

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k22t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18(L)F2X/4XK22

2.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

2.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 2-1 illustrates a block diagram of the oscillator module.

Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured from one of three internal oscillators, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The primary clock module can be configured to provide one of six clock sources as the primary clock.

- 1. RC External Resistor/Capacitor
- 2. LP Low-Power Crystal
- 3. XT Crystal/Resonator
- 4. INTOSC Internal Oscillator
- 5. HS High-Speed Crystal/Resonator
- 6. EC External Clock

The HS and EC oscillator circuits can be optimized for power consumption and oscillator speed using settings in FOSC<3:0>. Additional FOSC<3:0> selections enable RA6 to be used as I/O or CLKO (FOSC/4) for RC, EC and INTOSC Oscillator modes.

Primary Clock modes are selectable by the FOSC<3:0> bits of the CONFIG1H Configuration register. The primary clock operation is further defined by these Configuration and register bits:

- 1. PRICLKEN (CONFIG1H<5>)
- 2. PRISD (OSCCON2<2>)
- 3. PLLCFG (CONFIG1H<4>)
- 4. PLLEN (OSCTUNE<6>)
- 5. HFOFST (CONFIG3H<3>)
- 6. IRCF<2:0> (OSCCON<6:4>)
- 7. MFIOSEL (OSCCON2<4>)
- 8. INTSRC (OSCTUNE<7>)

The HFINTOSC, MFINTOSC and LFINTOSC are factory calibrated high, medium and low-frequency oscillators, respectively, which are used as the internal clock sources.

R-0/0	R-0/q	U-0	R/W-0/0	R/W-0/u	R/W-1/1	R-x/u	R-0/0
PLLRDY	SOSCRUN	_	MFIOSEL	SOSCGO ⁽¹⁾	PRISD	MFIOFS	LFIOFS
bit 7							bit 0
Legend:							
R = Readable	bit W = W	/ritable bit	U = Unimple	emented bit, rea	ıd as '0' q	= depends on	condition
'1' = Bit is set	'0' = B	it is cleared	x = Bit is un	known			
-n/n = Value at	t POR and BOR	Value at all oth	ner Resets				
bit 7	PLLRDY: PLL	Run Status bit					
	1 = System clo	ock comes fror	n 4xPLL	other then 4vD			
hit 6		CK COMES NO	n an Uscillator,		LL		
bit 0	1 - System cl	ock comes from	n secondary S	090			
	0 = System clo	ock comes from	n an oscillator,	other than SO	SC		
bit 5	Unimplemente	ed: Read as '0					
bit 4	MFIOSEL: MF	INTOSC Selec	t bit				
	1 = MFINTOS	C is used in pla	ace of HFINTC	OSC frequencie	s of 500 kHz, 2	250 kHz and 31	l.25 kHz
bit 3		econdary Osc	illator Start Co	ntrol bit			
Sito	1 = Secondary	/ oscillator is e	nabled.				
	0 = Secondary	oscillator is s	hut off if no oth	ner sources are	requesting it.		
bit 2	PRISD: Primar	y Oscillator Dr	ive Circuit Shu	utdown bit			
	1 = Oscillator	drive circuit on					
1.11.4	0 = Oscillator	drive circuit off	(zero power)				
Dit 1		110SC Freque	ency Stable bit				
	1 = MFINTOS 0 = MFINTOS	C is stable C is not stable					
bit 0	LFIOFS: LFIN	TOSC Frequer	ncv Stable bit				
	1 = LFINTOS	C is stable	.,				
	0 = LFINTOSO	C is not stable					
Note 1: The	e SOSCGO bit is	only reset on	a POR Reset.				

REGISTER 2-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

7.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit of the EECON1 register and then set control bit, RD. The data is available on the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 7-1.

7.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 7-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared by hardware and the EEPROM Interrupt Flag bit, EEIF, is set. The user may either enable this interrupt or poll this bit. EEIF must be cleared by software.

7.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

EXAMPLE 7-1: DATA EEPROM READ

MOVLW	DATA_EE_ADDR	;	
MOVWF	EEADR	;	Data Memory Address to read
BCF	EECON1, EEPGD	;	Point to DATA memory
BCF	EECON1, CFGS	;	Access EEPROM
BSF	EECON1, RD	;	EEPROM Read
MOVF	EEDATA, W	;	W = EEDATA

EXAMPLE 7-2:	DATA EEPROM WRITE

	MOVLW MOVWF	DATA_EE_ADDR_LOW EEADR	Data M	emory Address to write
	MOVLW	DATA_EE_ADDR_HI		
	MOVWF	EEADRH		
	MOVLW	DATA_EE_DATA		
	MOVWF	EEDATA	Data M	emory Value to write
	BCF	EECON1, EEPGD	Point	to DATA memory
	BCF	EECON1, CFGS	Access	EEPROM
	BSF	EECON1, WREN	Enable	writes
	BCF	INTCON, GIE	Disabl	e Interrupts
	MOVLW	55h		
Required	MOVWF	EECON2	Write	55h
Sequence	MOVLW	0AAh		
	MOVWF	EECON2	Write	0AAh
	BSF	EECON1, WR	Set WR	bit to begin write
	BSF	INTCON, GIE	Enable	Interrupts
			User c	ode execution
	BCF	EECON1, WREN	Disabl	e writes on write complete (EEIF set)

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES<3:0>).

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L • ARG2H:ARG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		(ARG1L • ARG2L)

EXAMPLE 8-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L->
			; PRODH:PRODL
	MOVFF	PRODH, RES	;
	MOVFF	PRODL, RES	;
;			
	MOVF	ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H->
			; PRODH:PRODL
	MOVFF	PRODH, RES	;
	MOVFF	PRODL, RES	;
;			
	MOVF	ARG1L, W	
	MULWF	ARG2H	; ARG1L * ARG2H->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;			
	MOVF	ARG1H, W	;
	MULWF	ARG2L	; ARG1H * ARG2L->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;

Example 8-4 shows the sequence to do a 16 x 16 signed multiply. Equation 8-2 shows the algorithm used. The 32-bit result is stored in four registers (RES<3:0>). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 8-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0 = ARG1H:A	RG1L • ARG2H:ARG2L
= (ARG1H •	ARG2H • 2^{16}) +
(ARG1H •	$ARG2L \bullet 2^8) +$
(ARG1L •	$ARG2H \bullet 2^8) +$
(ARG1L •	ARG2L) +
(-1 • ARG	$2H < 7 > \bullet ARG1H: ARG1L \bullet 2^{16}) +$
(-1 • ARG	$1H < 7 > \bullet ARG2H:ARG2L \bullet 2^{16}$

EXAMPLE 8-4:

16 x 16 SIGNED MULTIPLY ROUTINE

MOVF	ARG1L, W	
MULWF	ARG2L	; ARG1L * ARG2L ->
		; PRODH:PRODL
MOVFF	PRODH, RES1	;
MOVFF	PRODL, RESO	;
;		
MOVF	ARG1H, W	
MULWF	ARG2H	; ARG1H * ARG2H ->
		; PRODH:PRODL
MOVFF	PRODH, RES3	;
MOVFF	PRODL, RES2	;
;		
MOVE	ARGIL, W	
MULWF	ARG2H	; ARGIL * ARG2H ->
MOVIE		, PRODH PRODL
MOVE	PRODL, W	·
ADDWF	RESI, F	, Add Cross
ADDWEC	PRODE, W	, products
CLPE	MDFC	;
ADDWFC	RESS F	;
;	RESS, I	,
MOVE	ARG1H W	;
MULWE	ARG2L	, ; ARG1H * ARG2L ->
1102111	Intobe	; PRODH:PRODL
MOVF	PRODL, W	i
ADDWF	RES1, F	; Add cross
MOVF	PRODH, W	; products
ADDWFC	RES2, F	;
CLRF	WREG	;
ADDWFC	RES3, F	;
;		
BTFSS	ARG2H, 7	; ARG2H:ARG2L neg?
BRA	SIGN_ARG1	; no, check ARG1
MOVF	ARG1L, W	;
SUBWF	RES2	;
MOVF	ARG1H, W	;
SUBWFB	RES3	
;		
SIGN_ARG1		
BTFSS	ARGIH, 7	; ARGIH:ARGIL neg?
BRA	CONT_CODE	, no, aone
MOVE	AKGZL, W	:
DURME	REGZ NDCJU W	:
SIIBMED	ARGZA, W RF93	1
;	1000	
, CONT CODF		
:		

R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF		
bit 7							bit 0		
Legend:									
R = Reada	able bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	x = Bit is unknown		
bit 7	INT2IP: INT2	External Interr	upt Priority bi	t					
	1 = High prio	rity							
L'HO	0 = Low prior	ity Easterne et lasterne							
DIT 6	INTTIP: INTT	External Interr	upt Priority bi	τ					
	1 = High pho 0 = Low prior	itv							
bit 5	Unimplemen	ted: Read as '	0'						
bit 4	INT2IE: INT2	External Interr	upt Enable bi	t					
	1 = Enables t	the INT2 extern	nal interrupt						
	0 = Disables	the INT2 exter	nal interrupt						
bit 3	INT1IE: INT1	INT1IE: INT1 External Interrupt Enable bit							
	1 = Enables the INT1 external interrupt								
bit 2	Unimplemented: Read as '0'								
bit 1	1 INT2IF: INT2 External Interrupt Flag bit								
	1 = The INT2 external interrupt occurred (must be cleared by software)								
	0 = The INT2 external interrupt did not occur								
bit 0	t 0 INT1IF: INT1 External Interrupt Flag bit								
	1 = The INT1 external interrupt occurred (must be cleared by software)								
	0 = The INT1	external inter	rupt did not o	ccur					
Note:	Interrupt flag bits a	re set when an	interrupt						
condition occurs, regardless of the state of									
	its corresponding e	enable bit or the	ne global						
	the appropriate inte	errupt flag bits	are clear						
	prior to enabling a	n interrupt. Thi	s feature						
	allows for software	polling.							

REGISTER 9-3: INTCON3: INTERRUPT CONTROL 3 REGISTER

	-		-		· / -	-				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7	SSP2IF: Mas	ter Synchrono	us Serial Port	2 Interrupt Ena	able bit					
2	1 = Enables	the MSSP2 int	errupt	op:						
	0 = Disables	the MSSP2 in	terrupt							
bit 6	BCL2IE: Bus	Collision Inter	rupt Enable b	it						
	1 = Enabled									
	0 = Disabled									
bit 5	RC2IE: EUSA	ART2 Receive	Interrupt Enal	ole bit						
	1 = Enabled	1 = Enabled								
h:+ 4			latera vet En el	hla hit						
DIT 4 IX2IE: EUSAR12 Transmit Inter				DIE DIT						
	1 = Disabled 0 = Disabled									
bit 3	CTMUIE: CTMU Interrupt Enable bit									
	1 = Enabled	•								
	0 = Disabled									
bit 2	t 2 TMR5GIE: TMR5 Gate Interrupt Enable bit									
	1 = Enabled									
	0 = Disabled									
bit 1	TMR3GIE: T	MR3 Gate Inter	rupt Enable b	bit						
	1 = Enabled									
hit 0		MP1 Cate Inter	runt Enable h	t						
	1 = Fnabled			//1						
	0 = Disabled									

REGISTER 9-11: PIE3: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 3

10.5 PORTD Registers

Note:	PORTD is only available on 40-pin and
	44-pin devices.

PORTD is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., disable the output driver). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

All of the PORTD pins are multiplexed with analog and digital peripheral modules. See Table 10-11.

Note: On a Power-on Reset, these pins are configured as analog inputs.

EXAMPLE 10-4: INITIALIZING PORTD

MOVLB	0xF	; Set BSR for banked SFRs
CLRF	PORTD	; Initialize PORTD by
		; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs
MOVLW	30h	; Value used to
		; enable digital inputs
MOVWF	ANSELD	; RD<3:0> dig input enable
		; RC<7:6> dig input enable
1		

10.5.1 PORTD OUTPUT PRIORITY

Each PORTD pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the higher priority. Table 10-4 lists the PORTD pin functions from the highest to the lowest priority.

Analog input functions, such as ADC, comparator and SR latch inputs, are not shown in the priority lists.

These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below.

PIC18(L)F2X/4XK22

FIGURE 11-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)

11.4 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS<2:0> bits of the T0CON register which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When the prescaler is assigned, prescale values from 1:2 through 1:256 in integer power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count but will not change the prescaler assignment.

11.4.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

11.5 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit of the INTCON register. Before re-enabling the interrupt, the TMR0IF bit must be cleared by software in the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2		TMR0IP	_	RBIP	110
T0CON	TMR0ON	ROON TO8BIT TOCS TOSE PSA TOPS<2:0>				154			
TMR0H	Timer0 Register, High Byte							—	
TMR0L	Timer0 Register, Low Byte						_		
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151

TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by Timer0.

FIGURE 15-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

15.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSPx interrupt is enabled).

15.6.11 EFFECTS OF A RESET

A Reset disables the MSSPx module and terminates the current transfer.

15.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSPx interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

R/C/HS-0	R/C/HS-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPxOV	SSPxEN	СКР		SSPxN	√<3:0>	
bit 7		•		-			bit 0
L							
Legend:							
R = Readable bi	t	W = Writable bi	t	U = Unimpleme	ented bit, read as	'0'	
u = Bit is unchar	iged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	alue at all other F	Resets
'1' = Bit is set		'0' = Bit is clear	ed	HS = Bit is set	by hardware	C = User cleare	d
bit 7 WCOL: Write Collision Detect bit Master mode: 1 = A write to the SSPxBUF register was attempted while the I ² C conditions were not valid for a be started 0 = No collision Slave mode: 1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in s 0 = No collision bit 6 SSPxOV: Receive Overflow Indicator bit ⁽¹⁾ In SPI mode: 1 = A new byte is received while the SSPxBUF register is still holding the previous data. In case of o in SSPxSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since ton (and transmission) is initiated by writing to the SSPxBUF register (must be cleared in softwa 0 = No overflow 0 = No overflow In I ² C mode:					re not valid for a ist be cleared in so data. In case of ov ser must read the S bit is not set since e cleared in software byte. SSPxOV is a	transmission to oftware) verflow, the data SSPxBUF, even each new recep- e). a "don't care" in	
bit 5	0 = No overflot SSPxEN: Sync In both modes, In SPI mode: 1 = Enables se 0 = Disables se In I2C mode: 1 = Enables th	w chronous Serial F when enabled, t erial port and cont serial port and co ne serial port and co	Fort Enable bit hese pins mus igures SCKx, S nfigures these configures the S	t be properly conf SDOx, SDIx and SS pins as I/O port p SDAx and SCLx pir	igured as input of Sx as the source c ins is as the source of	r output of the serial port pi f the serial port pin	_{nS} (2) _S (3)
bit 4	$0 = \text{Disables s}$ $CKP: Clock Po$ $I = Idle state for 0 = Idle state for 1 = Idle state for 0 = Idle state for SCLx release or 1 = Enable clock In I^{2}C Master n Unused in this$	serial port and co larity Select bit or clock is a high or clock is a low le ode: control ck c low (clock streto <u>node:</u> mode	nfigures these level evel ch). (Used to e	pins as I/O port p	ins time.)		

REGISTER 15-3: SSPxCON1: SSPx CONTROL REGISTER 1

17.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Results formatting

17.1.1 PORT CONFIGURATION

The ANSELx and TRISx registers configure the A/D port pins. Any port pin needed as an analog input should have its corresponding ANSx bit set to disable the digital input buffer and TRISx bit set to disable the digital output driver. If the TRISx bit is cleared, the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the ANSx bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins with their corresponding ANSx bit set read as cleared (a low level). However, analog conversion of pins configured as digital inputs (ANSx bit cleared and TRISx bit set) will be accurately converted.
 - 2: Analog levels on any pin with the corresponding ANSx bit cleared may cause the digital input buffer to consume current out of the device's specification limits.
 - 3: The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the bits in ANSELB are reset.

17.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 17.2** "**ADC Operation**" for more information.

17.1.3 ADC VOLTAGE REFERENCE

The PVCFG<1:0> and NVCFG<1:0> bits of the ADCON1 register provide independent control of the positive and negative voltage references.

The positive voltage reference can be:

- Vdd
- the fixed voltage reference (FVR BUF2)
- an external voltage source (VREF+)

The negative voltage reference can be:

- Vss
- an external voltage source (VREF-)

17.1.4 SELECTING AND CONFIGURING ACQUISITION TIME

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/\overline{DONE} bit is set.

Acquisition time is set with the ACQT<2:0> bits of the ADCON2 register. Acquisition delays cover a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there is no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

Manual acquisition is selected when ACQT<2:0> = 000. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT<2:0> bits and is compatible with devices that do not offer programmable acquisition times.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. When an acquisition time is programmed, there is no indication of when the acquisition time ends and the conversion begins.

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
MC1OUT	MC2OUT	C1RSEL	C2RSEL	C1HYS	C2HYS	C1SYNC	C2SYNC			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7	MC1OUT: Min	rror Copy of C1	IOUT bit							
bit 6	MC2OUT: Min	rror Copy of C2	2OUT bit							
bit 5	C1RSEL: Co	mparator C1 R	eference Sele	ct bit						
	1 = FVR BUF	1 routed to C1	VREF input							
	0 = DAC rout	ed to C1VREF i	nput							
bit 4	C2RSEL: Co	mparator C2 R	eference Sele	ct bit						
	1 = FVR BUF	1 routed to C2	VREF input							
	$0 = DAC \operatorname{rout}$	ed to C2VREF i	nput							
bit 3	C1HYS: Com	parator C1 Hy	steresis Enable	e bit						
	1 = Compar	ator C1 hyster	esis enabled							
h # 0		ator C1 nystere	esis disabled	- h:t						
DIT 2		parator C2 Hy	steresis Enable	e dit						
	1 = Compare 0 = Compare 1	ator C2 hyster	esis enabled							
bit 1	C1SYNC: C1	Output Synch	ronous Mode b	oit						
2	1 = C1 outp	ut is synchroni	zed to risina e	dae of TMR1 c	lock (T1CLK)					
	0 = C1 outp	ut is asynchror	nous	3						
bit 0	C2SYNC: C2	Output Synch	ronous Mode t	pit						
	1 = C2 outp	ut is synchroni	zed to rising e	dge of TMR1 c	lock (T1CLK)					
	0 = C2 outp	ut is asynchror	nous							

REGISTER 18-2: CM2CON1: COMPARATOR 1 AND 2 CONTROL REGISTER

19.3.2 CAPACITANCE CALIBRATION

There is a small amount of capacitance from the internal A/D Converter sample capacitor as well as stray capacitance from the circuit board traces and pads that affect the precision of capacitance measurements. A measurement of the stray capacitance can be taken by making sure the desired capacitance to be measured has been removed. The measurement is then performed using the following steps:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT (= 1).
- 3. Wait for a fixed delay of time *t*.
- 4. Clear EDG1STAT.
- 5. Perform an A/D conversion.
- 6. Calculate the stray and A/D sample capacitances:

$$C_{\text{OFFSET}} = C_{\text{STRAY}} + C_{\text{AD}} = (I \cdot t) / V$$

where *I* is known from the current source measurement step, *t* is a fixed delay and *V* is measured by performing an A/D conversion.

This measured value is then stored and used for calculations of time measurement or subtracted for capacitance measurement. For calibration, it is expected that the capacitance of CSTRAY + CAD is approximately known. CAD is approximately 4 pF.

An iterative process may need to be used to adjust the time, t, that the circuit is charged to obtain a reasonable voltage reading from the A/D Converter. The value of t may be determined by setting COFFSET to a theoretical value, then solving for t. For example, if CSTRAY is theoretically calculated to be 11 pF, and V is expected to be 70% of VDD, or 2.31V, then t would be:

or 63 µs.

See Example 19-3 for a typical routine for CTMU capacitance calibration.

22.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACOUT pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the VREFCON1 register.

22.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the VREFCON2 register.

The DAC output voltage is determined by the following equations:

EQUATION 22-1: DAC OUTPUT VOLTAGE

$$VOUT = \left((VSRC+ - VSRC-) \neq \frac{DACR < 4:0>}{2^5} \right) + VSRC-$$
$$VSRC+ = VDD, VREF+ or FVR1$$
$$VSRC- = VSS or VREF-$$

22.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in **Section 27.0** "**Electrical Specifications**".

22.3 Low-Power Voltage State

In order for the DAC module to consume the least amount of power, one of the two voltage reference input sources to the resistor ladder must be disconnected. Either the positive voltage source, (VSRC+), or the negative voltage source, (VSRC-) can be disabled. The negative voltage source is disabled by setting the DACLPS bit in the VREFCON1 register. Clearing the DACLPS bit in the VREFCON1 register disables the positive voltage source.

22.4 Output Clamped to Positive Voltage Source

The DAC output voltage can be set to VsRC+ with the least amount of power consumption by performing the following:

- Clearing the DACEN bit in the VREFCON1 register.
- Setting the DACLPS bit in the VREFCON1 register.
- Configuring the DACPSS bits to the proper positive source.
- Configuring the DACRx bits to '11111' in the VREFCON2 register.

This is also the method used to output the voltage level from the FVR to an output pin. See **Section 22.6 "DAC Voltage Reference Output"** for more information.

22.5 Output Clamped to Negative Voltage Source

The DAC output voltage can be set to VSRC- with the least amount of power consumption by performing the following:

- Clearing the DACEN bit in the VREFCON1 register.
- Clearing the DACLPS bit in the VREFCON1 register.
- Configuring the DACPSS bits to the proper negative source.
- Configuring the DACRx bits to '00000' in the VREFCON2 register.

This allows the comparator to detect a zero-crossing while not consuming additional current through the DAC module.

22.6 DAC Voltage Reference Output

The DAC can be output to the DACOUT pin by setting the DACOE bit of the VREFCON1 register to '1'. Selecting the DAC reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to DACOUT. Figure 22-2 shows an example buffering technique.

27.9 Memory Programming Requirements

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
		Internal Program Memory Programming Specifications ⁽¹⁾						
D170	Vpp	Voltage on MCLR/VPP pin	8		9	V	(Note 3), (Note 4)	
D171	IDDP	Supply Current during Programming	—	—	10	mA		
		Data EEPROM Memory						
D172	Ed	Byte Endurance	100K		—	E/W	-40°C to +85°C	
D173	Vdrw	VDD for Read/Write	VDDMIN	—	VDDMAX	V	Using EECON to read/ write	
D175	TDEW	Erase/Write Cycle Time	—	3	4	ms		
D176	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	
D177	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C	
		Program Flash Memory						
D178	Εр	Cell Endurance	10K		—	E/W	-40°C to +85°C (Note 5)	
D179	Vpr	VDD for Read	VDDMIN		VDDMAX	V		
D181	Viw	VDD for Row Erase or Write	2.2		VDDMAX	V	PIC18LF24K22	
D182	Viw		VDDMIN	—	VDDMAX	V	PIC18(L)F26K22	
D183	Tiw	Self-timed Write Cycle Time	—	2	-	ms		
D184	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: Refer to Section 7.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the MPLAB ICD 2 VPP voltage must be placed between the MPLAB ICD 2 and target system when programming or debugging with the MPLAB ICD 2.

5: Self-write and Block Erase.

TABLE 27-5: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Г

Standa Operatii	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Symbol	Characteristic	HLVDL<3:0>	Min	Тур†	Max	Units	Conditions
		HLVD Voltage on VDD	0000	1.69	1.84	1.99	V	
		Transition High-to-Low	0001	1.92	2.07	2.22	V	
			0010	2.08	2.28	2.48	V	
			0011	2.24	2.44	2.64	V	
			0100	2.34	2.54	2.74	V	
		0101	2.54	2.74	2.94	V		
		0110	2.62	2.87	3.12	V		
		0111	2.76	3.01	3.26	V		
			1000	3.00	3.30	3.60	V	
			1001	3.18	3.48	3.78	V	
			1010	3.44	3.69	3.94	V	
			1011	3.66	3.91	4.16	V	
			1100	3.90	4.15	4.40	V	
			1101	4.11	4.41	4.71	V	
			1110	4.39	4.74	5.09	V	
			1111	V(H	ILVDIN p	oin)	v	

† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

PIC18(L)F2X/4XK22

FIGURE 28-55: PIC18F2X/4XK22 MAXIMUM IDD: PRI_RUN EC HIGH POWER

© 2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22

© 2010-2016 Microchip Technology Inc.

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.