

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k22-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	CTMUMD	CMP2MD	CMP1MD	ADCMD
bit 7		•					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 7-4	Unimplemen	ted: Read as '	כ'				
bit 3	CTMUMD: CT	TMU Periphera	l Module Disa	ble Control bit			
	1 = Module is	s disabled, Cloo	ck Source is d	lisconnected, n	nodule does not	t draw digital po	ower
	0 = Module is	s enabled, Cloc	k Source is c	onnected, mod	lule draws digita	al power	
bit 2	CMP2MD: Co	mparator C2 F	eripheral Mod	dule Disable Co	ontrol bit		
	1 = Module is	s disabled, Cloo	ck Source is d	lisconnected, n	nodule does not	t draw digital po	ower
	0 = Module is	s enabled, Cloc	k Source is co	onnected, mod	lule draws digita	al power	
bit 1	CMP1MD: Co	mparator C1 F	eripheral Moo	dule Disable Co	ontrol bit		
	1 = Module is	s disabled, Cloo	ck Source is d	lisconnected, n	nodule does not	t draw digital po	ower
	0 = Module is	s enabled, Cloc	k Source is co	onnected, mod	lule draws digita	al power	
bit 0	ADCMD: ADC	C Peripheral Mo	odule Disable	Control bit			
	1 = Module is	s disabled, Cloo	ck Source is d	lisconnected, n	nodule does not	t draw digital po	ower
	0 = Module is	s enabled, Cloc	k Source is co	onnected, mod	iule draws digita	al power	

REGISTER 3-3: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

4.0 RESET

The PIC18(L)F2X/4XK22 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR and covers the operation of the various start-up timers. Stack Reset events are covered in Section 5.2.0.1 "Stack Full and Underflow Resets". WDT Resets are covered in Section 24.3 "Watchdog Timer (WDT)". A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 4-1.

4.1 RCON Register

Device Reset events are tracked through the RCON register (Register 4-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 4.7 "Reset State of Registers"**.

The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 9.0 "Interrupts". BOR is covered in Section 4.5 "Brown-out Reset (BOR)".

5.7.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of Access RAM (00h to 5Fh) are mapped. Rather than containing just the contents of the bottom section of Bank 0, this mode maps the contents from a user defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 5.4.2 "Access Bank"**). An example of Access Bank remapping in this addressing mode is shown in Figure 5-12.

Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use direct addressing as before.

5.8 PIC18 Instruction Execution and the Extended Instruction Set

Enabling the extended instruction set adds eight additional commands to the existing PIC18 instruction set. These instructions are executed as described in **Section 25.2 "Extended Instruction Set"**.

FIGURE 5-12: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0			
EEPGE	D CFGS	_	FREE	WRERR	WREN	WR	RD			
bit 7							bit 0			
Legend:										
R = Reada	able bit	W = Writable	bit							
S = Bit ca	n be set by software	e, but not clear	ed	U = Unimplei	mented bit, rea	ad as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
hit 7	EEPCD: Elas	h Program or F		Momory Solo	ot hit					
	1 – Access F	ll Flograffi of L	nemory	I Memory Sele						
	0 = Access d	ata EEPROM I	memory							
bit 6	CFGS: Flash	Program/Data	EEPROM or	Configuration S	Select bit					
	1 = Access C	Configuration re	gisters							
	0 = Access F	lash program o	or data EEPR	OM memory						
bit 5	Unimplemen	ted: Read as '	0'							
bit 4	FREE: Flash	FREE: Flash Row (Block) Erase Enable bit								
	1 = Erase the	e program men	nory block add	fressed by TBL	PIR on the ne	ext WR commai	nd			
	0 = Perform	write-only								
bit 3	WRERR: Flas	sh Program/Da	ta EEPROM E	Error Flag bit ⁽¹⁾						
	1 = A write or	peration is prer	maturely termi	nated (any Res	set during self-	timed programr	ming in normal			
	operation	, or an improp	er write attem	pt)						
bit 2	WREN: Flash	Program/Data	EEPROM W	rite Enable bit						
	1 = Allows with 0 = Inhibits with 0 = Inhibits with 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	rite cycles to Fi	lash program/ lash program/	data EEPROM /data EEPROM	1					
bit 1	WR: Write Co	ntrol bit	J J							
	1 = Initiates a	data EEPRON	/l erase/write c	cycle or a progra	am memory er	ase cycle or writ	te cycle.			
	(The ope	ration is self-tir	ned and the b	it is cleared by	hardware onc	e write is compl	lete.			
	0 = Write cvc	bit can only be le to the FFPR	set (not clear	ed) by software	e.)					
bit 0	RD: Read Co	ntrol bit								
	1 = Initiates a	IN EEPROM rea	ad (Read take	s one cycle. RD) is cleared by	hardware. The F	RD bit can only			
	be set (no	ot cleared) by s	oftware. RD b	it cannot be set	when EEPGD	= 1 or CFGS =	1.)			
	0 = Does not	initiate an EEF	PROM read							
Note 1:	When a WRERR of	occurs, the EEF	PGD and CFG	S bits are not o	cleared. This a	llows tracing of	the			

REGISTER 7-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

error condition.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
	—	—	—	—	TMR6IF	TMR5IF	TMR4IF			
bit 7 bit 0										
Legend:										
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7-3	Unimplemen	ted: Read as '	0'							
bit 2	TMR6IF: TMF	R6 to PR6 Mate	ch Interrupt Fla	ag bit						
	1 = TMR6 to	PR6 match oc	curred (must b	be cleared in s	oftware)					
	0 = No TMR6	6 to PR6 match	occurred							
bit 1	TMR5IF: TMF	R5 Overflow Int	errupt Flag bi	t						
	1 = TMR5 reg	gister overflow	ed (must be cl	eared in softw	are)					
	0 = TMR5 reg	gister did not o	verflow							
bit 0	TMR4IF: TMF	R4 to PR4 Mate	ch Interrupt Fla	ag bit						
	1 = TMR4 to PR4 match occurred (must be cleared in software)									
	0 = No TMR4	to PR4 match	occurred							

REGISTER 9-8: PIR5: PERIPHERAL INTERRUPT (FLAG) REGISTER 5

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP
bit 7							bit 0
Lonondi							
Legena:	- hit	M - Mritabla	hit		monted hit rea	d oo '0'	
		vv = vviitable	DIL	0 = 0	nented bit, rea	uas u v. Ditio unk	
	FUR				areu	x = Dit is unk	nown
bit 7	OSCFIP: O	scillator Fail Inte	rrupt Priority	bit			
	1 = High pr	iority	, ,				
	0 = Low pri	iority					
bit 6	C1IP: Comp	parator C1 Interr	upt Priority bi	t			
	1 = High pr	iority					
1.1.5		iority	(D · · · · · ·				
DIT 5	C2IP: Comp	barator C2 Interr	upt Priority bi	t			
	$1 = \Pi g \eta p \eta$ $0 = Low p \eta$	iority					
bit 4	EEIP: Data	EEPROM/Flash	Write Operat	tion Interrupt Pr	iority bit		
	1 = High pr	iority			,		
	0 = Low pri	iority					
bit 3	BCL1IP: M	SSP1 Bus Collis	ion Interrupt F	Priority bit			
	1 = High pr	iority					
	0 = Low pri	iority					
bit 2	HLVDIP: Lo	w-Voltage Detec	t Interrupt Pr	iority bit			
	1 = High pr	iority					
hit 1		MR3 Overflow In	terrunt Priorit	v bit			
bit i	1 = High pr	iority	terrupt i nont	y bit			
	0 = Low pri	iority					
bit 0	CCP2IP: CO	CP2 Interrupt Pri	ority bit				
	1 = High pr	iority					
	0 = Low pri	iority					

REGISTER 9-15: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CCPTMRS0	C3TSE	L<1:0>	—	C2TSE	L<1:0>	—	C1TS	C1TSEL<1:0>		
CCPTMRS1	—		—	_	C5TSE	L<1:0>	C4TS	EL<1:0>	201	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109	
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121	
IPR5	_		_	_		TMR6IP	TMR5IP	TMR4IP	124	
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117	
PIE5	—	_	—	—	_	TMR6IE	TMR5IE	TMR4IE	120	
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112	
PIR5	—	_	—	—	_	TMR6IF	TMR5IF	TMR4IF	116	
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52	
PR2			-	Timer2 Peri	od Register				—	
PR4			-	Timer4 Peri	od Register				—	
PR6			-	Timer6 Peri	od Register				—	
T2CON	—		T2OUTPS	S<3:0>		TMR2ON	T2CK	PS<1:0>	166	
T4CON	—		T4OUTPS	S<3:0>		TMR4ON	T4CK	PS<1:0>	166	
T6CON	—	T6OUTPS<3:0> TMR6ON T6CKPS<1:0>					PS<1:0>	166		
TMR2				Timer2	Register					
TMR4				Timer4 I	Register				—	
TMR6				Timer6 I	Register				_	

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by Timer2/4/6.

15.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDAx from a high-to -low state while SCLx line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an active state. Figure 15-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDAx line low before asserting it low. This does not conform to the I^2C specification that states no bus collision can occur on a Start.

15.4.6 STOP CONDITION

A Stop condition is a transition of the SDAx line from a low-to-high state while the SCLx line is high.

Note: At least one SCLx low time must appear before a Stop is valid, therefore, if the SDAx line goes low then high again while the SCLx line stays high, only the Start condition is detected.

15.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 15-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/W bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a high address with R/\overline{W} clear, or high address match fails.

15.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

FIGURE 15-12: I²C START AND STOP CONDITIONS

17.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF flag bit
- Update the ADRESH:ADRESL registers with new conversion result

17.2.3 DISCHARGE

The discharge phase is used to initialize the value of the capacitor array. The array is discharged after every sample. This feature helps to optimize the unity-gain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

17.2.4 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared by software. The ADRESH:ADRESL registers will not be updated with the partially complete Analog-to-Digital conversion sample. Instead, the ADRESH:ADRESL register pair will retain the value of the previous conversion.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

17.2.5 DELAY BETWEEN CONVERSIONS

After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, the currently selected channel is reconnected to the charge holding capacitor commencing the next acquisition.

17.2.6 ADC OPERATION IN POWER-MANAGED MODES

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT<2:0> and ADCS<2:0> bits in ADCON2 should be updated in accordance with the clock source to be used in that mode. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D FRC clock source should be selected.

17.2.7 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

17.2.8 SPECIAL EVENT TRIGGER

Two Special Event Triggers are available to start an A/D conversion: CTMU and CCP5. The Special Event Trigger source is selected using the TRIGSEL bit in ADCON1.

When TRIGSEL = 0, the CCP5 module is selected as the Special Event Trigger source. To enable the Special Event Trigger in the CCP module, set CCP5M<3:0> = 1011, in the CCP5CON register.

When TRIGSEL = 1, the CTMU module is selected. The CTMU module requires that the CTTRIG bit in CTMUCONH is set to enable the Special Event Trigger.

In addition to TRIGSEL bit, the following steps are required to start an A/D conversion:

- The A/D module must be enabled (ADON = 1)
- The appropriate analog input channel selected
- The minimum acquisition period set one of these ways:
 - Timing provided by the user
 - Selection made of an appropriate TACQ time

With these conditions met, the trigger sets the GO/DONE bit and the A/D acquisition starts.

If the A/D module is not enabled (ADON = 0), the module ignores the Special Event Trigger.

17.2.9 PERIPHERAL MODULE DISABLE

When a peripheral module is not used or inactive, the module can be disabled by setting the Module Disable bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the PMD bits holds the module in Reset and disconnects the module's clock source. The Module Disable bit for the ADC module is ADCMD in the PMD2 Register. See **Section 3.0 "Power-Managed Modes"** for more information.

24.2 Register Definitions: Configuration Word

REGISTER 24-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH

				ILE OID I EIX				
R/P-0	R/P-0	R/P-1	R/P-0	R/P-0	R/P-1	R/P-0	R/P-1	
IESO	IESO FCMEN PRICLKEN PLLCFG FOSC<3:0>							
bit 7							bit 0	
Legend:								
R = Readal	ole bit	P = Programn	nable bit	U = Unimple	mented bit, read	d as '0'		
-n = Value v	when device is un	programmed		x = Bit is unk	nown			
bit 7 bit 6	IESO⁽¹⁾: Inte 1 = Oscillator 0 = Oscillator FCMEN⁽¹⁾: F	rnal/External Os r Switchover mo r Switchover mo ail-Safe Clock I	scillator Switch ode enabled ode disabled Monitor Enable	nover bit e bit				
	1 = Fail-Safe 0 = Fail-Safe	Clock Monitor Clock Monitor	enabled disabled					
bit 5	PRICLKEN: 1 = Primary (0 = Primary (Primary Clock E Clock is always Clock can be dis	nable bit enabled sabled by soft	ware				
bit 4	PLLCFG: 4 > 1 = 4 x PLL a 0 = 4 x PLL is	CPLL Enable bialways enabled, s under softwar	t Oscillator mu e control, PLL	ltiplied by 4 EN (OSCTUN	E<6>)			
bit 3-0	 0 = 4 x PLL is under software control, PLLEN (OSCTUNE<6>) bit 3-0 FOSC<3:0>: Oscillator Selection bits 1111 = External RC oscillator, CLKOUT function on RA6 1100 = EC oscillator (low power, ≤500 kHz) 1000 = EC oscillator, CLKOUT function on OSC2 (low power, ≤500 kHz) 1011 = EC oscillator (medium power, 500 kHz-16 MHz) 1010 = EC oscillator, CLKOUT function on OSC2 (medium power, 500 kHz-16 MHz) 1010 = EC oscillator block, CLKOUT function on OSC2 (medium power, 500 kHz-16 MHz) 1011 = Internal oscillator block, CLKOUT function on OSC2 1000 = Internal oscillator block 0111 = External RC oscillator 0100 = EC oscillator, CLKOUT function on OSC2 1010 = External RC oscillator, CLKOUT function on OSC2 1011 = External RC oscillator, CLKOUT function on OSC2 1011 = External RC oscillator, CLKOUT function on OSC2 1011 = External RC oscillator, CLKOUT function on OSC2 1011 = External RC oscillator, CLKOUT function on OSC2 1011 = External RC oscillator, CLKOUT function on OSC2 1012 = External RC oscillator, CLKOUT function on OSC2 1013 = External RC oscillator, CLKOUT function on OSC2 1014 = EXTON CLE COUT function on OSC2 (high power, >16 MHz) 1050 = EC oscillator (high power, >16 MHz) 1050 = HS oscillator (high power, >16 MHz) 1050 = HS oscillator 1050 = LP oscillator 							
Note 1:	When FOSC<3:0:	> is configured	for HS, XT, or	LP oscillator a	nd FCMEN bit i	s set, then the I	ESO bit	

should also be set to prevent a false failed clock indication and to enable automatic clock switch over from the internal oscillator block to the external oscillator when the OST times out.

RCALL	Relative	Call				
Syntax:	RCALL r	۱				
Operands:	-1024 ≤ n :	≤ 1023				
Operation:	$\begin{array}{l} (PC) + 2 \rightarrow TOS, \\ (PC) + 2 + 2n \rightarrow PC \end{array}$					
Status Affected:	None					
Encoding:	1101	1nnn	nnnn	nnnn		
Description:	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction					
Words:	1					
Cycles:	2					
Q Cycle Activity:						

Q1	Q2	Q3	Q4
Decode	Read literal 'n' PUSH PC to stack	Process Data	Write to PC
No operation	No operation	No operation	No operation

Example: HERE RCALL Jump

Before Instruction

PC = Address (HERE)

After Instruction

PC = Address (Jump) TOS = Address (HERE + 2)

RESET Reset Syntax: RESET Operands: None Operation: Reset all registers and flags that are affected by a MCLR Reset. Status Affected: All Encoding: 0000 0000 1111 1111 Description: This instruction provides a way to execute a MCLR Reset by software. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Start No No Reset operation operation

After Instruction

Registers =	Reset Value
Flags* =	Reset Value

RESET

TBLWT	Table W	rite						
Syntax:	TBLWT (*	*; *+; *-; +*	r)					
Operands:	None							
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change; if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR;							
Status Affected:	None							
Encoding:	0000	0000	0000	11nn nn=0 * =1 *+ =2 *- =3 +*				
Description:	This instruction uses the three LSBs of TBLPTR to determine which of the eight holding registers the TABLAT is written to The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 6.0 "Flash Program Memory" for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-MByte address range. The LSb of the TBLPTR selects which byte of the program memory location to access. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word The TBLWT instruction can modify the value of TBLPTR as follows: • no change • post-increment • post-decrement							
Words:	1							
Cycles:	2							
Q Cycle Activity:	04	00	00	0.4				
	Q1	Q2	Q3	Q4				
	Decode	N0 operation	N0 operation	N0 operation				
	No	No	No	No				
	operation	operation (Read	operation	operation (Write to				

TBLWT Table Write (Continued)

Example1:	TBLWT *+;						
Before Instruction							
TABLAT TBLPTR HOLDIN		= =	55h 00A356h				
(00A35	6h)	=	FFh				
After Instructi	ons (table write	comp	letion)				
TABLAT		=	55h				
		=	00A357h				
(00A35	i6h)	=	55h				
Example 2:	TBLWT +*;						
Before Instrue	ction						
TABLAT		=	34h				
		=	01389Ah				
(01389 HOLDIN		=	FFh				
(01389	Bh)	=	FFh				
After Instructi	on (table write c	omple	etion)				
TABLAT		=	34h				
		=	01389Bh				
(01389 HOLDIN	Ah) IG REGISTER	=	FFh				
(01389	Bh)	=	34h				

TABLAT)

Holding Register)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions	
90	TSU:STA	Start Condition	100 kHz mode	4700		ns	Only relevant for Repeated	
		Setup Time	400 kHz mode	600	—		Start condition	
91	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first clock pulse is generated	
		Hold Time	400 kHz mode	600	—			
92	Tsu:sto	Stop Condition	100 kHz mode	4700	—	ns		
		Setup Time	400 kHz mode	600	—			
93	THD:STO	Stop Condition	100 kHz mode	4000		ns		
		Hold Time	400 kHz mode	600	—			

TABLE 27-15: I²C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

FIGURE 27-18: I²C BUS DATA TIMING

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions	
100 Тнідн	Тнідн	I Clock High Time	100 kHz mode	4.0	_	μS	Must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	_	μS	Must operate at a minimum of 10 MHz	
			SSP Module	1.5 TCY	_			
101	101 TLOW	Clock Low Time	100 kHz mode	4.7	_	μS	Must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3		μS	Must operate at a minimum of 10 MHz	
			SSP Module	1.5 TCY	_			
102	TR	SDA and SCL Rise	100 kHz mode	—	1000	ns		
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF	
103	103 TF	SDA and SCL Fall	100 kHz mode	—	300	ns		
	Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF		
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	—	μS	Only relevant for Repeated	
			400 kHz mode	0.6	—	μS	Start condition	
91	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first	
	Но	Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated	
106	106 Thd:da	Data Input Hold Time	100 kHz mode	0	_	ns		
	Т		400 kHz mode	0	0.9	μS		
107	TSU:DAT	Data Input Setup	100 kHz mode	250	_	ns	(Note 2)	
	Time	400 kHz mode	100	_	ns			
92	TSU:STO	Stop Condition Setup Time	100 kHz mode	4.7	—	μS		
			400 kHz mode	0.6	—	μS		
109	ΤΑΑ	Output Valid from	100 kHz mode	—	3500	ns	(Note 1)	
	Clock	400 kHz mode	—	—	ns			
110	110 TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free	
			400 kHz mode	1.3	_	μS	before a new transmission can start	
D102	Св	Bus Capacitive Loading		—	400	pF		

TABLE 27-16:	I ² C BUS DATA	REQUIREMENTS	(SLAVE MODE)
--------------	---------------------------	--------------	--------------

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A fast mode I²C bus device can be used in a standard mode I²C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification), before the SCL line is released.

FIGURE 28-13: PIC18LF2X/4XK22 DELTA IPD COMPARATOR HIGH-POWER MODE

FIGURE 28-76: PIC18LF2X/4XK22 TYPICAL IDD: SEC_IDLE 32.768 kHz

FIGURE 28-77: PIC18LF2X/4XK22 MAXIMUM IDD: SEC_IDLE 32.768 kHz

FIGURE 28-87: PIC18(L)F2X/4XK22 COMPARATOR OFFSET VOLTAGE,

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension Limits		MIN	NOM	MAX			
Contact Pitch	E	0.65 BSC					
Optional Center Pad Width	W2			4.25			
Optional Center Pad Length	T2			4.25			
Contact Pad Spacing	C1		5.70				
Contact Pad Spacing	C2		5.70				
Contact Pad Width (X28)	X1			0.37			
Contact Pad Length (X28)	Y1			1.00			
Distance Between Pads	G	0.20					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

S 2010-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0907-6