No carry-0	out from the 4th	n low-order bi	t of the result	ounou		
bit 0	C: Carry/Borr	ow bit (ADDWF,	ADDLW, SUE	BLW, SUBWF İ	nstructions) ⁽¹⁾		
	1 = A carry-out from the Most Significant bit of the result occurred						
	0 = No carry-o	out from the Mo	ost Significan	t bit of the resu	It occurred		
Note 1: Fo	r Borrow, the po	larity is reverse	ed. A subtract	ion is executed	by adding the	two's complem	ent of the
sec	cond operand. F	or rotate (RRF,	RLF) instructi	ons, this bit is l	paded with eith	er the high-orde	er or low-order

bit of the source register.

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES<3:0>).

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L • ARG2H:ARG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		(ARG1L • ARG2L)

EXAMPLE 8-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L->
			; PRODH:PRODL
	MOVFF	PRODH, RES	;
	MOVFF	PRODL, RES	;
;			
	MOVF	ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H->
			; PRODH:PRODL
	MOVFF	PRODH, RES	;
	MOVFF	PRODL, RES	;
;			
	MOVF	ARG1L, W	
	MULWF	ARG2H	; ARG1L * ARG2H->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;			
	MOVF	ARG1H, W	;
	MULWF	ARG2L	; ARG1H * ARG2L->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;

Example 8-4 shows the sequence to do a 16 x 16 signed multiply. Equation 8-2 shows the algorithm used. The 32-bit result is stored in four registers (RES<3:0>). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 8-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0 = ARG1H:A	RG1L • ARG2H:ARG2L
= (ARG1H •	ARG2H • 2^{16}) +
(ARG1H •	$ARG2L \bullet 2^8) +$
(ARG1L •	$ARG2H \bullet 2^8) +$
(ARG1L •	ARG2L) +
(-1 • ARG	$2H < 7 > \bullet ARG1H: ARG1L \bullet 2^{16}) +$
(-1 • ARG	$1H < 7 > \bullet ARG2H:ARG2L \bullet 2^{16}$

EXAMPLE 8-4:

16 x 16 SIGNED MULTIPLY ROUTINE

MOVF	ARG1L, W	
MULWF	ARG2L	; ARG1L * ARG2L ->
		; PRODH:PRODL
MOVFF	PRODH, RES1	;
MOVFF	PRODL, RESO	;
;		
MOVF	ARG1H, W	
MULWF	ARG2H	; ARG1H * ARG2H ->
		; PRODH:PRODL
MOVFF	PRODH, RES3	;
MOVFF	PRODL, RES2	;
;		
MOVE	ARGIL, W	
MULWF	ARG2H	; ARGIL * ARG2H ->
MOVIE		, PRODH PRODL
MOVE	PRODL, W	·
ADDWF	RESI, F	, Add Cross
ADDWEC	PRODE, W	, products
CLPE	MDFC	;
ADDWFC	RESS F	;
;	RESS, I	,
MOVE	ARG1H W	;
MULWE	ARG2L	, ; ARG1H * ARG2L ->
1102111	Intobe	; PRODH:PRODL
MOVF	PRODL, W	i
ADDWF	RES1, F	; Add cross
MOVF	PRODH, W	; products
ADDWFC	RES2, F	;
CLRF	WREG	;
ADDWFC	RES3, F	;
;		
BTFSS	ARG2H, 7	; ARG2H:ARG2L neg?
BRA	SIGN_ARG1	; no, check ARG1
MOVF	ARG1L, W	;
SUBWF	RES2	;
MOVF	ARG1H, W	;
SUBWFB	RES3	
;		
SIGN_ARG1		
BTFSS	ARGIH, 7	; ARGIH:ARGIL neg?
BRA	CONT_CODE	, no, aone
MOVE	AKGZL, W	:
DURME	REGZ NDCJU W	:
SIIBMED	ARGZA, W RF93	1
;	1000	
, CONT CODF		
:		

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	_	—	—	—	CCP5IP	CCP4IP	CCP3IP
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-3	Unimplement	ted: Read as '	כי				
bit 2	CCP5IP: CCF	25 Interrupt Prie	ority bit				
	1 = High prior	rity					
	0 = Low prior	ity					
bit 1	CCP4IP: CCF	P4 Interrupt Prie	ority bit				
	1 = High prior	rity					
	0 = Low prior	ity					
bit 0	it 0 CCP3IP: CCP3 Interrupt Priority bit						
	1 = High prior	rity					
	0 = Low prior	ity					

REGISTER 9-17: IPR4: PERIPHERAL INTERRUPT PRIORITY REGISTER 4

REGISTER 9-18: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	TMR6IP	TMR5IP	TMR4IP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3	Unimplemented: Read as '0'
bit 2	TMR6IP: TMR6 to PR6 Match Interrupt Priority bit
	1 = High priority0 = Low priority
bit 1	TMR5IP: TMR5 Overflow Interrupt Priority bit
	1 = High priority0 = Low priority
bit 0	TMR4IP: TMR4 to PR4 Match Interrupt Priority bit
	1 = High priority
	0 = Low priority

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2		—	150
ECCP1AS	CCP1ASE		CCP1AS<2:0>		PSS1A0	C<1:0>	PSS1B	D<1:0>	202
CCP1CON	P1M<	1:0>	DC1B<	1:0>		CCP1M<3:0)>		198
ECCP2AS	CCP2ASE		CCP2AS<2:0>		PSS2A0	C<1:0>	PSS2B	SD<1:0>	202
CCP2CON	P2M<	1:0>	DC2B<	1:0>		CCP2M<3:0)>		198
CTMUCONH	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	323
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	152
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	148
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SLRCON	-	—	—	SLRE ⁽¹⁾	SLRD ⁽¹⁾	SLRC	SLRB	SLRA	153
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM<3:0	>		253
T1CON	TMR1CS	S<1:0>	T1CKPS	<1:0>	T1SOSCEN T1SYNC T1RD1		T1RD16	TMR10N	166
T3CON	TMR3CS	S<1:0>	T3CKPS-	<1:0>	T3SOSCEN T3SYNC		T3RD16	TMR3ON	166
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE T3GVAL T3GSS<1		S<1:0>	167	
T5CON	TMR5CS	S<1:0>	T5CKPS-	<1:0>	T5SOSCEN	T5SYNC	T5RD16	TMR5ON	166
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269

TABLE 10-9: REGISTERS ASSOCIATED WITH PORTC

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTC.

Note 1: Available on PIC18(L)F4XK22 devices.

TABLE 10-10: CONFIGURATION REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	_	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTC.

TABLE 10-15: REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
ANSELE ⁽¹⁾	—		—			ANSE2	ANSE1	ANSE0	151
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2		TMR0IP	-	RBIP	110
LATE ⁽¹⁾	_	_	—	_	_	LATE2	LATE1	LATE0	152
PORTE	_	_	_	_	RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	149
SLRCON	—	—	—	SLRE ⁽¹⁾	SLRD ⁽¹⁾	SLRC	SLRB	SLRA	153
TRISE	WPUE3	_	_	_	_	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	151

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTE.

Note 1: Available on PIC18(L)F4XK22 devices.

TABLE 10-16: CONFIGURATION REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CONFIG3H	MCLRE	_	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348
CONFIG4L	DEBUG	XINST	_	_	_	LVP ⁽¹⁾	_	STRVEN	349

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for Interrupts.

Note 1: Can only be changed when in high voltage programming mode.

15.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 15-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. SCLx is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 15-27: REPEAT START CONDITION WAVEFORM

15.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN, of the SSPxCON2 register. When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSPx module then goes into Idle mode (Figure 15-30).

15.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

15.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN, of the SSPxCON2 register. At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 15-31).

15.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 15-30: ACKNOWLEDGE SEQUENCE WAVEFORM

16.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- Address detection in 9-bit mode
- Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- Half-duplex synchronous slave
- · Programmable clock and data polarity

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 16-1 and Figure 16-2.

FIGURE 16-1: EUSART TRANSMIT BLOCK DIAGRAM

- 16.5.1.5 Synchronous Master Transmission Setup:
- 1. Initialize the SPBRGHx, SPBRGx register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 16.4 "EUSART Baud Rate Generator (BRG)").
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC. Set the TRIS bits corresponding to the RXx/DTx and TXx/CKx I/O pins.

- 4. Disable Receive mode by clearing bits SREN and CREN.
- 5. Enable Transmit mode by setting the TXEN bit.
- 6. If 9-bit transmission is desired, set the TX9 bit.
- 7. If interrupts are desired, set the TXxIE, GIE/ GIEH and PEIE/GIEL interrupt enable bits.
- 8. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 9. Start transmission by loading data to the TXREGx register.

FIGURE 16-10: SYNCHRONOUS TRANSMISSION

FIGURE 16-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

24.3 Watchdog Timer (WDT)

For PIC18(L)F2X/4XK22 devices, the WDT is driven by the LFINTOSC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the LFINTOSC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits of the OSCCON register are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits of the OSCCON register clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

FIGURE 24-1: WDT BLOCK DIAGRAM

TABLE 27-5: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Г

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Symbol	Characteristic	HLVDL<3:0>	Min	Тур†	Max	Units	Conditions		
		HLVD Voltage on VDD	0000	1.69	1.84	1.99	V			
		Transition High-to-Low	0001	1.92	2.07	2.22	V			
			0010	2.08	2.28	2.48	V			
			0011	2.24	2.44	2.64	V			
			0100	2.34	2.54	2.74	V			
			0101	2.54	2.74	2.94	V			
			0110	2.62	2.87	3.12	V			
			0111	2.76	3.01	3.26	V			
			1000	3.00	3.30	3.60	V			
			1001	3.18	3.48	3.78	V			
			1010	3.44	3.69	3.94	V			
			1011	3.66	3.91	4.16	V			
			1100	3.90	4.15	4.40	V			
			1101	4.11	4.41	4.71	V			
			1110	4.39	4.74	5.09	V			
			1111	V(H	ILVDIN p	oin)	v			

† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

FIGURE 27-10: BROWN-OUT RESET TIMING

TABLE 27-22: A/D CONVERSION REQUIREMENTS PIC18(L)F2X/4XK22

Standard Operating Conditions (unless otherwise stated) Operating temperature Tested at +25°C									
Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions		
130	Tad	A/D Clock Period	1	_	25	μS	-40°C to +85°C		
			1	_	4	μS	+85°C to +125°C		
131	TCNV	Conversion Time (not including acquisition time) (Note 1)	11	—	11	TAD			
132	TACQ	Acquisition Time (Note 2)	1.4	_	—	μS	VDD = 3V, Rs = 50Ω		
135	Tswc	Switching Time from Convert \rightarrow Sample	_		(Note 3)				
136	TDIS	Discharge Time	1	_	1	TCY			

Note 1: ADRES register may be read on the following TCY cycle.

2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to VSS or VSS to VDD). The source impedance (*Rs*) on the input channels is 50 Ω .

3: On the following cycle of the device clock.

PIC18(L)F2X/4XK22

PIC18(L)F2X/4XK22 DELTA IDD A/D CONVERTOR¹ FIGURE 28-19:

PIC18(L)F2X/4XK22

FIGURE 28-97: PIC18(L)F2X/4XK22 TYPICAL FIXED VOLTAGE REFERENCE 2x OUTPUT

FIGURE 28-96: PIC18(L)F2X/4XK22 TYPICAL FIXED VOLTAGE REFERENCE 2x OUTPUT

Package Marking Information (Continued)

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the ever be carriec characters	nt the full Microchip part number cannot be marked on one line, it will I over to the next line, thus limiting the number of available for customer-specific information.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width (X28)	Х			0.60	
Contact Pad Length (X28)	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A