

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k22t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1: 28-PIN PDIP, SOIC, SSOP DIAGRAM

2.7.1 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a 31.25 kHz internal clock source. The LFINTOSC is not tunable, but is designed to be stable across temperature and voltage. See **Section 27.0 "Electrical Specifications"** for the LFINTOSC accuracy specifications.

The output of the LFINTOSC can be a clock source to the primary clock or the INTOSC clock (see Figure 2-1). The LFINTOSC is also the clock source for the Powerup Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

2.7.2 FREQUENCY SELECT BITS (IRCF)

The HFINTOSC (16 MHz) and MFINTOSC (500 MHz) outputs connect to a divide circuit that provides frequencies of 16 MHz to 31.25 kHz. These divide circuit frequencies, along with the 31.25 kHz LFINTOSC output, are multiplexed to provide a single INTOSC clock output (see Figure 2-1). The IRCF<2:0> bits of the OSCCON register, the MFIOSEL bit of the OSCCON2 register and the INTSRC bit of the OSCTUNE register, select the output frequency of the internal oscillators. One of eight frequencies can be selected via software:

- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz (default after Reset)
- 500 kHz (MFINTOSC or HFINTOSC)
- 250 kHz (MFINTOSC or HFINTOSC)
- 31 kHz (LFINTOSC, MFINTOSC or HFINTOSC)

2.7.3 INTOSC FREQUENCY DRIFT

The factory calibrates the internal oscillator block outputs (HFINTOSC/MFINTOSC) for 16 MHz/500 kHz. However, this frequency may drift as VDD or temperature changes. It is possible to adjust the HFINTOSC/MFINTOSC frequency by modifying the value of the TUN<5:0> bits in the OSCTUNE register. This has no effect on the LFINTOSC clock source frequency.

Tuning the HFINTOSC/MFINTOSC source requires knowing when to make the adjustment, in which direction it should be made and, in some cases, how large a change is needed. Three possible compensation techniques are discussed in the following sections. However, other techniques may be used.

2.7.3.1 Compensating with the EUSART

An adjustment may be required when the EUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high; to adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low; to compensate, increment OSCTUNE to increase the clock frequency.

2.7.3.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

2.7.3.3 Compensating with the CCP Module in Capture Mode

A CCP module can use free running Timer1, Timer3 or Timer5 clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast; to compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow; to compensate, increment the OSCTUNE register.

2.11.3 CLOCK SWITCH TIMING

When switching between one oscillator and another, the new oscillator may not be operating which saves power (see Figure 2-9). If this is the case, there is a delay after the SCS<1:0> bits of the OSCCON register are modified before the frequency change takes place. The OSTS and IOFS bits of the OSCCON register will reflect the current active status of the external and HFINTOSC oscillators. The timing of a frequency selection is as follows:

- 1. SCS<1:0> bits of the OSCCON register are modified.
- 2. The old clock continues to operate until the new clock is ready.
- 3. Clock switch circuitry waits for two consecutive rising edges of the old clock after the new clock ready signal goes true.
- 4. The system clock is held low starting at the next falling edge of the old clock.
- 5. Clock switch circuitry waits for an additional two rising edges of the new clock.
- 6. On the next falling edge of the new clock the low hold on the system clock is released and new clock is switched in as the system clock.
- 7. Clock switch is complete.

See Figure 2-1 for more details.

If the HFINTOSC is the source of both the old and new frequency, there is no start-up delay before the new frequency is active. This is because the old and new frequencies are derived from the HFINTOSC via the postscaler and multiplexer.

Start-up delay specifications are located in **Section 27.0 "Electrical Specifications**", under AC Specifications (Oscillator Module).

2.12 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device.

This mode allows the application to wake-up from Sleep, perform a few instructions using the HFINTOSC as the clock source and go back to Sleep without waiting for the primary oscillator to become stable.

Note: Executing a SLEEP instruction will abort the oscillator start-up time and will cause the OSTS bit of the OSCCON register to remain clear.

When the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) is enabled (see **Section 2.5.1 "Oscillator Start-up Timer (OST)**"). The OST will suspend program execution until 1024 oscillations are counted. Two-Speed Start-up mode minimizes the delay in code execution by operating from the internal oscillator as the OST is counting. When the OST count reaches 1024 and the OSTS bit of the OSCCON register is set, program execution switches to the external oscillator.

2.12.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is enabled when all of the following settings are configured as noted:

- Two-Speed Start-up mode is enabled when the IESO of the CONFIG1H Configuration register is set.
- SCS<1:0> (of the OSCCON register) = 00.
- FOSC<2:0> bits of the CONFIG1H Configuration register are configured for LP, XT or HS mode.

Two-Speed Start-up mode becomes active after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- · Wake-up from Sleep.

FIGURE 5-9: USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)

5.6 Data Addressing Modes

Note: The execution of some instructions in the core PIC18 instruction set are changed when the PIC18 extended instruction set is enabled. See Section 5.7 "Data Memory and the Extended Instruction Set" for more information.

While the program memory can be addressed in only one way – through the program counter – information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in **Section 5.7.1** "**Indexed Addressing with Literal Offset**".

5.6.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode. This is known as Literal Addressing mode because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

5.6.2 DIRECT ADDRESSING

Direct addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byteoriented instructions use some version of direct addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (**Section 5.4.3 "General** **Purpose Register File**") or a location in the Access Bank (Section 5.4.2 "Access Bank") as the data source for the instruction.

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 5.4.1 "Bank Select Register (BSR)") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

5.6.3 INDIRECT ADDRESSING

Indirect addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations which are to be read or written. Since the FSRs are themselves located in RAM as Special File Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables and arrays in data memory.

The registers for indirect addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code, using loops, such as the example of clearing an entire RAM bank in Example 5-5.

EXAMPLE 5-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0,	100h ;	;	
NEXT	CLRF	POSTINC	20 ;	;	Clear INDF
			;	;	register then
			;	;	inc pointer
	BTFSS	FSROH,	1 ;	;	All done with
			;	;	Bank1?
	BRA	NEXT	;	;	NO, clear next
CONTINU	Έ		;	;	YES, continue

TABLE 10-1: PORTA I/O SUMMARY

Pin Name	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RA0/C12IN0-/AN0	RA0	0	0	0	DIG	LATA<0> data output; not affected by analog input.
		1	0	I	TTL	PORTA<0> data input; disabled when analog input enabled.
	C12IN0-	1	1	I	AN	Comparators C1 and C2 inverting input.
	AN0	1	1	I	AN	Analog input 0.
RA1/C12IN1-/AN1	RA1	0	0	0	DIG	LATA<1> data output; not affected by analog input.
		1	0	I	TTL	PORTA<1> data input; disabled when analog input enabled.
	C12IN1-	1	1	I	AN	Comparators C1 and C2 inverting input.
	AN1	1	1	Ι	AN	Analog input 1.
RA2/C2IN+/AN2/ DACOUT/VREF-	RA2	0	0	0	DIG	LATA<2> data output; not affected by analog input; disabled when DACOUT enabled.
		1	0	I	TTL	PORTA<2> data input; disabled when analog input enabled; disabled when DACOUT enabled.
	C2IN+	1	1	I	AN	Comparator C2 non-inverting input.
	AN2	1	1	I	AN	Analog output 2.
	DACOUT	x	1	0	AN	DAC Reference output.
	VREF-	1	1	I	AN	A/D reference voltage (low) input.
RA3/C1IN+/AN3/	RA3	0		0	DIG	LATA<3> data output; not affected by analog input.
VREF+		1	0	I	TTL	PORTA<3> data input; disabled when analog input enabled.
	C1IN+	1	1	I	AN	Comparator C1 non-inverting input.
	AN3	1	1	I	AN	Analog input 3.
	VREF+	1	1	I	AN	A/D reference voltage (high) input.
RA4/CCP5/C1OUT/	RA4	0	—	0	DIG	LATA<4> data output.
SKQ/TUCKI		1	—	I	ST	PORTA<4> data input; default configuration on POR.
	CCP5	0	—	0	DIG	CCP5 Compare output/PWM output, takes priority over RA4 output.
		1	—	I	ST	Capture 5 input/Compare 5 output/ PWM 5 output.
	C1OUT	0	—	0	DIG	Comparator C1 output.
	SRQ	0	—	0	DIG	SR latch Q output; take priority over CCP 5 output.
	TOCKI	1		I	ST	Timer0 external clock input.
RA5/C2OUT/SRNQ/	RA5	0	0	0	DIG	LATA<5> data output; not affected by analog input.
SS1/ HLVDIN/AN4		1	0	I	TTL	PORTA<5> data input; disabled when analog input enabled.
	C2OUT	0	0	0	DIG	Comparator C2 output.
	SRNQ	0	0	0	DIG	SR latch \overline{Q} output.
	SS1	1	0	I	TTL	SPI slave select input (MSSP1).
	HLVDIN	1	1	I	AN	High/Low-Voltage Detect input.
	AN4	1	1	I	AN	A/D input 4.
RA6/CLKO/OSC2	RA6	0	—	0	DIG	LATA<6> data output; enabled in INTOSC modes when CLKO is not enabled.
		1	—	I	TTL	PORTA<6> data input; enabled in INTOSC modes when CLKO is not enabled.
	CLKO	х	—	0	DIG	In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the fre- quency of OSC1 and denotes the instruction cycle rate.
	OSC2	x	—	0	XTAL	Oscillator crystal output; connects to crystal or resonator in Crystal Oscillator mode.
RA7/CLKI/OSC1	RA7	0	—	0	DIG	LATA<7> data output; disabled in external oscillator modes.
		1	-	I	TTL	PORTA<7> data input; disabled in external oscillator modes.
	CLKI	x	_	I	AN	External clock source input; always associated with pin function OSC1.
	OSC1	x	—	I	XTAL	Oscillator crystal input or external clock source input ST buffer when configured in RC mode; CMOS otherwise.

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I²C = Schmitt Trigger input with I²C.

10.1.1 PORTA OUTPUT PRIORITY

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the higher priority. Table 10-4 lists the PORTA pin functions from the highest to the lowest priority.

Analog input functions, such as ADC and comparator, are not shown in the priority lists.

These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below.

Deat bit	Port Function Priority by Port Pin									
Port bit	PORTA	PORTB	PORTC	PORTD ⁽²⁾	PORTE ⁽²⁾					
0	RA0	CCP4 ⁽¹⁾	SOSCO	SCL2	CCP3 ⁽⁸⁾					
		RB0	P2B ⁽⁶⁾	SCK2	P3A ⁽⁸⁾					
			RC0	RD0	RE0					
1	RA1	SCL2 ⁽¹⁾	SOSCI	SDA2	P3B					
		SCK2 ⁽¹⁾	CCP2 ⁽³⁾	CCP4	RE1					
		P1C ⁽¹⁾	P2A ⁽³⁾	RD1						
		RB1	RC1							
2	RA2	SDA2 ⁽¹⁾	CCP1	P2B	CCP5					
		P1B ⁽¹⁾	P1A	RD2 ⁽⁴⁾	RE2					
		RB2	CTPLS							
			RC2							
3	RA3	SDO2 ⁽¹⁾	SCL1	P2C	MCLR					
		CCP2 ⁽⁶⁾	SCK1	RD3	Vpp					
		P2A ⁽⁶⁾	RC3		RE3					
		RB3								
4	SRQ	P1D ⁽¹⁾	SDA1	SDO2						
	C1OUT	RB4	RC4	P2D						
	CCP5 ⁽¹⁾			RD4						
	RA4									

TABLE 10-4: PORT PIN FUNCTION PRIORITY

Note 1: PIC18(L)F2XK22 devices.

2: PIC18(L)F4XK22 devices.

- **3:** Function default pin.
- **4:** Function default pin (28-pin devices).
- **5:** Function default pin (40/44-pin devices).
- **6:** Function alternate pin.
- 7: Function alternate pin (28-pin devices).
- 8: Function alternate pin (40/44-pin devices)

Dort bit	Port Function Priority by Port Pin									
Port bit	PORTA	PORTB	PORTC	PORTD ⁽²⁾	PORTE ⁽²⁾					
5	SRNQ	CCP3 ⁽³⁾	SDO1	P1B						
	C2OUT	P3A ⁽³⁾	RC5	RD5						
	RA5	P2B ⁽¹⁾⁽⁴⁾								
		RB5								
6	OSC2	PGC	TX1/CK1	TX2/CK2						
	CLKO	TX2/CK2 ⁽¹⁾	CCP3 ⁽¹⁾⁽⁷⁾	P1C						
	RA6	RB6	P3A(1)(7)	RD6						
		ICDCK	RC6							
7	RA7									
	OSC1	PGD	RX1/DT1	RX2/DT2						
	RA7	RX2/DT2 ⁽¹⁾	P3B ⁽¹⁾	P1D						
		RB7	RC7	RD7						
		ICDDT								

TABLE 10-4: PORT PIN FUNCTION PRIORITY (CONTINUED)

Note 1: PIC18(L)F2XK22 devices.

2: PIC18(L)F4XK22 devices.

3: Function default pin.

4: Function default pin (28-pin devices).

5: Function default pin (40/44-pin devices).

6: Function alternate pin.

7: Function alternate pin (28-pin devices).

8: Function alternate pin (40/44-pin devices)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	150
BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	271
CCP1CON	P1M<	:1:0>	DC1E	3<1:0>		CCP1M<3:0>			198
CCP2CON	P2M<	:1:0>	DC2E	DC2B<1:0>		CCP2M<3:0>			198
CCP4CON	—	—	DC4E	3<1:0>		CCP4N	1<3:0>		198
LATD ⁽¹⁾	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	152
PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	148
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SLRCON ⁽¹⁾	—	—	—	SLRE	SLRD	SLRC	SLRB	SLRA	153
SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPM<3:0>			
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151

TABLE 10-12: REGISTERS ASSOCIATED WITH PORTD

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTD.

Note 1: Available on PIC18(L)F4XK22 devices.

TABLE 10-13: CONFIGURATION REGISTERS ASSOCIATED WITH PORTD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTD.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u			
TMRxGE	TxGPOL	TxGTM	TxGSPM	TxGGO/DONE	TxGVAL	TxGSS	6<1:0>			
bit 7	·						bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemer	nted bit, read a	as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at F	POR and BOR	/Value at all ot	her Resets			
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is clear	ed by hardwar	re				
bit 7 TMRxGE: Timer1/3/5 Gate Enable bit <u>If TMRxON = 0</u> : This bit is ignored <u>If TMRxON = 1</u> : 1 = Timer1/3/5 counting is controlled by the Timer1/3/5 gate function 0 = Timer1/3/5 counts regardless of Timer1/3/5 gate function										
bit 6	 TxGPOL: Timer1/3/5 Gate Polarity bit 1 = Timer1/3/5 gate is active-high (Timer1/3/5 counts when gate is high) 0 = Timer1/3/5 gate is active-low (Timer1/3/5 counts when gate is low) 									
bit 5	TxGTM: Time 1 = Timer1/3 0 = Timer1/3 Timer1/3/5 ga	er1/3/5 Gate To /5 Gate Toggle /5 Gate Toggle ate flip-flop togg	ggle Mode bit mode is enab mode is disat gles on every r	led bled and toggle flip rising edge.	o-flop is cleare	d				
bit 4	TxGSPM: Tin 1 = Timer1/3 0 = Timer1/3	ner1/3/5 Gate 3 /5 gate Single- /5 gate Single-	Single-Pulse M Pulse mode is Pulse mode is	lode bit enabled and is co disabled	ontrolling Time	r1/3/5 gate				
bit 3	TxGGO/DON 1 = Timer1/3 0 = Timer1/3 This bit is aut	E: Timer1/3/5 /5 gate single- _l /5 gate single- _l omatically clea	Gate Single-P oulse acquisition oulse acquisition red when TxG	ulse Acquisition S on is ready, waitin on has completed SPM is cleared.	tatus bit g for an edge or has not bee	en started				
bit 2	TxGVAL: Timer1/3/5 Gate Current State bit Indicates the current state of the Timer1/3/5 gate that could be provided to TMRxH:TMRxL. Unaffected by Timer1/3/5 Gate Enable (TMRxGE).									
bit 1-0	bit 1-0 TxGSS<1:0>: Timer1/3/5 Gate Source Select bits 00 = Timer1/3/5 Gate pin 01 = Timer2/4/6 Match PR2/4/6 output (See Table 12-5 for proper timer match selection) 10 = Comparator 1 optionally synchronized output (sync_C1OUT) 11 = Comparator 2 optionally synchronized output (sync_C2OUT)									

REGISTER 12-2: TXGCON: TIMER1/3/5 GATE CONTROL REGISTER

14.4.7 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

The CCPxM<1:0> bits of the CCPxCON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (PxA/PxC and PxB/PxD). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enable is not recommended since it may result in damage to the application circuits.

The PxA, PxB, PxC and PxD output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMRxIF bit of the PIR1, PIR2 or PIR5 register being set as the second PWM period begins.

Note: When the microcontroller is released from Reset, all of the I/O pins are in the highimpedance state. The external circuits must keep the power switch devices in the Off state until the microcontroller drives the I/O pins with the proper signal levels or activates the PWM output(s).

FIGURE 16-5: ASYNCHRONOUS RECEPTION

TABLE 16-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	_	WUE	ABDEN	271	
BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16		WUE	ABDEN	271	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109	
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121	
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123	
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117	
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119	
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112	
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114	
PMD0	UART2MD UART1MD TMR6MD TMR5MD TMR4MD TMR3MD TMR2MD TMR1MD								52	
RCREG1	EUSART1 Receive Register									
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270	
RCREG2			EU	SART2 Re	ceive Regis	ter				
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270	
SPBRG1			EUSART1	Baud Rate	Generator,	Low Byte			_	
SPBRGH1			EUSART1	Baud Rate	Generator,	High Byte			_	
SPBRG2			EUSART2	Baud Rate	Generator,	Low Byte			_	
SPBRGH2			EUSART2	Baud Rate	Generator,	High Byte			_	
TRISB ⁽²⁾	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151	
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151	
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	150	
ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	150	
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269	
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269	

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for asynchronous reception.

1: PIC18(L)F4XK22 devices.

2: PIC18(L)F2XK22 devices.

Note

16.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (HFINTOSC). However, the HFINTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the HFINTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 2.6** "Internal Clock Modes" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 16.4.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

17.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 17-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 17-5. The maximum recommended impedance for analog sources is $3 \ k\Omega$. As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D

acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 17-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 17-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 50°C and external impedance of 10k
$$\Omega$$
 3.0V VDD

$$TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
= TAMP + TC + TCOFF
= 5µs + TC + [(Temperature - 25°C)(0.05µs/°C)]
The value for TC can be approximated with the following equations:
$$V_{APPLIED}\left(1 - \frac{1}{2047}\right) = V_{CHOLD} \qquad :[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{-\frac{TC}{RC}}\right) = V_{CHOLD} \qquad :[2] V_{CHOLD} charge response to V_{APPLIED}$$

$$V_{APPLIED}\left(1 - e^{-\frac{TC}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{2047}\right) \qquad :combining [1] and [2]$$
Solving for Tc:

$$T_{C} = -C_{HOLD}(RIC + RSS + RS) \ln(1/2047)$$

$$= -13.5pF(1k\Omega + 700\Omega + 10k\Omega) \ln(0.0004885)$$

$$= 1.20\mu s$$$$

$$TACQ = 5\mu s + 1.20\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 7.45\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

© 2010-2016 Microchip Technology Inc.

Mnemonic,		Description	Cycles	16-	Bit Instr	uction W	/ord	Status	Natao
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED C	OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and CARRY bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1 ΄	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f_s, f_d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	0. u	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	-
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	,
		borrow							
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	-
		borrow							
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	

TABLE 25-2: PIC18(L)F2X/4XK22 INSTRUCTION SET

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

26.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
 Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

26.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

PIC18LF	PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
PIC18F2	X/4XK22	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Device Characteristics	Тур	Max	Units	Conditions					
D135		0.9	18	μΑ	-40°C	VDD = 1.8V	Fosc = 32 kHz			
		1.0	18	μΑ	+25°C		(SEC_IDLE mode,			
		1.1	_	μΑ	+60°C					
		1.3	20	μΑ	+85°C					
		2.3	22	μΑ	+125°C					
D136		1.3	20	μΑ	-40°C	VDD = 3.0V				
		1.4	20	μΑ	+25°C					
		1.5	—	μΑ	+60°C					
		1.8	22	μΑ	+85°C					
		2.9	25	μΑ	+125°C					
D137		12	30	μΑ	-40°C	VDD = 2.3V	Fosc = 32 kHz			
		13	30	μΑ	+25°C		(SEC_IDLE mode,			
		14	30	μΑ	+85°C					
		16	45	μΑ	+125°C					
D138		13	35	μΑ	-40°C	VDD = 3.0V				
		14	35	μΑ	+25°C					
		16	35	μΑ	+85°C					
		18	50	μΑ	+125°C					
D139		14	40	μΑ	-40°C	VDD = 5.0V				
		15	40	μΑ	+25°C					
		16	40	μΑ	+85°C					
		18	60	μΑ	+125°C					

27.7 DC Characteristics: Secondary Oscillator Supply Current, PIC18(L)F2X/4XK22

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

 $\overline{MCLR} = VDD;$

SOSCI / SOSCO = complementary external square wave, from rail-to-rail.

FIGURE 28-33: PIC18F2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC with PLL

FIGURE 28-49: PIC18LF2X/4XK22 MAXIMUM IDD: PRI_RUN EC MEDIUM POWER

