

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k22t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-7: TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE

3.4.3 RC IDLE MODE

In RC IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block from the HFINTOSC multiplexer output. This mode allows for controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. It is recommended that SCS0 also be cleared, although its value is ignored, to maintain software compatibility with future devices. The HFINTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the HFINTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value, or either the INTSRC or MFIOSEL bits are set, the HFINTOSC output is enabled. Either the HFIOFS or the MFIOFS bits become set, after the HFINTOSC output stabilizes after an interval of TIOBST. For information on the HFIOFS and MFIOFS bits, see Table 3-2.

Clocks to the peripherals continue while the HFINTOSC source stabilizes. The HFIOFS and MFIOFS bits will remain set if the IRCF bits were previously set at a non-zero value or if INTSRC was set before the SLEEP instruction was executed and the HFINTOSC source was already stable. If the IRCF bits and INTSRC are all clear, the HFINTOSC output will not be enabled, the HFIOFS and MFIOFS bits will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the HFINTOSC multiplexer output. After a delay of TCSD following the wake event, the CPU begins executing code being clocked by the HFINTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The LFINTOSC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads

The POP instruction discards the current TOS by

decrementing the Stack Pointer. The previous value

pushed onto the stack then becomes the TOS value.

the current PC value onto the stack.

5.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack without disturbing normal program execution is a desirable feature. The PIC18 instruction set includes two instructions. PUSH and POP. that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

5.2 **Register Definitions: Stack Pointer**

REGISTER 5-1: STKPTR: STACK POINTER REGISTER

R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾	—			STKPTR<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	C = Clearable only bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	STKFUL: Stack Full Flag bit ⁽¹⁾
	1 = Stack became full or overflowed
	0 = Stack has not become full or overflowed
bit 6	STKUNF: Stack Underflow Flag bit ⁽¹⁾
	1 = Stack Underflow occurred
	0 = Stack Underflow did not occur
bit 5	Unimplemented: Read as '0'

bit 4-0 STKPTR<4:0>: Stack Pointer Location bits

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

Stack Full and Underflow Resets 5.2.0.1

Device Resets on Stack Overflow and Stack Underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

FAST REGISTER STACK 5.2.1

A fast register stack is provided for the Status, WREG and BSR registers, to provide a "fast return" option for interrupts. The stack for each register is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the stack registers. The values in the registers are then loaded back into their associated registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high priority interrupts are enabled, the stack registers cannot be used reliably to return from low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten. In these cases, users must save the key registers by software during a low priority interrupt.

If interrupt priority is not used, all interrupts may use the fast register stack for returns from interrupt. If no interrupts are used, the fast register stack can be used to restore the Status, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a CALL label, FAST instruction must be executed to save the Status, WREG and BSR registers to the fast register stack. A RETURN, FAST instruction is then executed to restore these registers from the fast register stack.

Example 5-1 shows a source code example that uses the fast register stack during a subroutine call and return.

© 2010-2016 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109	
EEADR	EEADR7	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	-	
EEADRH ⁽¹⁾	_	—	—	—	—	—	EEADR9	EEADR8	_	
EEDATA	EEPROM Data Register									
EECON2		EEPR	OM Contro	l Register 2	2 (not a phy	sical registe	er)		_	
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	100	
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122	
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113	
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118	

TABLE 7-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Legend: — = unimplemented, read as '0'. Shaded bits are not used during EEPROM access.

Note 1: PIC18(L)F26K22 and PIC18(L)F46K22 only.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u
TMRxGE	TxGPOL	TxGTM	TxGSPM	TxGGO/DONE	TxGVAL	TxGSS	5<1:0>
bit 7	·						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemer	nted bit, read a	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at F	POR and BOR	/Value at all ot	her Resets
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is clear	ed by hardwar	re	
bit 7	TMRxGE: Tir <u>If TMRxON =</u> This bit is igno <u>If TMRxON =</u> 1 = Timer1/3 0 = Timer1/3	ner1/3/5 Gate <u>0</u> : ored <u>1</u> : /5 counting is c /5 counts regal	Enable bit controlled by the rdless of Time	ne Timer1/3/5 gate r1/3/5 gate functio	e function n		
bit 6	TxGPOL: Tim 1 = Timer1/3 0 = Timer1/3	ner1/3/5 Gate F /5 gate is activ /5 gate is activ	Polarity bit e-high (Timer1 e-low (Timer1/	/3/5 counts when 3/5 counts when g	gate is high) gate is low)		
bit 5	TxGTM: Time 1 = Timer1/3 0 = Timer1/3 Timer1/3/5 ga	er1/3/5 Gate To /5 Gate Toggle /5 Gate Toggle ate flip-flop togg	ggle Mode bit mode is enab mode is disat gles on every r	led bled and toggle flip rising edge.	o-flop is cleare	d	
bit 4	TxGSPM: Tin 1 = Timer1/3 0 = Timer1/3	ner1/3/5 Gate 3 /5 gate Single- /5 gate Single-	Single-Pulse M Pulse mode is Pulse mode is	lode bit enabled and is co disabled	ontrolling Time	r1/3/5 gate	
bit 3	TxGGO/DON 1 = Timer1/3 0 = Timer1/3 This bit is aut	E: Timer1/3/5 /5 gate single- _l /5 gate single- _l omatically clea	Gate Single-P oulse acquisition oulse acquisition red when TxG	ulse Acquisition S on is ready, waitin on has completed SPM is cleared.	tatus bit g for an edge or has not bee	en started	
bit 2	TxGVAL: Tim Indicates the Unaffected by	ner1/3/5 Gate C current state o / Timer1/3/5 Ga	Current State b f the Timer1/3, ate Enable (TM	it /5 gate that could /IRxGE).	be provided to	TMRxH:TMR	xL.
bit 1-0	TxGSS<1:0> 00 = Timer1/3 01 = Timer2/4 10 = Compar 11 = Compar	: Timer1/3/5 G 3/5 Gate pin 4/6 Match PR2 ator 1 optional ator 2 optional	ate Source Se /4/6 output (Se ly synchronize ly synchronize	lect bits ee Table 12-5 for p d output (sync_C1 d output (sync_C2	proper timer m IOUT) 2OUT)	atch selection))

REGISTER 12-2: TXGCON: TIMER1/3/5 GATE CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	150
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	_	150
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR2	OSCFIP	C1IP	C2IP	EEIP	EEIP BCL1IP HLVDIP TMR3IP CCP2IP		122		
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP TMR1GIP		123
IPR5	_	_				TMR6IP	TMR5IP	TMR4IP	124
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIE5	_	—	_	_	—	TMR6IE	TMR5IE	TMR4IE	120
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PIR5	_	—	_	_	—	TMR6IF	TMR5IF	TMR4IF	116
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
T1CON	TMR1C	S<1:0>	T1CK	PS<1:0>	T1SOSCEN	T1SYNC	T1RD16	TMR10N	166
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS	S<1:0>	167
T3CON	TMR3C	S<1:0>	T3CK	PS<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	166
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GSS	S<1:0>	167
T5CON	TMR5C	S<1:0>	T5CK	PS<1:0>	T5SOSCEN	T5SYNC	T5RD16	TMR5ON	166
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GSS	S<1:0>	167
TMR1H		Holdin	g Register fo	r the Most Sign	ificant Byte of the 1	6-bit TMR1 Reg	gister		_
TMR1L			Least S	ignificant Byte	of the 16-bit TMR1	Register			_
TMR3H		Holdin	g Register fo	r the Most Sign	ificant Byte of the 1	6-bit TMR3 Reg	gister		—
TMR3L			Least S	ignificant Byte	of the 16-bit TMR3	Register			_
TMR5H	Holding Register for the Most Significant Byte of the 16-bit TMR5 Register								_
TMR5L			Least S	ignificant Byte	of the 16-bit TMR5	Register			—
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151

TABLE 12-6: REGISTERS ASSOCIATED WITH TIMER1/3/5 AS A TIMER/COUNTER

TABLE 12-7: CONFIGURATION REGISTERS ASSOCIATED WITH TIMER1/3/5

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
CONFIG3H	MCLRE		P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

FIGURE 15-9:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
	\ \										
- 80%) ((367 - 2 - 0%) - 0)	2 2 2 2										· · · ·
- 80%x - (389° = 0, - (389° = 0)	·										3
980908-00 SURPARATE VIREA	•		2 2 2 2 4	2 5 5 5 7	4 6 5 6 	· · · · · · · · · · · · · · · · · · · ·	2 2 2 2 2 2	· · · · · · · · · · · · · · · · · · · ·	<pre><</pre>		• • • • •
- 555%)×		1. 232. 7 			1933 4. 	X 88.3	7. 398. 2.	/		68 0 Ma	· · · · · · · · · · · · · · · · · · ·
		- 1997 - 1995 - 7 - 1996 - 1997				, ""///// . 4, .				//// -3	· ·
- 1920-1925 - 3557255 - 1936/1925			2		(·	2		5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
- Fileg - SSP2SR & - SSF2SDF	•	· · ·	2 2 2 2	 2 2 2	\$ 5 5 5 • • • • • • • • • • • • • • • • •	· · · ·	2		6 6 5 6 5 5 5	: //p.	
Varias Codiscon detection activa									. ,		~~

FIGURE 15-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

								/			
SSx Nex Optional										/	
SCKx (CKP = <u>0</u> CKE = 1)	, , , , ,										
SCKx (CKP = 1 CKE = 1)	; ; ; ;										
Write to SSPxBUF	 	1 1 1 1 1	1 1 1 1	 	 	 	1 1 1 1	 			
SDOx	<u> </u>	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
SDIx ———		bit 7	\bigcirc		\sim		\rightarrow	\sim	bit 0	, , , , ,	
Input Sample	1 1 1 1	1	1	1	1	1	1	1	1		
SSPxIF Interrupt Flag	1 1 1 1 1			, , , , ,	 	, , , , ,	1 1 1 1 1	 			
SSPxSR to SSPxBUF	1 1 1 1 1	1 1 1 1 1		 	1 1 1 1	 	, , , ,	1 1 1 1		×	
Wille Collesion detection police	1	•			•		•				

FIGURE 15-17: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)

FIGURE 15-19:

FIGURE 15-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

15.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSPx interrupt is enabled).

15.6.11 EFFECTS OF A RESET

A Reset disables the MSSPx module and terminates the current transfer.

15.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSPx interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

R/C/HS-0	R/C/HS-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPxOV	SSPxEN	СКР		SSPxN	N<3:0>	
bit 7		•		-			bit 0
L							
Legend:							
R = Readable bi	t	W = Writable bi	t	U = Unimpleme	ented bit, read as	'0'	
u = Bit is unchar	iged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	alue at all other F	Resets
'1' = Bit is set		'0' = Bit is clear	ed	HS = Bit is set	by hardware	C = User cleare	d
bit 7 bit 6	WCOL: Write C <u>Master mode</u> : 1 = A write to be started 0 = No collision <u>Slave mode</u> : 1 = The SSPxI $0 = No$ collision SSPxOV : Rece <u>In SPI mode</u> : 1 = A new byte in SSPxSF if only trans- tion (and tr 0 = No overflod <u>In I²C mode</u> : 1 = A byte is r Transmit	Collision Detect b the SSPxBUF re bon BUF register is wr on eive Overflow Ind e is received while R is lost. Overflow smitting data, to a ransmission) is ini ow	it gister was atte itten while it is s icator bit ⁽¹⁾ e the SSPxBUF can only occur void setting ove tiated by writing e SSPxBUF re eared in softw	empted while the I till transmitting the register is still hold in Slave mode. In S rflow. In Master mo to the SSPxBUF gister is still holdi are)	² C conditions we previous word (mu ding the previous of Slave mode, the us ode, the overflow b register (must be ng the previous b	re not valid for a ist be cleared in so data. In case of ov ser must read the S bit is not set since e cleared in softward byte. SSPxOV is a	transmission to oftware) rerflow, the data SSPxBUF, even each new recep- e). a "don't care" in
bit 5	0 = No overflo SSPxEN: Sync In both modes, <u>In SPI mode</u> : 1 = Enables se 0 = Disables se <u>In I²C mode</u> : 1 = Enables th	w chronous Serial F when enabled, t erial port and cont serial port and co he serial port and co	Fort Enable bit hese pins mus igures SCKx, S nfigures these configures the S	t be properly conf SDOx, SDIx and S pins as I/O port p SDAx and SCLx pir	igured as input of \overline{Sx} as the source of	r output of the serial port pi f the serial port pin	_{ns} (2) _s (3)
bit 4	$0 = \text{Disables s}$ $CKP: Clock Po$ $In SPI mode:$ $1 = Idle state for$ $0 = Idle state for$ $O = Idle state for$ $SCLx release of$ $1 = Enable clock$ $In I^2C Master m$ Unused in this	serial port and co larity Select bit or clock is a high or clock is a low le ode: control ck k low (clock streto node: mode	ntigures these level evel ch). (Used to e	pins as I/O port p	ins time.)		

REGISTER 15-3: SSPxCON1: SSPx CONTROL REGISTER 1

19.4 Measuring Capacitance with the CTMU

There are two separate methods of measuring capacitance with the CTMU. The first is the absolute method, in which the actual capacitance value is desired. The second is the relative method, in which the actual capacitance is not needed, rather an indication of a change in capacitance is required.

19.4.1 ABSOLUTE CAPACITANCE MEASUREMENT

For absolute capacitance measurements, both the current and capacitance calibration steps found in **Section 19.3 "Calibrating the CTMU Module"** should be followed. Capacitance measurements are then performed using the following steps:

- 1. Initialize the A/D Converter.
- 2. Initialize the CTMU.
- 3. Set EDG1STAT.
- 4. Wait for a fixed delay, *T*.
- 5. Clear EDG1STAT.
- 6. Perform an A/D conversion.
- 7. Calculate the total capacitance, CTOTAL = (I * T)/V, where *I* is known from the current source measurement step (see **Section 19.3.1 "Current Source Calibration"**), *T* is a fixed delay and *V* is measured by performing an A/D conversion.
- 8. Subtract the stray and A/D capacitance (*C*OFFSET from **Section 19.3.2** "**Capacitance Calibration**") from *CTOTAL* to determine the measured capacitance.

19.4.2 RELATIVE CHARGE MEASUREMENT

An application may not require precise capacitance measurements. For example, when detecting a valid press of a capacitance-based switch, detecting a relative change of capacitance is of interest. In this type of application, when the switch is open (or not touched), the total capacitance is the capacitance of the combination of the board traces, the A/D Converter, etc. A larger voltage will be measured by the A/D Converter. When the switch is closed (or is touched), the total capacitance is larger due to the addition of the capacitances, and a smaller voltage will be measured by the A/D Converter.

Detecting capacitance changes is easily accomplished with the CTMU using these steps:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT.
- 3. Wait for a fixed delay.
- 4. Clear EDG1STAT.
- 5. Perform an A/D conversion.

The voltage measured by performing the A/D conversion is an indication of the relative capacitance. Note that in this case, no calibration of the current source or circuit capacitance measurement is needed. See Example 19-4 for a sample software routine for a capacitive touch switch.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		ITRIM	1<5:0>			IRNG	i<1:0>
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7-2	ITRIM<5:0	-: Current Source	e Trim bits				
	011111 =	Maximum positive	change from	nominal curren	t		
	011110						
	•						
	•						
	000001 =	Minimum positive	change from	nominal current			
	1 = 000000	Nominal current o	utput specifie	d by IRNG<1:0>	•		
	111111 = 	Minimum negative	e change from	n nominal curren	t		
	•						
	•						
	•						
	100001 =	Maximum negativ	e change fror	n nominal currer	nt		
bit 1-0	IRNG<1:0>	Current Source	Range Selec	t bits (see Table	27-4)		
	11 = 100 ×	Base current	C	,	,		
	$10 = 10 \times E$	Base current					
	01 = Base	current level					
	00 = Curre	nt source disable	b				

REGISTER 19-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
CTMUCONH	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	323
CTMUCONL	EDG2POL	EDG2SE	:L<1:0>	EDG1POL	EDG1S	EL<1:0>	EDG2STAT	EDG1STAT	324
CTMUICON	ITRIM<5:0>					IRNG<1:0>		325	
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD2	_		—	-	CTMUMD	CMP2MD	CMP1MD	ADCMD	54

Legend: — = unimplemented, read as '0'. Shaded bits are not used during CTMU operation.

AND	DWF	AND W w	AND W with f					
Synt	ax:	ANDWF	ANDWF f {,d {,a}}					
Operands:		0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Oper	ration:	(W) .AND.	(f) \rightarrow dest					
Statu	is Affected:	N, Z						
Enco	oding:	0001	01da fi	ff ffff				
Desc	πριιοπ.	register 'f'. in W. If 'd' is in register ' If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enab in Indexed mode wher Section 25 Bit-Oriente Literal Offs	The contents of W are AND'ed with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '0', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Word	ds:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process Data	Write to destination				
<u>Exar</u>	<u>nple</u> :	ANDWF	REG, 0,	0				
	Before Instruc	tion						
	W REG After Instructio	= 17h = C2h on						
	W REG	= 02h = C2h						

BC		Branch if	Branch if Carry					
Synta	ax:	BC n	BC n					
Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$					
Operation:		if CARRY b (PC) + 2 + 2	if CARRY bit is '1' (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None						
Enco	ding:	1110	0010 nr	inn nnnn				
Desc	ription:	If the CARR will branch. The 2's con added to the incrementer instruction, PC + 2 + 2r 2-cycle inst	If the CARRY bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.					
Word	ls:	1	1					
Cycle	es:	1(2)	1(2)					
Q C If Ju	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No	No	No	No				
	operation	operation	operation	operation				
lf No	o Jump:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal	Process	No				
		'n'	Data	operation				
<u>Exan</u>	<u>nple</u> : Before Instruc	HERE	BC 5					

PC	=	address	(HERE)	
After Instruction				
If CARRY	=	1;		
PC	=	address	(HERE +	- 12)
If CARRY	=	0;		
PC	=	address	(HERE +	2)

ADDWF		ADD W t (Indexed	o Indexe Literal	ed Offset m	node)				
Synta	ax:	ADDWF	[k] {,d}						
Oper	ands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$							
Oper	ation:	(W) + ((FS	SR2) + k) -	\rightarrow dest					
Statu	is Affected:	N, OV, C,	N, OV, C, DC, Z						
Enco	oding:	0010	01d0	kkkk	kkkk				
Description:		The conter contents of FSR2, offs If 'd' is '0', is '1', the r register 'f'	nts of W a of the regis set by the the result result is st (default).	are added ster indica value 'k'. is stored ored back	to the ited by in W. If 'd' c in				
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read 'k'	Proce Dat	ess N a de	Write to estination				
<u>Exan</u>	nple:	ADDWF	[OFST]	, 0					
	Before Instructi	on							
	W OFST FSR2 Contents	= = =	17h 2Ch 0A00ł	ı					
of 0A2Ch After Instruction		= ו	20h						
	W Contents	=	37h						
	of 0A2Ch	=	20h						

BSF	Bit Set In (Indexed	dexed Literal (Offset m	ode)			
Syntax:	BSF [k], b)					
Operands:	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	$1 \rightarrow ((FSR)$	2) + k) <b< td=""><td>></td><td></td></b<>	>				
Status Affected:	None	None					
Encoding:	1000	bbb0	kkkk	kkkk			
Description:	Bit 'b' of the offset by th	Bit 'b' of the register indicated by FSR2, offset by the value 'k', is set.					
Words:	1						
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Proce Data	ss V a de	Vrite to stination			
Example:	BSF	[FLAG_O	FST], 7				
Before Instruc	tion						
FLAG_O FSR2 Contents	FST =	0Ah 0A00h	I				
of 0A0Ał After Instructio	n =	55h					
Contents of 0A0A	; 1 =	D5h					

SET	F	Set In (Index	de> ced	ced Literal	Offse	t m	ode)
Synta	ax:	SETF	[k]				
Oper	ands:	$0 \leq k \leq$	95				
Oper	ation:	$FFh \to$	((F	SR2) + k)			
Statu	is Affected:	None					
Enco	oding:	0110	C	1000	kkk	k kkkk	
Desc	cription:	The cor FSR2,	nter offs	nts of the i et by 'k', a	registe are se	er inc t to l	licated by FFh.
Words:		1					
Cycles:		1					
QC	ycle Activity:						
	Q1	Q2		Q3	3		Q4
	Decode		k'	Process Data		Write register	
<u>Exar</u>	nple:	SETF		[OFST]			
	Before Instruction	on					
	OFST FSR2 Contents of 0A2Ch	= = =	20 07 00	Ch A00h)h			
	After Instruction Contents of 0A2Ch	=	FF	-			

25.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18(L)F2X/4XK22 family of devices. This includes the MPLAB C18 C compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- A command line option
- A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

Param. No.	Symbol	Charact	eristic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0		μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY	_		
101	TLOW	Clock Low Time	100 kHz mode	4.7	_	μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3		μS	Must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY	_		
102	TR	SDA and SCL Rise	100 kHz mode	—	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition	100 kHz mode	4.7	—	μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	—	μS	Start condition
91	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated
106	THD:DA	Data Input Hold	100 kHz mode	0	_	ns	
	Т	Time	400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input Setup	100 kHz mode	250	_	ns	(Note 2)
		Time	400 kHz mode	100	_	ns	
92	TSU:STO	Stop Condition	100 kHz mode	4.7	—	μS	
		Setup Time	400 kHz mode	0.6	—	μS	
109	ΤΑΑ	Output Valid from	100 kHz mode	—	3500	ns	(Note 1)
		Clock	400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission can start
D102	Св	Bus Capacitive Load	ding	—	400	pF	

TABLE 27-16:	I ² C BUS DATA	REQUIREMENTS	(SLAVE MODE)
--------------	---------------------------	--------------	--------------

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A fast mode I²C bus device can be used in a standard mode I²C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification), before the SCL line is released.

© 2010-2016 Microchip Technology Inc.

FIGURE 28-21: PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN LF-INTOSC 31 kHz

FIGURE 28-89: PIC18LF2X/4XK22 COMPARATOR OFFSET VOLTAGE,