

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k22-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Nu	mber						
PDIP, SOIC	QFN, UQFN	Pin Name	Pin Type	Buffer Type	Description		
2	27	RA0/C12IN0-/AN0			·		
		RA0	I/O	TTL	Digital I/O.		
		C12IN0-	I	Analog	Comparators C1 and C2 inverting input.		
		ANO	I	Analog	Analog input 0.		
3	28	RA1/C12IN1-/AN1					
		RA1	I/O	TTL	Digital I/O.		
		C12IN1-	I	Analog	Comparators C1 and C2 inverting input.		
		AN1	I	Analog	Analog input 1.		
4	1	RA2/C2IN+/AN2/DACOUT/VREF-		-	-		
		RA2	I/O	TTL	Digital I/O.		
		C2IN+	I	Analog	Comparator C2 non-inverting input.		
		AN2	Ι	Analog	Analog input 2.		
		DACOUT	0	Analog	DAC Reference output.		
		Vref-	I	Analog	A/D reference voltage (low) input.		
5	2	RA3/C1IN+/AN3/VREF+					
		RA3	I/O	TTL	Digital I/O.		
		C1IN+	I	Analog	Comparator C1 non-inverting input.		
		AN3	I	Analog	Analog input 3.		
		VREF+	I	Analog	A/D reference voltage (high) input.		
6	3	RA4/CCP5/C1OUT/SRQ/T0CKI	1	n	r		
		RA4	I/O	ST	Digital I/O.		
		CCP5	I/O	ST	Capture 5 input/Compare 5 output/PWM 5 output.		
		C1OUT	0	CMOS	Comparator C1 output.		
		SRQ	0	TTL	SR latch Q output.		
		ТОСКІ	I	ST	Timer0 external clock input.		
7	4	RA5/C2OUT/SRNQ/SS1/HLVDIN/AN	4				
		RA5	I/O	TTL	Digital I/O.		
		C2OUT	0	CMOS	Comparator C2 output.		
		SRNQ	0	TTL	SR latch \overline{Q} output.		
		SS1	I	TTL	SPI slave select input (MSSP).		
		HLVDIN	I	Analog	High/Low-Voltage Detect input.		
		AN4	I	Analog	Analog input 4.		
10	7	RA6/CLKO/OSC2	1	I	1		
		RA6	I/O	TTL	Digital I/O.		
		CLKO	0		In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.		
		OSC2	0		Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.		

TABLE 1-2.	PIC18/I)E2XK22 PINOLIT I/O DESCRIPTIONS
IADLE I-Z.	FIG10(L)FZAKZZ FINOUT I/O DESCRIFTIONS

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

TABLE 2-4: REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	109
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
OSCCON	IDLEN		IRCF<2:0>		OSTS	HFIOFS	SCS<1:0>		30
OSCCON2	PLLRDY	SOSCRUN	—	MFIOSEL	SOSCGO	PRISD	MFIOFS	LFIOFS	31
OSCTUNE	INTSRC	PLLEN	TUN<5:0>						35
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by clock sources.

TABLE 2-5: CONFIGURATION REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CONFIG1H	IESO	FCMEN	PRICLKEN	PLLCFG		FOSC<3:0>				
CONFIG2L	—	—	—	BORV<1:0>		BOREN<1:0>		PWRTEN	346	
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348	

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for clock sources.

3.4.1 PRI_IDLE MODE

This mode is unique among the three low-power Idle modes, in that it does not disable the primary device clock. For timing sensitive applications, this allows for the fastest resumption of device operation with its more accurate primary clock source, since the clock source does not have to "warm-up" or transition from another oscillator.

PRI_IDLE mode is entered from PRI_RUN mode by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then clear the SCS bits and execute SLEEP. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified by the FOSC<3:0> Configuration bits. The OSTS bit remains set (see Figure 3-6).

When a wake event occurs, the CPU is clocked from the primary clock source. A delay of interval TCSD is required between the wake event and when code execution starts. This is required to allow the CPU to become ready to execute instructions. After the wake-up, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 3-7).

3.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the SOSC oscillator. This mode is entered from SEC_RUN by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set the IDLEN bit first, then set the SCS<1:0> bits to '01' and execute SLEEP. When the clock source is switched to the SOSC oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the SOSCRUN bit is set.

When a wake event occurs, the peripherals continue to be clocked from the SOSC oscillator. After an interval of TCSD following the wake event, the CPU begins executing code being clocked by the SOSC oscillator. The IDLEN and SCS bits are not affected by the wake-up; the SOSC oscillator continues to run (see Figure 3-7).

Note: The SOSC oscillator should already be running prior to entering SEC_IDLE mode. At least one of the secondary oscillator enable bits (SOSCGO, T1SOSCEN, T3SOSCEN or T5SOSCEN) must be set when the SLEEP instruction is executed. Otherwise, the main system clock will continue to operate in the previously selected mode and the corresponding IDLE mode will be entered (i.e., PRI_IDLE or RC_IDLE).

7.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit of the EECON1 register and then set control bit, RD. The data is available on the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 7-1.

7.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 7-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared by hardware and the EEPROM Interrupt Flag bit, EEIF, is set. The user may either enable this interrupt or poll this bit. EEIF must be cleared by software.

7.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

EXAMPLE 7-1: DATA EEPROM READ

MOVLW	DATA_EE_ADDR	;	
MOVWF	EEADR	;	Data Memory Address to read
BCF	EECON1, EEPGD	;	Point to DATA memory
BCF	EECON1, CFGS	;	Access EEPROM
BSF	EECON1, RD	;	EEPROM Read
MOVF	EEDATA, W	;	W = EEDATA

EXAMPLE 7-2:	DATA EEPROM WRITE

	MOVLW MOVWF	DATA_EE_ADDR_LOW EEADR	Data M	emory Address to write
	MOVLW	DATA_EE_ADDR_HI		
	MOVWF	EEADRH		
	MOVLW	DATA_EE_DATA		
	MOVWF	EEDATA	Data M	emory Value to write
	BCF	EECON1, EEPGD	Point	to DATA memory
	BCF	EECON1, CFGS	Access	EEPROM
	BSF	EECON1, WREN	Enable	writes
	BCF	INTCON, GIE	Disabl	e Interrupts
	MOVLW	55h		
Required	MOVWF	EECON2	Write	55h
Sequence	MOVLW	0AAh		
	MOVWF	EECON2	Write	0AAh
	BSF	EECON1, WR	Set WR	bit to begin write
	BSF	INTCON, GIE	Enable	Interrupts
			User c	ode execution
	BCF	EECON1, WREN	Disabl	e writes on write complete (EEIF set)

10.7 Port Analog Control

Most port pins are multiplexed with analog functions such as the Analog-to-Digital Converter and comparators. When these I/O pins are to be used as analog inputs it is necessary to disable the digital input buffer to avoid excessive current caused by improper biasing of the digital input. Individual control of the digital input buffers on pins which share analog functions is provided by the ANSELA, ANSELB, ANSELC, ANSELD and ANSELE registers. Setting an ANSx bit high will disable the associated digital input buffer and cause all reads of that pin to return '0' while allowing analog functions of that pin to operate correctly.

The state of the ANSx bits has no affect on digital output functions. A pin with the associated TRISx bit clear and ANSx bit set will still operate as a digital output but the input mode will be analog. This can cause unexpected behavior when performing readmodify-write operations on the affected port.

All ANSEL register bits default to '1' upon POR and BOR, disabling digital inputs for their associated port pins. All TRIS register bits default to '1' upon POR or BOR, disabling digital outputs for their associated port pins. As a result, all port pins that have an ANSEL register will default to analog inputs upon POR or BOR.

10.8 Port Slew Rate Control

The output slew rate of each port is programmable to select either the standard transition rate or a reduced transition rate of approximately 0.1 times the standard to minimize EMI. The reduced transition time is the default slew rate for all ports.

10.9	Register	Definitions –	Port Control
------	----------	----------------------	--------------

REGISTER 10-1: PORTX⁽¹⁾: PORTX REGISTER

R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x
Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0
bit 7							bit 0
l egend:							

Logonal		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
-n/n = Value at POR an	d BOR/Value at all other Resets	

bit 7-0 Rx<7:0>: PORTx I/O bit values⁽²⁾

Note 1: Register Description for PORTA, PORTB, PORTC and PORTD.

2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.

FIGURE 15-4: SPI MASTER AND MULTIPLE SLAVE CONNECTION

15.2.1 SPI MODE REGISTERS

The MSSPx module has five registers for SPI mode operation. These are:

- MSSPx STATUS register (SSPxSTAT)
- MSSPx Control register 1 (SSPxCON1)
- MSSPx Control register 3 (SSPxCON3)
- MSSPx Data Buffer register (SSPxBUF)
- MSSPx Address register (SSPxADD)
- MSSPx Shift register (SSPxSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and STATUS registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower 6 bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In one SPI Master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 15.7 "Baud Rate Generator"**.

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

15.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCKx is the clock output)
- Slave mode (SCKx is the clock input)
- Clock Polarity (Idle state of SCKx)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCKx)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

To enable the serial port, SSPx Enable bit, SSPxEN of the SSPxCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPxEN bit, re-initialize the SSPxCONx registers and then set the SSP<u>xEN</u> bit. This configures the SDIx, SDOx, SCKx and SSx pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- SDIx must have corresponding TRIS bit set
- SDOx must have corresponding TRIS bit cleared
- SCKx (Master mode) must have corresponding TRIS bit cleared
- SCKx (Slave mode) must have corresponding TRIS bit set
- SSx must have corresponding TRIS bit set

15.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSPx clock is much faster than the system clock.

In Slave mode, when MSSPx interrupts are enabled, after the master completes sending data, an MSSPx interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSPx interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/ reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSPx interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—	ANSA5	_	ANSA3	ANSA2	ANSA1	ANSA0	149
ANSELB	_	_	ANSB5	ANSB4	ANSB3 ⁽¹⁾	ANSB2 ⁽¹⁾	ANSB1 ⁽¹⁾	ANSB0 ⁽¹⁾	150
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	150
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4 ⁽²⁾	ANSD3 ⁽²⁾	ANSD2	ANSD1 ⁽²⁾	ANSD0 ⁽²⁾	150
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	109
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD1	MSSP2MD	MSSP1MD	_	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	53
SSP1BUF			SSP1 F	Receive Buff	er/Transmit F	Register			—
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPN	l<3:0>		253
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	256
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	252
SSP2BUF			SSP2 F	Receive Buff	er/Transmit F	Register			—
SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPN	<3:0>	-	253
SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	256
SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	252
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3 ⁽¹⁾	TRISB2 ⁽¹⁾	TRISB1 ⁽¹⁾	TRISB0 ⁽¹⁾	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD	TRISD7	TRISD6	TRISD5	TRISD4(2)	TRISD3(2)	TRISD2	TRISD1(2)	TRISD0(2)	151

TABLE 15-1:	REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: Shaded bits are not used by the MSSPx in SPI mode.

Note 1: PIC18(L)F2XK22 devices.

2: PIC18(L)F4XK22 devices.

15.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDAx from a high-to -low state while SCLx line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an active state. Figure 15-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDAx line low before asserting it low. This does not conform to the I^2C specification that states no bus collision can occur on a Start.

15.4.6 STOP CONDITION

A Stop condition is a transition of the SDAx line from a low-to-high state while the SCLx line is high.

Note: At least one SCLx low time must appear before a Stop is valid, therefore, if the SDAx line goes low then high again while the SCLx line stays high, only the Start condition is detected.

15.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 15-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/W bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a high address with R/\overline{W} clear, or high address match fails.

15.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

FIGURE 15-12: I²C START AND STOP CONDITIONS

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	—		ACQT<2:0>			ADCS<2:0>	
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	ADFM: A/D C 1 = Right justi 0 = Left justifi	Conversion Res ified ied	ult Format Se	lect bit			
bit 6	Unimplemen	ted: Read as '	כי				
bit 5-3 ACQ1<2:0>: A/D Acquisition time select bits. Acquisition time is the duration that the A/D ch holding capacitor remains connected to A/D channel from the instant the GO/DONE bit is se conversions begins. $000 = 0^{(1)}$ 001 = 2 TAD 010 = 4 TAD 011 = 6 TAD 100 = 8 TAD 101 = 12 TAD 110 = 16 TAD 111 = 20 TAD						/D charge is set until	
Dit 2-0	ADCS<2:0>: 000 = FOSC/2 001 = FOSC/8 010 = FOSC/3 011 = FRC(1) 100 = FOSC/4 101 = FOSC/1 110 = FOSC/6 111 = FRC(1)	A/D Conversio 2 3 32 (clock derived f 4 16 54 (clock derived f	from a dedica	ted internal osc	illator = 600 k illator = 600 k	Hz nominal) Hz nominal)	
Note 1:	When the A/D cloc cycle after the GO	c <u>k sourc</u> e is sel /DONE bit is se	ected as FRC et to allow the	then the start o	of conversion is ion to be exec	s delayed by on uted.	e instruction

REGISTER 17-3: ADCON2: A/D CONTROL REGISTER 2

18.9 Register Definitions: Comparator Control

REGISTER 18-1: CMxCON0: COMPARATOR x CONTROL REGISTER

R/W-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0
CxON	CxOUT	CxOE	CxPOL	CxSP	CxR	CxCH	<1:0>
bit 7							bit 0
							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	CxON: Comp 1 = Compara 0 = Compara	arator Cx Enal tor Cx is enable tor Cx is disabl	ole bit ed ed				
bit 6	CxOUT: Comparator Cx Output bit $\frac{If CxPOL = 1 (inverted polarity):}{CxOUT = 0 when CxVIN+ > CxVIN-CxOUT = 1 when CxVIN+ < CxVIN- \frac{If CxPOL = 0 (non-inverted polarity):}{CxOUT = 1 when CxVIN+ > CxVIN- CxOUT = 0 when CxVIN+ > CxVIN- CxOUT = 0 when CxVIN+ < CxVIN-$						
bit 5	CxOE: Comp 1 = CxOUT is 0 = CxOUT is	arator Cx Outp present on the internal only	out Enable bit e CxOUT pin ⁽¹)			
bit 4	CxPOL: Comparator Cx Output Polarity Select bit 1 = CxOUT logic is inverted 0 = CxOUT logic is not inverted						
bit 3	CxSP: Comp 1 = Cx operat 0 = Cx operat	arator Cx Spee tes in Normal-F tes in Low-Pow	d/Power Sele Power, Higher ver, Low-Spee	ct bit Speed mode d mode			
bit 2	CxR: Compare 1 = CxVIN+ co 0 = CxVIN+ co	rator Cx Refere onnects to CXV onnects to C12	ence Select bit REF output IN+ pin	t (non-inverting	input)		
bit 1-0	CxCH<1:0>: 00 = C12IN0- 01 = C12IN1- 10 = C12IN2- 11 = C12IN3-	Comparator C: pin of Cx conr pin of Cx conr pin of Cx conr pin of Cx conr pin of Cx conr	Channel Sel nects to CxVIN nects to CxVIN nects to CxVIN nects to CxVIN	ect bit - - -			

Note 1: Comparator output requires the following three conditions: CxOE = 1, CxON = 1 and corresponding port TRIS bit = 0.

FIGURE 22-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

24.3 Watchdog Timer (WDT)

For PIC18(L)F2X/4XK22 devices, the WDT is driven by the LFINTOSC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the LFINTOSC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits of the OSCCON register are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits of the OSCCON register clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

FIGURE 24-1: WDT BLOCK DIAGRAM

Syntax:SLEEPOperands:NoneOperation: $00h \rightarrow WDT$, $0 \rightarrow WDT postscaler,1 \rightarrow TO,0 \rightarrow PDStatus Affected:TO, PDEncoding:0000 \ 0000 \ 0000 \ 0011Description:The Power-down Status bit (PD) iscleared. The Time-out Status bit (TO)is set. Watchdog Timer and its posts-caler are cleared.The processor is put into Sleep modewith the oscillator stopped.Words:1Cycles:1Q Cycle Activity:Q1Q2Q3Q4DecodeNoProcessGo toSleepExample:SLEEPBefore InstructionTO = ?PD = ?After InstructionTO = 1 \uparrowPD = 0† If WDT causes wake-up, this bit is cleared.$	SLEEP	Enter Sle	ep mode)	
Operands:NoneOperation: $00h \rightarrow WDT$, $0 \rightarrow WDT postscaler,1 \rightarrow \overline{10},0 \rightarrow PDStatus Affected:\overline{T0}, \overline{PD}Encoding:0000 \ 0000 \ 0000 \ 0011Description:The Power-down Status bit (\overline{PD}) iscleared. The Time-out Status bit (\overline{TO})is set. Watchdog Timer and its postscaler are cleared.The processor is put into Sleep modewith the oscillator stopped.Words:1Cycles:1Q Cycle Activity:Q1Q2Q3Q4DecodeNoPD = ?After Instruction\overline{TO} = 1PD = 0t If WDT causes wake-up, this bit is cleared.$	Syntax:	SLEEP			
Operation: $00h \rightarrow WDT$, $0 \rightarrow WDT postscaler,1 \rightarrow TO, D Status Affected: TO, PD Encoding: 0000 \ 0000 \ 0000 \ 0011 Description: The Power-down Status bit (PD) iscleared. The Time-out Status bit (TO)is set. Watchdog Timer and its posts-caler are cleared.The processor is put into Sleep modewith the oscillator stopped. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode No Process Operation Data Sleep Example: SLEEP Before InstructionTO = 2PD = 2$ After Instruction TO = 1 PD = 0 † If WDT causes wake-up, this bit is cleared.	Operands:	None			
Status Affected: \overline{TO} , \overline{PD} Encoding: 0000 0000 0000 0011 Description: The Power-down Status bit (\overline{PD}) is cleared. The Time-out Status bit (\overline{TO}) is set. Watchdog Timer and its postscaler are cleared. The processor is put into Sleep mode with the oscillator stopped. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode No Process Go to Sleep Example: SLEEP SLEEP Before Instruction $\overline{TO} = ?$ $\overline{PD} = ?$ After Instruction $\overline{TO} = 1 \uparrow$ $\overline{PD} = 0$ † If WDT causes wake-up, this bit is cleared. the scleared.	Operation:	$\begin{array}{l} 00h \rightarrow WE \\ 0 \rightarrow \underline{WDT} \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$)T, postscaler,	3	
Encoding:000000000011Description:The Power-down Status bit (\overline{PD}) is cleared. The Time-out Status bit (\overline{TO}) is set. Watchdog Timer and its posts- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.Words:1Cycles:1Q Cycle Activity:Q1Q2Q3Q4DecodeNoProcessGo to SleepExample:SLEEPBefore Instruction $\overline{TO} = ?$ $PD = ?After Instruction\overline{TO} = 1 \uparrowPD = 0† If WDT causes wake-up, this bit is cleared.$	Status Affected:	TO, PD			
Description:The Power-down Status bit (\overline{PD}) is cleared. The Time-out Status bit (\overline{TO}) is set. Watchdog Timer and its posts- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.Words:1Cycles:1Q Cycle Activity:Q1Q2Q3Q4DecodeNoProcessGo to SleepExample:SLEEPBefore Instruction 	Encoding:	0000	0000	0000	0011
Words:1Cycles:1Q Cycle Activity: $Q1$ Q2Q3Q4DecodeNoProcessGo tooperationDataSLEEPBefore Instruction $TO = ?$ $PD = ?$ After Instruction $TO = 1 +$ $PD = 0$ † If WDT causes wake-up, this bit is cleared.	Description:	The Power cleared. The is set. Wate caler are common The procest with the ost	r-down Sta ne Time-ou chdog Tim leared. ssor is put scillator sto	tus bit (ut Status er and i into Sle pped.	PD) i <u>s</u> s bit (TO) ts posts- ep mode
Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode No Process Go to operation Data Sleep Example: SLEEP Before Instruction $\overline{TO} = ?$ PD = ? After Instruction $\overline{TO} = 1 \uparrow$ PD = 0 † If WDT causes wake-up, this bit is cleared.	Words:	1			
Q Cycle Activity: Q1 Q2 Q3 Q4 Decode No Process Go to operation Data Sleep Example: SLEEP Before Instruction $\overline{TO} = ?$ $\overline{PD} = ?$ After Instruction $\overline{TO} = 1$ $\overline{PD} = 0$ † If WDT causes wake-up, this bit is cleared.	Cycles:	1			
Q1Q2Q3Q4DecodeNoProcessGo tooperationDataSleepExample:SLEEPBefore Instruction $\overline{TO} = ?$ $\overline{PD} = ?$ After Instruction $\overline{TO} = 1 \uparrow$ $\overline{PD} = 0$ † If WDT causes wake-up, this bit is cleared.	Q Cycle Activity:				
DecodeNo operationProcess DataGo to SleepExample:SLEEPBefore Instruction $\overline{TO} = ?$ $\overline{PD} = ?$ After Instruction $\overline{TO} = 1 \uparrow$ $\overline{PD} = 0$ † If WDT causes wake-up, this bit is cleared.	Q1	Q2	Q3		Q4
Example:SLEEPBefore Instruction $TO = ?$ $PD = ?$ After Instruction $TO = 1 \uparrow$ $PD = 0$ † If WDT causes wake-up, this bit is cleared.	Decode	No operation	Process Data	5	Go to Sleep

SUBFWB		Subtrac	t f from W	wi	th borrow	
Syntax:		SUBFW	3 f {,d {,a}}			
Operands:		$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	5			
Operation:		(W) – (f) ·	$-(\overline{C}) \rightarrow dest$			
Status Affected:		N, OV, C	DC, Z			
Encoding:		0101	01da f	ff	f ffff	
Description:		Subtract register 'f' and CARRY flag (borrow) from W (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset				
Words:		1				
Cycles:		1				
Q Cycle Activity:						
Q1		Q2	Q3		Q4	
Decode	re	Read egister 'f'	Process Data		Write to destination	
Example 1:		SUBFWB	REG, 1,	0		
Before Instruct REG W C After Instructio REG W C Z N	ion = = = = = = = = = = = = = = = = = = =	3 2 1 FF 2 0 0 1 ; r	esult is nega	tive	9	
Example 2:		SUBFWB	REG, 0,	0		
Betore Instruct REG W C After Instructio REG W C Z	ion = = n = = =	2 5 1 2 3 1 0				
N	=	0 ; r	esult is positi	ve		
Example 3:	ion	SUBFWB	REG, 1,	0		
REG W	.ion = =	1 2				
C After Instructio	= n	U				
REG	=	0				
<u> </u>	=	2				
Z N	=	1 ; r 0	esult is zero			

25.2.2 EXTENDED INSTRUCTION SET

ADD	DFSR	Add Lite	Add Literal to FSR				
Synta	ax:	ADDFSR	ADDFSR f, k				
Operands:		$0 \le k \le 63$					
		f ∈ [0, 1, 1	2]				
Operation:		FSR(f) + k	$s \rightarrow FSR($	f)			
Statu	is Affected:	None	None				
Encoding:		1110	1000	ffkl	k	kkkk	
Description:		The 6-bit I	The 6-bit literal 'k' is added to the				
	1-	contents c		v sher	Sille	J Dy I.	
vvorc	IS:	.I					
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3			Q4	
	Decode	Read	Proce	SS	۷	Vrite to	
		literal 'k'	Data	a		FSR	

Example:	ADDFSR	2,	23h

Before Instru	ction	
FSR2	=	03FFh
After Instruct	ion	
FSR2	=	0422h

ADDULNK	Add Lite	eral to FS	SR2 and	Return	
Syntax:	ADDULN	Kk			
Operands:	$0 \leq k \leq 63$				
Operation:	$FSR2 + k \rightarrow FSR2$,				
	$(TOS) \rightarrow PC$				
Status Affected:	None				
Encoding:	1110	1000	11kk	kkkk	
Description:	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where $f = 3$ (binary '11'); it operates only on FSR2.				
Words:	1				
Cycles:	2				

Q Cycle Activity:

_	Q1	Q2	Q3	Q4
	Decode	Read	Process	Write to
		literal 'k'	Data	FSR
	No	No	No	No
	Operation	Operation	Operation	Operation

0422h

(TOS)

Example: ADDULNK 23h

=

=

Before Instru	ction	
FSR2	=	03FFh
PC	=	0100h
After Instruct	ion	

FSR2

PC

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

26.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

26.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

26.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

26.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

27.11 AC (Timing) Characteristics

27.11.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

1. TppS2pp	S	3. Tcc:st	(I ² C specifications only)	
2. TppS		4. Ts	(I ² C specifications only)	
Т				
F	Frequency	т	Time	
Lowercase	letters (pp) and their meanings:			
рр				
сс	CCP1	osc	OSC1	
ck	CLKOUT	rd	RD	
CS	CS	rw	RD or WR	
di	SDI	sc	SCK	
do	SDO	SS	SS	
dt	Data in	tO	TOCKI	
io	I/O port	t1	T13CKI	
mc	MCLR	wr	WR	
Uppercase	letters and their meanings:			
S				
F	Fall	Р	Period	
н	High	R	Rise	
I	Invalid (High-impedance)	V	Valid	
L	Low	Z	High-impedance	
I ² C only				
AA	output access	High	High	
BUF	Bus free	Low	Low	
TCC:ST (I ² C	specifications only)			
CC				
HD	Hold	SU	Setup	
ST				
DAT	DATA input hold	STO	Stop condition	
STA	Start condition			

FIGURE 28-21: PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN LF-INTOSC 31 kHz

FIGURE 28-49: PIC18LF2X/4XK22 MAXIMUM IDD: PRI_RUN EC MEDIUM POWER

