

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k22-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: F	PIC18(L)F2XK22	PIN SUMMARY
------------	----------------	--------------------

28-SSOP, SOIC 28-SPDIP	28-QFN, UQFN	0/1	Analog	Comparator	CTMU	SR Latch	Reference	(E)CCP	EUSART	MSSP	Timers	Interrupts	Pull-up	Basic
2	27	RA0	AN0	C12IN0-										
3	28	RA1	AN1	C12IN1-										
4	1	RA2	AN2	C2IN+			VREF- DACOUT							
5	2	RA3	AN3	C1IN+			VREF+							
6	3	RA4		C1OUT		SRQ		CCP5			TOCKI			
7	4	RA5	AN4	C2OUT		SRNQ	HLVDIN			SS1				
10	7	RA6												OSC2 CLKO
9	6	RA7												OSC1 CLKI
21	18	RB0	AN12			SRI		CCP4 FLT0		SS2		INT0	Y	
22	19	RB1	AN10	C12IN3-				P1C		SCK2 SCL2		INT1	Y	
23	20	RB2	AN8		CTED1			P1B		SDI2 SDA2		INT2	Y	
24	21	RB3	AN9	C12IN2-	CTED2			CCP2 P2A ⁽¹⁾		SDO2			Y	
25	22	RB4	AN11					P1D			T5G	IOC	Y	
26	23	RB5	AN13					CCP3 P3A ⁽⁴⁾ P2B ⁽³⁾			T1G T3CKI ⁽²⁾	IOC	Y	
27	24	RB6							TX2/CK2			IOC	Y	PGC
28	25	RB7							RX2/DT2			IOC	Y	PGD
11	8	RC0						P2B ⁽³⁾			SOSCO T1CKI T3CKI ⁽²⁾ T3G			
12	9	RC1						CCP2 P2A ⁽¹⁾			SOSCI			
13	10	RC2	AN14		CTPLS			CCP1 P1A			T5CKI			
14	11	RC3	AN15							SCK1 SCL1				
15	12	RC4	AN16							SDI1 SDA1				
16	13	RC5	AN17							SDO1				
17	14	RC6	AN18					CCP3 P3A ⁽⁴⁾	TX1/CK1					
18	15	RC7	AN19					P3B	RX1/DT1					
1	26	RE3												MCLR VPP
8, 19 19	5, 16 16	Vss												Vss
20	17	Vdd												Vdd

 CCP2/P2A multiplexed in fuses.
 T3CKI multiplexed in fuses.
 P2B multiplexed in fuses.
 CCP3/P3A multiplexed in fuses. Note 1:

TABLE 1-1: **DEVICE FEATURES**

Features	PIC18F23K22 PIC18LF23K22	PIC18F24K22 PIC18LF24K22	PIC18F25K22 PIC18(L)F25K22	PIC18F26K22 PIC18LF26K22	PIC18F43K22 PIC18LF43K22	PIC18F44K22 PIC18LF44K22	PIC18F45K22 PIC18LF45K22	PIC18F46K22 PIC18LF46K22	
Program Memory (Bytes)	8192	16384	32768	65536	8192	16384	32768	65536	
Program Memory (Instructions)	4096	8192	16384	32768	4096	8192	16384	32768	
Data Memory (Bytes)	512	768	1536	3896	512	768	1536	3896	
Data EEPROM Memory (Bytes)	256	256	256	1024	256	256	256	1024	
I/O Ports	A, B, C, E ⁽¹⁾	A, B, C, E ⁽¹⁾	A, B, C, E ⁽¹⁾	A, B, C, E ⁽¹⁾	A, B, C, D, E				
Capture/Compare/PWM Modules (CCP)	2	2	2	2	2	2	2	2	
Enhanced CCP Modules (ECCP) - Half Bridge	2	2	2	2	1	1	1	1	
Enhanced CCP Modules (ECCP) - Full Bridge	1	1	1	1	2	2	2	2	
10-bit Analog-to-Digital Module (ADC)	2 internal 17 input	2 internal 17 input	2 internal 17 input	2 internal 17 input	2 internal 28 input	2 internal 28 input	2 internal 28 input	2 internal 28 input	
Packages	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 40-pin UQFN 44-pin QFN 44-pin TQFP				
Interrupt Sources				3	33				
Timers (16-bit)					4				
Serial Communications				2 M 2 EU	SSP, SART				
SR Latch				Y	'es				
Charge Time Measurement Unit Module (CTMU)				Y	<i>l</i> es				
Programmable High/Low-Voltage Detect (HLVD)				Y	es				
Programmable Brown-out Reset (BOR)				Y	es				
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Overflow, Stack Underflow (<u>PWRT</u> , OST), MCLR, WDT								
Instruction Set				75 Instr 83 with Extended In	ructions; struction Set enabled				
Operating Frequency				DC - 6	64 MHz				

Note 1: PORTE contains the single RE3 read-only bit.

DS40001412G-page 13

TABLE 1-2: PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Nu	mber		Dia	D	
PDIP, SOIC	QFN, UQFN	Pin Name	Туре	Туре	Description
13	10	RC2/CTPLS/P1A/CCP1/T5CKI/AN14			
		RC2	I/O	ST	Digital I/O.
		CTPLS	0	—	CTMU pulse generator output.
		P1A	0	CMOS	Enhanced CCP1 PWM output.
		CCP1	I/O	ST	Capture 1 input/Compare 1 output/PWM 1 output.
		T5CKI	I	ST	Timer5 clock input.
		AN14	Ι	Analog	Analog input 14.
14	11	RC3/SCK1/SCL1/AN15			
		RC3	I/O	ST	Digital I/O.
		SCK1	I/O	ST	Synchronous serial clock input/output for SPI mode (MSSP).
		SCL1	I/O	ST	Synchronous serial clock input/output for I ² C mode (MSSP).
		AN15	Ι	Analog	Analog input 15.
15	12	RC4/SDI1/SDA1/AN16			
		RC4	I/O	ST	Digital I/O.
		SDI1	I	ST	SPI data in (MSSP).
		SDA1	I/O	ST	I ² C data I/O (MSSP).
		AN16	Ι	Analog	Analog input 16.
16	13	RC5/SDO1/AN17			
		RC5	I/O	ST	Digital I/O.
		SDO1	0	—	SPI data out (MSSP).
		AN17	Ι	Analog	Analog input 17.
17	14	RC6/P3A/CCP3/TX1/CK1/AN18	•		
		RC6	I/O	ST	Digital I/O.
		P3A ⁽²⁾	0	CMOS	Enhanced CCP3 PWM output.
		CCP3 ⁽²⁾	I/O	ST	Capture 3 input/Compare 3 output/PWM 3 output.
		TX1	0	—	EUSART asynchronous transmit.
		CK1	I/O	ST	EUSART synchronous clock (see related RXx/DTx).
		AN18	Ι	Analog	Analog input 18.
18	15	RC7/P3B/RX1/DT1/AN19	•		
		RC7	I/O	ST	Digital I/O.
		P3B	0	CMOS	Enhanced CCP3 PWM output.
		RX1	I	ST	EUSART asynchronous receive.
		DT1	I/O	ST	EUSART synchronous data (see related TXx/CKx).
		AN19	I	Analog	Analog input 19.
1	26	RE3/VPP/MCLR	T		
		RE3	1	ST	Digital input.
		Vpp	Р		Programming voltage input.
		MCLR	Ι	ST	Active-Low Master Clear (device Reset) input.
Logondu	TT I	TTL compatible input CMOC CMOC		tible incu	t or output CT Cohmitt Trigger input with CMOC loveler

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

FIGURE 3-7: TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE

3.4.3 RC IDLE MODE

In RC IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block from the HFINTOSC multiplexer output. This mode allows for controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. It is recommended that SCS0 also be cleared, although its value is ignored, to maintain software compatibility with future devices. The HFINTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the HFINTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value, or either the INTSRC or MFIOSEL bits are set, the HFINTOSC output is enabled. Either the HFIOFS or the MFIOFS bits become set, after the HFINTOSC output stabilizes after an interval of TIOBST. For information on the HFIOFS and MFIOFS bits, see Table 3-2.

Clocks to the peripherals continue while the HFINTOSC source stabilizes. The HFIOFS and MFIOFS bits will remain set if the IRCF bits were previously set at a non-zero value or if INTSRC was set before the SLEEP instruction was executed and the HFINTOSC source was already stable. If the IRCF bits and INTSRC are all clear, the HFINTOSC output will not be enabled, the HFIOFS and MFIOFS bits will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the HFINTOSC multiplexer output. After a delay of TCSD following the wake event, the CPU begins executing code being clocked by the HFINTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The LFINTOSC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

14.4.1 HALF-BRIDGE MODE

In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCPx/PxA pin, while the complementary PWM output signal is output on the PxB pin (see Figure 14-9). This mode can be used for half-bridge applications, as shown in Figure 14-9, or for full-bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in halfbridge power devices. The value of the PDC<6:0> bits of the PWMxCON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 14.4.5 "Programmable Dead-Band Delay Mode"** for more details of the dead-band delay operations. Since the PxA and PxB outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure PxA and PxB as outputs.

FIGURE 14-8: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 14-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

FIGURE 15-4: SPI MASTER AND MULTIPLE SLAVE CONNECTION

15.2.1 SPI MODE REGISTERS

The MSSPx module has five registers for SPI mode operation. These are:

- MSSPx STATUS register (SSPxSTAT)
- MSSPx Control register 1 (SSPxCON1)
- MSSPx Control register 3 (SSPxCON3)
- MSSPx Data Buffer register (SSPxBUF)
- MSSPx Address register (SSPxADD)
- MSSPx Shift register (SSPxSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and STATUS registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower 6 bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In one SPI Master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 15.7 "Baud Rate Generator"**.

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

15.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCKx is the clock output)
- Slave mode (SCKx is the clock input)
- Clock Polarity (Idle state of SCKx)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCKx)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

To enable the serial port, SSPx Enable bit, SSPxEN of the SSPxCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPxEN bit, re-initialize the SSPxCONx registers and then set the SSP<u>xEN</u> bit. This configures the SDIx, SDOx, SCKx and SSx pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- SDIx must have corresponding TRIS bit set
- SDOx must have corresponding TRIS bit cleared
- SCKx (Master mode) must have corresponding TRIS bit cleared
- SCKx (Slave mode) must have corresponding TRIS bit set
- SSx must have corresponding TRIS bit set

FIGURE 15-19:

15.7 Baud Rate Generator

The MSSPx module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 15-7). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 15-40 triggers the value from SSPxADD to be loaded into the BRG counter.

This occurs twice for each oscillation of the module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSPx is being operated in.

Table 15-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

$$FCLOCK = \frac{Fosc}{(SSPxADD + 1)(4)}$$

FIGURE 15-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 15-3: MSSPx CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	Fclock (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz ⁽¹⁾
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

REGISTER 15-3: SSPxCON1: SSPx CONTROL REGISTER 1 (CONTINUED)

- bit 3-0
- SSPxM<3:0>: Synchronous Serial Port Mode Select bits
 - 0000 = SPI Master mode, clock = Fosc/4
 - 0001 = SPI Master mode, clock = Fosc/16 0010 = SPI Master mode, clock = Fosc/64
 - 0011 = SPI Master mode, clock = TMR2 output/2
 - 0100 =SPI Slave mode, clock = SCKx pin, SSx pin control enabled
 - 0101 = SPI Slave mode, clock = SCKx pin, SSx pin control disabled, SSx can be used as I/O pin
 - $0110 = I^2C$ Slave mode, 7-bit address
 - $0111 = I^2C$ Slave mode, 10-bit address
 - $1000 = I^2C$ Master mode, clock = Fosc / (4 * (SSPxADD+1))⁽⁴⁾
 - 1001 = Reserved
 - 1010 = SPI Master mode, clock = Fosc/(4 * (SSPxADD+1))
 - $1011 = I^2C$ firmware controlled Master mode (slave idle)
 - 1100 = Reserved
 - 1101 = Reserved
 - 1110 = I^2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled
 - 1111 = I^2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled
- Note 1: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPxBUF register.
 - 2: When enabled, these pins must be properly configured as input or output.
 - 3: When enabled, the SDAx and SCLx pins must be configured as inputs.
 - 4: SSPxADD values of 0, 1 or 2 are not supported for I²C mode.

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual % SPBRGHx: Rate Error (decimal)			Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	_	_	_	_	_	_	115.2k	0.00	1	_	_	_

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 64.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz		
RATE	ATE Actual % SPBRGHx: Rate Error SPBRGx (decimal)		Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	
300	300	0.00	53332	300.0	0.00	15359	300.0	0.00	13332	300.0	0.00	9215
1200	1200	0.00	13332	1200	0.00	3839	1200.1	0.01	3332	1200	0.00	2303
2400	2400	0.00	6666	2400	0.00	1919	2399.5	-0.02	1666	2400	0.00	1151
9600	9598.1	-0.02	1666	9600	0.00	479	9592	-0.08	416	9600	0.00	287
10417	10417	0.00	1535	10425	0.08	441	10417	0.00	383	10433	0.16	264
19.2k	19.21k	0.04	832	19.20k	0.00	239	19.23k	0.16	207	19.20k	0.00	143
57.6k	57.55k	-0.08	277	57.60k	0.00	79	57.97k	0.64	68	57.60k	0.00	47
115.2k	115.11k	-0.08	138	115.2k	0.00	39	114.29k	-0.79	34	115.2k	0.00	23

				SYNC	C = 0, BR	GH = 1, BRG1	6 = 1 or S	/NC = 1, I	BRG16 = 1				
BAUD	Fo	sc = 8.00	0 MHz	Fo	sc = 4.00	0 MHz	Fos	c = 3.686	4 MHz	Fo	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual % SPBRGHx: Rate Error SPBRGx (decimal)		Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)		
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832	
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207	
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103	
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25	
10417	10417	0.00	191	10417	0.00	95	10473	0.53	87	10417	0.00	23	
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12	
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_	
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_	

FIGURE 16-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RXx/DTx pin TXx/CKx pin (SCKP = 0)	
TXx/CKx pin (SCKP = 1) Write to bit SREN	
SREN bit	
CREN bit RCxIF bit (Interrupt)	
Read RCREGx	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	271
BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	271
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD0	UART2MD	T2MD UART1MD TMR6MD TMR5MD TMR4MD TMR3MD TMR2MD TMR1MD						52	
RCREG1			E	USART1 Re	ceive Regis	ter			—
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
RCREG2			E	USART2 Re	ceive Regis	ter			—
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SPBRG1			EUSART	1 Baud Rate	e Generator,	Low Byte			_
SPBRGH1			EUSART	1 Baud Rate	Generator,	High Byte			_
SPBRG2	EUSART2 Baud Rate Generator, Low Byte								
SPBRGH2	EUSART2 Baud Rate Generator, High Byte								_
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for synchronous master reception.

17.2.10 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (See TRIS register)
 - Configure pin as analog
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Select result format
 - Select acquisition delay
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/\overline{DONE} bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).
 - Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
 - 2: Software delay required if ACQT bits are set to zero delay. See Section 17.4 "A/D Acquisition Requirements".

EXAMPLE 17-1: A/D CONVERSION

;This code	;This code block configures the ADC								
; for polling, Vdd and Vss as reference, Frc									
clock and ANO input.									
;									
;Conversio	on start & po	lling for completion							
; are inc	luded.								
;									
MOVLW	B'10101111'	;right justify, Frc,							
MOVWF	ADCON2	; & 12 TAD ACQ time							
MOVLW	B'0000000'	;ADC ref = Vdd,Vss							
MOVWF	ADCON1	;							
BSF	TRISA,0	;Set RA0 to input							
BSF	ANSEL,0	;Set RA0 to analog							
MOVLW	B'0000001'	;ANO, ADC on							
MOVWF	ADCON0	;							
BSF	ADCON0,GO	;Start conversion							
ADCPoll:									
BTFSC	ADCON0,GO	;Is conversion done?							
BRA	ADCPoll	;No, test again							
; Result :	is complete -	store 2 MSbits in							
; RESULTH	I and 8 LSbit	s in RESULTLO							
MOVFF ADRESH, RESULTHI									
MOVFF	ADRESL, RESUL	TLO							

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
TRIGSEL	—			PVCFG<1:0>		NVCFG<1:0>	
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable	Writable bit U = Unimplemented bit, read		d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 7	bit 7 TRIGSEL : Special Trigger Select bit 1 = Selects the special trigger from CTMU 0 = Selects the special trigger from CCP5						
bit 6-4	Unimplement	ted: Read as '	0'				
bit 3-2	PVCFG<1:0>: Positive Voltage Reference Configuration bits						
00 = A/D VREF+ connected to internal signal, AVDD 01 = A/D VREF+ connected to external pin, VREF+ 10 = A/D VREF+ connected to internal signal, FVR BUF2 11 = Reserved (by default, A/D VREF+ connected to internal signal, AVDD)							
bit 1-0	bit 1-0 NVCFG<1:0>: Negative Voltage Reference Configuration bits						
00 = A/D VREF- connected to internal signal, AVss 01 = A/D VREF- connected to external pin, VREF- 10 = Reserved (by default, A/D VREF- connected to internal signal, AVss) 11 = Reserved (by default, A/D VREF- connected to internal signal, AVss)							

REGISTER 17-2: ADCON1: A/D CONTROL REGISTER 1

19.3 Calibrating the CTMU Module

The CTMU requires calibration for precise measurements of capacitance and time, as well as for accurate time delay. If the application only requires measurement of a relative change in capacitance or time, calibration is usually not necessary. An example of this type of application would include a capacitive touch switch, in which the touch circuit has a baseline capacitance, and the added capacitance of the human body changes the overall capacitance of a circuit.

If actual capacitance or time measurement is required, two hardware calibrations must take place: the current source needs calibration to set it to a precise current, and the circuit being measured needs calibration to measure and/or nullify all other capacitance other than that to be measured.

19.3.1 CURRENT SOURCE CALIBRATION

The current source on the CTMU module is trimable. Therefore, for precise measurements, it is possible to measure and adjust this current source by placing a high precision resistor, RCAL, onto an unused analog channel. An example circuit is shown in Figure 19-2. The current source measurement is performed using the following steps:

- 1. Initialize the A/D Converter.
- 2. Initialize the CTMU.
- Enable the current source by setting EDG1STAT (CTMUCONL<0>).
- 4. Issue settling time delay.
- 5. Perform A/D conversion.
- 6. Calculate the current source current using I = V/RCAL, where RCAL is a high precision resistance and *V* is measured by performing an A/D conversion.

The CTMU current source may be trimmed with the trim bits in CTMUICON using an iterative process to get an exact desired current. Alternatively, the nominal value without adjustment may be used; it may be stored by the software for use in all subsequent capacitive or time measurements.

To calculate the value for *RCAL*, the nominal current must be chosen, and then the resistance can be calculated. For example, if the A/D Converter reference voltage is 3.3V, use 70% of full scale, or 2.31V as the desired approximate voltage to be read by the A/D Converter. If the range of the CTMU current source is selected to be 0.55 μ A, the resistor value needed is calculated as *RCAL* = 2.31V/0.55 μ A, for a value of 4.2 MΩ. Similarly, if the current source is chosen to be 5.5 μ A, *RCAL* would be 420,000Ω, and 42,000Ω if the current source is set to 55 μ A.

FIGURE 19-2: CTMU CURRENT SOURCE CALIBRATION CIRCUIT

A value of 70% of full-scale voltage is chosen to make sure that the A/D Converter was in a range that is well above the noise floor. Keep in mind that if an exact current is chosen, that is to incorporate the trimming bits from CTMUICON, the resistor value of RCAL may need to be adjusted accordingly. RCAL may also be adjusted to allow for available resistor values. RCAL should be of the highest precision available, keeping in mind the amount of precision needed for the circuit that the CTMU will be used to measure. A recommended minimum would be 0.1% tolerance.

The following examples show one typical method for performing a CTMU current calibration. Example 19-1 demonstrates how to initialize the A/D Converter and the CTMU; this routine is typical for applications using both modules. Example 19-2 demonstrates one method for the actual calibration routine.

23.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

The PIC18(L)F2X/4XK22 devices have a High/Low-Voltage Detect module (HLVD). This is a programmable circuit that sets both a device voltage trip point and the direction of change from that point. If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution branches to the interrupt vector address and the software responds to the interrupt. The High/Low-Voltage Detect Control register (Register 23-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

The module's block diagram is shown in Figure 23-1.

23.1 Register - HLVD Control

REGISTER 23-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
VDIRMAG	BGVST	IRVST	HLVDEN		HLVD	L<3:0>	
bit 7 bit							bit 0

Logond:							
De Deedekle hit		II - Unimplemented bit	LL Linimplemented bit read on (0)				
R = Readable bit VV -n = Value at POR '1'							
		1° = Bit is set	"0" = Bit is cleared	x = Bit is unknown			
bit 7	VDIRMA	G: Voltage Direction Magnit	ude Select bit				
	1 = Ever 0 = Ever	1 = Event occurs when voltage equals or exceeds trip point (HLVDL< $3:0>$) 0 = Event occurs when voltage equals or falls below trip point (HLVDL< $3:0>$)					
bit 6	BGVST:	Band Gap Reference Voltag	ges Stable Status Flag bit				
	 1 = Internal band gap voltage references are stable 0 = Internal band gap voltage reference is not stable 						
bit 5	IRVST:	nternal Reference Voltage S	table Flag bit				
	 1 = Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage range 0 = Indicates that the voltage detect logic will not generate the interrupt flag at the specified voltage range and the HLVD interrupt should not be enabled 						
bit 4	HLVDEN	HLVDEN: High/Low-Voltage Detect Power Enable bit					
	1 = HLV	/D enabled					
hit 2 0	$0 = \Pi L V D u Sabieu$						
DIT 3-0	1111 = 1110 =	External analog input is used Maximum setting	d (input comes from the HLVDI	N pin)			
	0000 =	Minimum setting					
	o T						

Note 1: See Table 27-5 for specifications.

BNC		Branch if	Branch if Not Carry					
Syntax:		BNC n	BNC n					
Operands:		-128 ≤ n ≤ ′	127					
Oper	ation:	if CARRY b (PC) + 2 + 2	if CARRY bit is '0' (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None	None					
Enco	ding:	1110	0011 nn:	nn nnnn				
Description:		If the CARR will branch. The 2's con added to the incremente instruction, PC + 2 + 2r 2-cycle inst	If the CARRY bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.					
Word	ls:	1	1					
Cycle	es:	1(2)						
Q Cycle Activity: If Jump:		Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No operation	No operation	No operation	No operation				
If No Jump:								
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	No operation				
Example: HERE BNC Jump								
Before Instruction PC = address (HERE) After Instruction If CARRY = 0; PC = oddress (HERE)								
	If CARRY PC	Y = 1; = ad	dress (HERE	+ 2)				

BNN		Branch if	Branch if Not Negative					
Syntax:		BNN n	BNN n					
Opera	ands:	-128 ≤ n ≤ ′	$-128 \le n \le 127$					
Operation:		if NEGATIV (PC) + 2 + 2	if NEGATIVE bit is '0' (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None	None					
Enco	ding:	1110	1110 0111 nnnn					
Description:		If the NEGA program wi The 2's con added to the incremente instruction, PC + 2 + 2r 2-cycle inst	If the NEGATIVE bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.					
Word	s:	1	1					
Cycle	s:	1(2)	1(2)					
Q Cycle Activity: If Jump:		02	03	04				
	Decode	Read literal	Process	Write to PC				
·	No	No	No	No				
	operation	operation	operation	operation				
If No	Jump:		•	·				
	Q1	Q2	Q3	Q4				
	Decode	Read literal	Process	No				
		'n'	Data	operation				
Example: HERE BNN Jump								
,	Before Instruct PC After Instruction If NEGAT PC If NEGAT PC	τιon = ad on TIVE = 0; = ad TIVE = 1; = ad	dress (HERE) dress (Jump) dress (HERE)				

FIGURE 28-33: PIC18F2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC with PLL

FIGURE 28-83: PIC18(L)F2X/4XK22 SCHMITT TRIGGER BUFFER INPUT HIGH VOLTAGE

FIGURE 28-103: PIC18LF2X/4XK22 TYPICAL LF-INTOSC FREQUENCY vs. TEMPERATURE Min/Max = 31.25 kHz ± 15%, T = -40°C to +85°C

