

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k22-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3: PIC18(L)F4XK22 PIN SUMMARY (CONTINUED)

40-PDIP	40-UQFN	44-TQFP	44-QFN	0/1	Analog	Comparator	СТМИ	SR Latch	Reference	(E)CCP	EUSART	MSSP	Timers	Interrupts	dn-lluq	Basic
9	24	26	26	RE1	AN6					P3B						
10	25	27	27	RE2	AN7					CCP5						
1	16	18	18	RE3											Y	MCLR VPP
11, 32	7, 26	7, 28	7,8 28, 29	Vdd												Vdd
12, 31	6, 27	6, 29	6, 30, 31	Vss												Vss
_	-	12, 13 33, 34	13	NC												

CCP2 multiplexed in fuses. T3CKI multiplexed in fuses. Note 1:

2:

3: CCP3/P3A multiplexed in fuses.

4: P2B multiplexed in fuses.

1.0 DEVICE OVERVIEW

This document contains device specific information for the following devices:

- PIC18F23K22 PIC18LF23K22
- PIC18F24K22 PIC18LF24K22
- PIC18F25K22
 PIC18LF25K22
- PIC18F26K22 PIC18LF26K22
- PIC18F43K22 PIC18LF43K22
- PIC18F44K22 PIC18LF44K22
- PIC18F45K22 PIC18LF45K22
- PIC18F46K22 PIC18LF46K22

This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Flash program memory. On top of these features, the PIC18(L)F2X/4XK22 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications.

1.1 New Core Features

1.1.1 XLP TECHNOLOGY

All of the devices in the PIC18(L)F2X/4XK22 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the Timer1 source or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%.
- Multiple Idle Modes: The controller can also run with its CPU core disabled but the peripherals still active. In these states, power consumption can be reduced even further, to as little as 4% of normal operation requirements.
- **On-the-fly Mode Switching:** The powermanaged modes are invoked by user code during operation, allowing the user to incorporate powersaving ideas into their application's software design.
- Low Consumption in Key Modules: The power requirements for both Timer1 and the Watchdog Timer are minimized. See Section 27.0 "Electrical Specifications" for values.

1.1.2 MULTIPLE OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC18(L)F2X/4XK22 family offer ten different oscillator options, allowing users a wide range of choices in developing application hardware. These include:

- Four Crystal modes, using crystals or ceramic resonators
- Two External Clock modes, offering the option of using two pins (oscillator input and a divide-by-4 clock output) or one pin (oscillator input, with the second pin reassigned as general I/O)
- Two External RC Oscillator modes with the same pin options as the External Clock modes
- An internal oscillator block which contains a 16 MHz HFINTOSC oscillator and a 31 kHz LFINTOSC oscillator, which together provide eight user selectable clock frequencies, from 31 kHz to 16 MHz. This option frees the two oscillator pins for use as additional general purpose I/O.
- A Phase Lock Loop (PLL) frequency multiplier, available to both external and internal oscillator modes, which allows clock speeds of up to 64 MHz. Used with the internal oscillator, the PLL gives users a complete selection of clock speeds, from 31 kHz to 64 MHz – all without using an external crystal or clock circuit.

Besides its availability as a clock source, the internal oscillator block provides a stable reference source that gives the family additional features for robust operation:

- Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the LFINTOSC. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued operation or a safe application shutdown.
- **Two-Speed Start-up:** This option allows the internal oscillator to serve as the clock source from Power-on Reset, or Wake-up from Sleep mode, until the primary clock source is available.

	Pin N	lumber			Pin	Buffer	
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description
21	40	40	36	RD2/P2B/AN22			
				RD2	I/O	ST	Digital I/O
				P2B ⁽¹⁾	0	CMOS	Enhanced CCP2 PWM output.
				AN22	I.	Analog	Analog input 22.
22	41	41	37	RD3/P2C/SS2/AN23			
				RD3	I/O	ST	Digital I/O.
				P2C	0	CMOS	Enhanced CCP2 PWM output.
				SS2	I	TTL	SPI slave select input (MSSP).
				AN23	I	Analog	Analog input 23.
27	2	2	2	RD4/P2D/SDO2/AN24			
				RD4	I/O	ST	Digital I/O.
				P2D	0	CMOS	Enhanced CCP2 PWM output.
				SDO2	0		SPI data out (MSSP).
				AN24	I	Analog	Analog input 24.
28	3	3	3	RD5/P1B/AN25			
				RD5	I/O	ST	Digital I/O.
				P1B	0	CMOS	Enhanced CCP1 PWM output.
				AN25	I	Analog	Analog input 25.
29	4	4	4	RD6/P1C/TX2/CK2/AN26			
				RD6	I/O	ST	Digital I/O.
				P1C	0	CMOS	Enhanced CCP1 PWM output.
				TX2	0	—	EUSART asynchronous transmit.
				CK2	I/O	ST	EUSART synchronous clock (see related RXx/ DTx).
				AN26	I	Analog	Analog input 26.
30	5	5	5	RD7/P1D/RX2/DT2/AN27			
				RD7	I/O	ST	Digital I/O.
				P1D	0	CMOS	Enhanced CCP1 PWM output.
				RX2	I	ST	EUSART asynchronous receive.
				DT2	I/O	ST	EUSART synchronous data (see related TXx/ CKx).
				AN27	I	Analog	Analog input 27.
8	25	25	23	RE0/P3A/CCP3/AN5			
				RE0	I/O	ST	Digital I/O.
				P3A ⁽²⁾	0	CMOS	Enhanced CCP3 PWM output.
				CCP3 ⁽²⁾	I/O	ST	Capture 3 input/Compare 3 output/PWM 3 output.
				AN5	I	Analog	Analog input 5.
9	26	26	24	RE1/P3B/AN6			
				RE1	I/O	ST	Digital I/O.
				P3B	0	CMOS	Enhanced CCP3 PWM output.
				AN6	I	Analog	Analog input 6.

TABLE 1-3: PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

2.2 Oscillator Control

The OSCCON, OSCCON2 and OSCTUNE registers (Register 2-1 to Register 2-3) control several aspects of the device clock's operation, both in full-power operation and in power-managed modes.

- Main System Clock Selection (SCS)
- Primary Oscillator Circuit Shutdown (PRISD)
- Secondary Oscillator Enable (SOSCGO)
- Primary Clock Frequency 4x multiplier (PLLEN)
- Internal Frequency selection bits (IRCF, INTSRC)
- Clock Status bits (OSTS, HFIOFS, MFIOFS, LFIOFS. SOSCRUN, PLLRDY)
- Power management selection (IDLEN)

2.2.1 MAIN SYSTEM CLOCK SELECTION

The System Clock Select bits, SCS<1:0>, select the main clock source. The available clock sources are

- Primary clock defined by the FOSC<3:0> bits of CONFIG1H. The primary clock can be the primary oscillator, an external clock, or the internal oscillator block.
- Secondary clock (secondary oscillator)
- Internal oscillator block (HFINTOSC, MFINTOSC and LFINTOSC).

The clock source changes immediately after one or more of the bits is written to, following a brief clock transition interval. The SCS bits are cleared to select the primary clock on all forms of Reset.

2.2.2 INTERNAL FREQUENCY SELECTION

The Internal Oscillator Frequency Select bits (IRCF<2:0>) select the frequency output of the internal oscillator block. The choices are the LFINTOSC source (31.25 kHz), the MFINTOSC source (31.25 kHz, 250 kHz or 500 kHz) and the HFINTOSC source (16 MHz) or one of the frequencies derived from the HFINTOSC postscaler (31.25 kHz to 8 MHz). If the internal oscillator block is supplying the main clock, changing the states of these bits will have an immediate change on the internal oscillator's output. On device Resets, the output frequency of the internal oscillator is set to the default frequency of 1 MHz.

2.2.3 LOW FREQUENCY SELECTION

When a nominal output frequency of 31.25 kHz is selected (IRCF<2:0> = 000), users may choose which internal oscillator acts as the source. This is done with the INTSRC bit of the OSCTUNE register and MFIOSEL bit of the OSCCON2 register. See Figure 2-2 and Register 2-1 for specific 31.25 kHz selection. This option allows users to select a 31.25 kHz clock (MFINTOSC or HFINTOSC) that can be tuned using the TUN<5:0> bits in OSCTUNE register, while maintaining power savings with a very low clock speed. LFINTOSC always remains the clock source for features such as the Watchdog Timer and the Fail-Safe Clock Monitor, regardless of the setting of INTSRC and MFIOSEL bits

This option allows users to select the tunable and more precise HFINTOSC as a clock source, while maintaining power savings with a very low clock speed.

2.2.4 POWER MANAGEMENT

The IDLEN bit of the OSCCON register determines whether the device goes into Sleep mode or one of the Idle modes when the SLEEP instruction is executed.

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FD7h	TMR0H	FAFh	SPBRG1	F87h	(2)	F5Fh	CCPR3H
FFEh	TOSH	FD6h	TMR0L	FAEh	RCREG1	F86h	(2)	F5Eh	CCPR3L
FFDh	TOSL	FD5h	TOCON	FADh	TXREG1	F85h	(2)	F5Dh	CCP3CON
FFCh	STKPTR	FD4h	(2)	FACh	TXSTA1	F84h	PORTE	F5Ch	PWM3CON
FFBh	PCLATU	FD3h	OSCCON	FABh	RCSTA1	F83h	PORTD ⁽³⁾	F5Bh	ECCP3AS
FFAh	PCLATH	FD2h	OSCCON2	FAAh	EEADRH ⁽⁴⁾	F82h	PORTC	F5Ah	PSTR3CON
FF9h	PCL	FD1h	WDTCON	FA9h	EEADR	F81h	PORTB	F59h	CCPR4H
FF8h	TBLPTRU	FD0h	RCON	FA8h	EEDATA	F80h	PORTA	F58h	CCPR4L
FF7h	TBLPTRH	FCFh	TMR1H	FA7h	EECON2 ⁽¹⁾	F7Fh	IPR5	F57h	CCP4CON
FF6h	TBLPTRL	FCEh	TMR1L	FA6h	EECON1	F7Eh	PIR5	F56h	CCPR5H
FF5h	TABLAT	FCDh	T1CON	FA5h	IPR3	F7Dh	PIE5	F55h	CCPR5L
FF4h	PRODH	FCCh	T1GCON	FA4h	PIR3	F7Ch	IPR4	F54h	CCP5CON
FF3h	PRODL	FCBh	SSP1CON3	FA3h	PIE3	F7Bh	PIR4	F53h	TMR4
FF2h	INTCON	FCAh	SSP1MSK	FA2h	IPR2	F7Ah	PIE4	F52h	PR4
FF1h	INTCON2	FC9h	SSP1BUF	FA1h	PIR2	F79h	CM1CON0	F51h	T4CON
FF0h	INTCON3	FC8h	SSP1ADD	FA0h	PIE2	F78h	CM2CON0	F50h	TMR5H
FEFh	INDF0 ⁽¹⁾	FC7h	SSP1STAT	F9Fh	IPR1	F77h	CM2CON1	F4Fh	TMR5L
FEEh	POSTINC0 ⁽¹⁾	FC6h	SSP1CON1	F9Eh	PIR1	F76h	SPBRGH2	F4Eh	T5CON
FEDh	POSTDEC0 ⁽¹⁾	FC5h	SSP1CON2	F9Dh	PIE1	F75h	SPBRG2	F4Dh	T5GCON
FECh	PREINC0 ⁽¹⁾	FC4h	ADRESH	F9Ch	HLVDCON	F74h	RCREG2	F4Ch	TMR6
FEBh	PLUSW0 ⁽¹⁾	FC3h	ADRESL	F9Bh	OSCTUNE	F73h	TXREG2	F4Bh	PR6
FEAh	FSR0H	FC2h	ADCON0	F9Ah	(2)	F72h	TXSTA2	F4Ah	T6CON
FE9h	FSR0L	FC1h	ADCON1	F99h	(2)	F71h	RCSTA2	F49h	CCPTMRS0
FE8h	WREG	FC0h	ADCON2	F98h	(2)	F70h	BAUDCON2	F48h	CCPTMRS1
FE7h	INDF1 ⁽¹⁾	FBFh	CCPR1H	F97h	(2)	F6Fh	SSP2BUF	F47h	SRCON0
FE6h	POSTINC1 ⁽¹⁾	FBEh	CCPR1L	F96h	TRISE	F6Eh	SSP2ADD	F46h	SRCON1
FE5h	POSTDEC1 ⁽¹⁾	FBDh	CCP1CON	F95h	TRISD ⁽³⁾	F6Dh	SSP2STAT	F45h	CTMUCONH
FE4h	PREINC1 ⁽¹⁾	FBCh	TMR2	F94h	TRISC	F6Ch	SSP2CON1	F44h	CTMUCONL
FE3h	PLUSW1 ⁽¹⁾	FBBh	PR2	F93h	TRISB	F6Bh	SSP2CON2	F43h	CTMUICON
FE2h	FSR1H	FBAh	T2CON	F92h	TRISA	F6Ah	SSP2MSK	F42h	VREFCON0
FE1h	FSR1L	FB9h	PSTR1CON	F91h	(2)	F69h	SSP2CON3	F41h	VREFCON1
FE0h	BSR	FB8h	BAUDCON1	F90h	(2)	F68h	CCPR2H	F40h	VREFCON2
FDFh	INDF2 ⁽¹⁾	FB7h	PWM1CON	F8Fh	(2)	F67h	CCPR2L	F3Fh	PMD0
FDEh	POSTINC2 ⁽¹⁾	FB6h	ECCP1AS	F8Eh	(2)	F66h	CCP2CON	F3Eh	PMD1
FDDh	POSTDEC2 ⁽¹⁾	FB5h	(2)	F8Dh	LATE ⁽³⁾	F65h	PWM2CON	F3Dh	PMD2
FDCh	PREINC2 ⁽¹⁾	FB4h	T3GCON	F8Ch	LATD ⁽³⁾	F64h	ECCP2AS	F3Ch	ANSELE
FDBh	PLUSW2 ⁽¹⁾	FB3h	TMR3H	F8Bh	LATC	F63h	PSTR2CON	F3Bh	ANSELD
FDAh	FSR2H	FB2h	TMR3L	F8Ah	LATB	F62h	IOCB	F3Ah	ANSELC
FD9h	FSR2L	FB1h	T3CON	F89h	LATA	F61h	WPUB	F39h	ANSELB
FD8h	STATUS	FB0h	SPBRGH1	F88h	(2)	F60h	SLRCON	F38h	ANSELA

TABLE 5-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F2X/4XK22 DEVICES

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: PIC18(L)F4XK22 devices only.

4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

EXAMPLE 6-3: WRITING TO FLASH PROGRAM MEMORY (CONTINUED)

	DECFSZ	COUNTER	; loop until holding registers are full
	BRA	WRITE_WORD_TO_HREGS	
PROGRAM_MEMORY			
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	
Required	MOVWF	EECON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start program (CPU stall)
	DCFSZ	COUNTER2	; repeat for remaining write blocks
	BRA	WRITE_BYTE_TO_HREGS	;
	BSF	INTCON, GIE	; re-enable interrupts
	BCF	EECON1, WREN	; disable write to memory

6.6.2 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

6.6.3 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed if needed. If the write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the WRERR bit will be set which the user can check to decide whether a rewrite of the location(s) is needed.

6.6.4 PROTECTION AGAINST SPURIOUS WRITES

To protect against spurious writes to Flash program memory, the write initiate sequence must also be followed. See **Section 24.0** "**Special Features of the CPU**" for more detail.

6.7 Flash Program Operation During Code Protection

See Section 24.5 "Program Verification and Code Protection" for details on code protection of Flash program memory.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TBLPTRU		—	Prog	ram Memory T	able Pointer U	pper Byte (TB	LPTR<21:16>)		—
TBLPTRH	Program Memory Table Pointer High Byte (TBLPTR<15:8>)								
TBLPTRL	Program Memory Table Pointer Low Byte (TBLPTR<7:0>)								
TABLAT	Program Memory Table Latch								—
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
EECON2		EEPR	OM Contro	ol Register 2 (I	not a physical	register)			—
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	92
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118

TABLE 6-2: REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Legend: — = unimplemented, read as '0'. Shaded bits are not used during Flash/EEPROM access.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—	—	—	TMR6IF	TMR5IF	TMR4IF
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	U = Unimpler	mented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2	TMR6IF: TMF	R6 to PR6 Mate	ch Interrupt Fla	ag bit			
	1 = TMR6 to	PR6 match oc	curred (must b	be cleared in s	oftware)		
	0 = No TMR6	6 to PR6 match	occurred				
bit 1	TMR5IF: TMF	R5 Overflow Int	errupt Flag bi	t			
	1 = TMR5 reg	gister overflow	ed (must be cl	eared in softw	are)		
	0 = TMR5 reg	gister did not o	verflow				
bit 0	TMR4IF: TMF	R4 to PR4 Mate	ch Interrupt Fla	ag bit			
	1 = TMR4 to	PR4 match oc	curred (must b	be cleared in s	oftware)		
	0 = No TMR4	to PR4 match	occurred				

REGISTER 9-8: PIR5: PERIPHERAL INTERRUPT (FLAG) REGISTER 5

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ANSELA	—	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0	149	
CM1CON0	C10N	C10UT	C10E	C1POL	C1SP	C1R	C1CH	l<1:0>	308	
CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2SP	C2R	C2CH	l<1:0>	308	
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	152	
VREFCON1	DACEN	DACLPS	DACOE	—	DACP	SS<1:0>	—	DACNSS	335	
VREFCON2	—	—			DACR<4:0>					
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN		HLVDL	<3:0>		337	
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	148	
SLRCON	—	—	_	SLRE	SLRD	SLRC	SLRB	SLRA	153	
SRCON0	SRLEN	S	RCLK<2:0	>	SRQEN	SRNQEN	SRPS	SRPR	329	
SSP1CON1	WCOL	SSPOV	SSPEN	CKP	SSPM<3:0>				253	
TOCON	TMR0ON	T08BIT	TOCS	T0SE	PSA T0PS<2:0>				154	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151	

TABLE 10-2: REGISTERS ASSOCIATED WITH PORTA

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTA.

TABLE 10-3: CONFIGURATION REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CONFIG1H	IESO	FCMEN	PRICLKEN	PLLCFG	FOSC<3:0>				345	

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTA.

10.5 PORTD Registers

Note:	PORTD is only available on 40-pin and
	44-pin devices.

PORTD is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., disable the output driver). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

All of the PORTD pins are multiplexed with analog and digital peripheral modules. See Table 10-11.

Note: On a Power-on Reset, these pins are configured as analog inputs.

EXAMPLE 10-4: INITIALIZING PORTD

MOVLB	0xF	; Set BSR for banked SFRs
CLRF	PORTD	; Initialize PORTD by
		; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs
MOVLW	30h	; Value used to
		; enable digital inputs
MOVWF	ANSELD	; RD<3:0> dig input enable
		; RC<7:6> dig input enable
1		

10.5.1 PORTD OUTPUT PRIORITY

Each PORTD pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the higher priority. Table 10-4 lists the PORTD pin functions from the highest to the lowest priority.

Analog input functions, such as ADC, comparator and SR latch inputs, are not shown in the priority lists.

These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below.

© 2010-2016 Microchip Technology Inc.

15.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCLx pin is held low (see **Section 15.5.6 "Clock Stretching"** for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then the SCLx pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCLx input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes Idle and waits for another occurrence of the Start bit. If the SDAx line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, the SCLx pin must be released by setting bit CKP.

An MSSPx interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

15.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDAx line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCLxIF bit of the PIRx register is set. Once a bus collision is detected, the slave goes Idle and waits to be addressed again. User software can use the BCLxIF bit to handle a slave bus collision.

15.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 15-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDAx and SCLx.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/W bit set is received by the slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCLx, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.

Note 1: If the master ACKs the clock will be stretched.

2: ACKSTAT is the only bit updated on the rising edge of SCLx (9th) rather than the falling.

- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

15.7 Baud Rate Generator

The MSSPx module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 15-7). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 15-40 triggers the value from SSPxADD to be loaded into the BRG counter.

This occurs twice for each oscillation of the module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSPx is being operated in.

Table 15-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

$$FCLOCK = \frac{Fosc}{(SSPxADD + 1)(4)}$$

FIGURE 15-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 15-3: MSSPx CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	Fclock (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz ⁽¹⁾
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
		ITRIM	1<5:0>			IRNG	i<1:0>						
bit 7							bit 0						
Legend:													
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'							
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown						
bit 7-2	ITRIM<5:0	-: Current Source	e Trim bits										
	011111 = Maximum positive change from nominal current												
	011110												
	•												
	•												
	000001 =	Minimum positive	change from	nominal current									
	000000 = 1	000000 = Nominal current output specified by IRNG<1:0>											
	111111 = 	111111 = Minimum negative change from nominal current											
	•												
	•												
	•												
	100001 =	Maximum negativ	e change fror	n nominal currer	nt								
bit 1-0	IRNG<1:0>	IRNG<1:0>: Current Source Range Select bits (see Table 27-4)											
	11 = 100 ×	Base current	U	,	,								
	$10 = 10 \times E$	Base current											
	01 = Base	current level											
	00 = Curre	nt source disable	d										

REGISTER 19-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
CTMUCONH	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	323
CTMUCONL	EDG2POL	EDG2SE	:L<1:0>	EDG1POL	EDG1S	EL<1:0>	EDG2STAT	EDG1STAT	324
CTMUICON			ITRI	M<5:0>			IRNG	<1:0>	325
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD2	_		—	-	CTMUMD	CMP2MD	CMP1MD	ADCMD	54

Legend: — = unimplemented, read as '0'. Shaded bits are not used during CTMU operation.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—			DACR<4:0>				
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all				R/Value at all o	ther Resets				
'1' = Bit is set		'0' = Bit is clea	ared						

REGISTER 22-2: VREFCON2: VOLTAGE REFERENCE CONTROL REGISTER 1

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits VOUT = ((VSRC+) - (VSRC-))*(DACR<4:0>/(2⁵)) + VSRC-

TABLE 22-1: REGISTERS ASSOCIATED WITH DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
VREFCON0	FVREN	FVRST	FVRS<1:0>		—	—	—	—	332
VREFCON1	DACEN	DACLPS	DACOE	—	DACPSS<1:0>		—	DACNSS	335
VREFCON2	—	—	—			DACR<4:0>			336

Legend: — = Unimplemented locations, read as '0'. Shaded bits are not used by the DAC module.

CALLW	Subroutir	ne Call Using	g WREG	МО	VSF	Move Ind	exed to f	
Syntax:	CALLW			Syn	tax:	MOVSF [z _s], f _d	
Operands:	None			Ope	rands:	$0 \le z_s \le 12$	7	
Operation:	$(PC + 2) \rightarrow$	TOS,				$0 \le f_d \le 409$	95	
	$(W) \rightarrow PCL$., 		Ope	ration:	((FSR2) + :	$z_s) \rightarrow f_d$	
	(PCLATH) - (PCLATH) -	→ PCH, → PCU		Stat	us Affected:	None		
Status Affected:	None			Enc	oding:			
Encodina:	0000	0000 000	01 0100	1st v 2nd	word (source) word (destin.)	1110	1011 Oz ffff ff	zz zzzz _s ff ffffa
Description	First, the re	turn address (PC + 2) is	Des	cription:	The conter	ts of the source	ce register are
Words: Cycles: Q Cycle Activity: Q1 Decode	Pilst, the fee pushed ont contents of existing val contents of latched into respectively executed as new next in Unlike CAL update W, S 1 2 Q2 Read	Q3 PUSHPC to	Q4	Wor	ds:	moved to d actual addi determined offset ' z_s ' ir FSR2. The register is s 'f _d ' in the so can be any space (000 The MOVSE PCL, TOSI destination If the result an indirect value return 2	lestination register lestination register l by adding the address of the sou address of the specified by th econd word. B where in the 4 h to FFFh). instruction ca J, TOSH or TC register. cant source ad addressing re ned will be 001	ister 'f _d '. The irce register is e 7-bit literal to the value of e destination e 12-bit literal oth addresses .096-byte data
	WREG	stack	operation	Cyc	les:	2		
No	No	No	No	QC	Cycle Activity:			
operation	operation	operation	operation		Q1	Q2	Q3	Q4
					Decode	Determine	Determine	Read
Example:	HERE	CALLW			Decode	No	No	Write
PC PCLATH PCLATH PCLATU W After Instructio	tion = address = 10h = 00h = 06h	(HERE)				operation No dummy read	operation	register 'f' (dest)
PC TOS	= 001006 = address	h 6 (HERE + 2)	<u>Exa</u>	mple:	MOVSF	[05h], REG2	2
PCLATH PCLATU W	= 10h = 00h = 06h				Before Instruct FSR2 Contents of 85h REG2 After Instruction FSR2 Contents of 85h REG2	xtion = 80 = 33 = 11 on = 80 5 = 33 = 33	ih h h ih ih	

MO\	/SS	Move Inde	Move Indexed to Indexed							
Synta	ax:	MOVSS [z	z _s], [z _d]							
Oper	ands:	$0 \le z_s \le 127$ $0 \le z_d \le 127$	7 7							
Oper	ation:	((FSR2) + z	$((FSR2) + z_s) \rightarrow ((FSR2) + z_d)$							
Statu	s Affected:	None								
Enco 1st w 2nd v	ding: ord (source) vord (dest.)	1110 1011 1zzz zzz: 1111 xxxx xzzz zzz:								
Desc	ription	The conten moved to th addresses of registers ar 7-bit literal of respectively registers ca the 4096-by (000h to FF The MOVSS PCL, TOSL destination If the results an indirect a value return resultant de an indirect a	LILL XXXX XZZZ ZZZ _d The contents of the source register are moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets 'z _s ' or 'z _d ', respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an indirect addressing register, the value returned will be 00h. If the resultant destination address points to							
Word	ls:	2	2							
Cycle	es:	2								
QC	ycle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	Determine	Determine	e	Read					
		source addr	source ad	dr so	urce reg					
	Decode	Determine dest addr	Determine dest add	e to	Write dest reg					

Example:	MOVSS	[05h],	[06h]
Before Instruction	on		
FSR2	=	80h	
of 85h Contents	=	33h	
of 86h	=	11h	
After Instruction			
FSR2	=	80h	
Contents of 85h	=	33h	
of 86h	=	33h	

PUS	HL	S	tore Liter	al a	FSR	2, Decr	em	ent FSR2			
Synta	ax:	Р	USHL k								
Oper	ands:	0	≤ k ≤ 255								
Oper	ation:	k F	$k \rightarrow (FSR2),$ FSR2 – 1 \rightarrow FSR2								
Statu	s Affected:	N	one								
Enco	ding:		1111	10	10	kkkk		kkkk			
Description:			ne 8-bit lite emory add decremer nis instruc nto a softw	eral ' dress nted tion a vare	k' is w s spec by 1 a allows stack.	vritten to cified by after the s users to	the FS ope pu	e data R2. FSR2 eration. ush values			
Word	ls:	1									
Cycle	es:	1									
QC	ycle Activity	' :									
	Q1		Q2		Q3		Q4				
	Decode		Read 'k'		Process data		d	Write to estination			
Example: PUSI Before Instruction FSR2H:FSR2L Memory (01ECh				081	- = =	01ECh 00h					
	After Instru FSR2I Memo	ctio H:F ry (n SR2L (01ECh)		= =	01EBh 08h					

TABLE 27-10: CLKOUT AND I/O TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
10	TosH2ckL	OSC1 ↑ to CLKOUT ↓		75	200	ns	(Note 1)
11	TosH2ckH	OSC1 ↑ to CLKOUT ↑	—	75	200	ns	(Note 1)
12	TckR	CLKOUT Rise Time	—	35	100	ns	(Note 1)
13	TckF	CLKOUT Fall Time	_	35	100	ns	(Note 1)
14	TckL2ioV	CLKOUT ↓ to Port Out Valid	_	_	0.5 Tcy + 20	ns	(Note 1)
15	TioV2ckH	Port In Valid before CLKOUT \uparrow	0.25 TCY + 25	_	_	ns	(Note 1)
16	TckH2iol	Port In Hold after CLKOUT ↑	0	_	_	ns	(Note 1)
17	TosH2ioV	OSC1 \uparrow (Q1 cycle) to Port Out Valid	_	50	150	ns	
18	TosH2iol	OSC1 \uparrow (Q2 cycle) to Port Input Invalid (I/O in hold time)	100		—	ns	
19	TioV2osH	Port Input Valid to OSC1 \uparrow (I/O in setup time)	0	_	_	ns	
20	TioR	Port Output Rise Time	_	40 15	72 32	ns ns	VDD = 1.8V VDD = 3.3V - 5.0V
21	TioF	Port Output Fall Time		28 15	55 30	ns ns	VDD = 1.8V VDD = 3.3V - 5.0V
22†	TINP	INTx pin High or Low Time	20	—	_	ns	
23†	TRBP	RB<7:4> Change KBIx High or Low Time	Тсү	_		ns	

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKOUT output is 4 x Tosc.

FIGURE 28-60: PIC18LF2X/4XK22 TYPICAL IDD: PRI_IDLE EC MEDIUM POWER

FIGURE 28-87: PIC18(L)F2X/4XK22 COMPARATOR OFFSET VOLTAGE,