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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC18(L)F2X/4XK22
18 37 37 33 RC3/SCK1/SCL1/AN15

RC3 I/O ST Digital I/O.

SCK1 I/O ST Synchronous serial clock input/output for SPI 
mode (MSSP).

SCL1 I/O ST Synchronous serial clock input/output for I2C 
mode (MSSP).

AN15 I Analog Analog input 15.

23 42 42 38 RC4/SDI1/SDA1/AN16

RC4 I/O ST Digital I/O.

SDI1 I ST SPI data in (MSSP).

SDA1 I/O ST I2C data I/O (MSSP).

AN16 I Analog Analog input 16.

24 43 43 39 RC5/SDO1/AN17

RC5 I/O ST Digital I/O.

SDO1 O — SPI data out (MSSP).

AN17 I Analog Analog input 17.

25 44 44 40 RC6/TX1/CK1/AN18

RC6 I/O ST Digital I/O.

TX1 O — EUSART asynchronous transmit.

CK1 I/O ST EUSART synchronous clock (see related RXx/
DTx).

AN18 I Analog Analog input 18.

26 1 1 1 RC7/RX1/DT1/AN19

RC7 I/O ST Digital I/O.

RX1 I ST EUSART asynchronous receive.

DT1 I/O ST EUSART synchronous data (see related TXx/
CKx).

AN19 I Analog Analog input 19.

19 38 38 34 RD0/SCK2/SCL2/AN20

RD0 I/O ST Digital I/O.

SCK2 I/O ST Synchronous serial clock input/output for SPI 
mode (MSSP).

SCL2 I/O ST Synchronous serial clock input/output for I2C 
mode (MSSP).

AN20 I Analog Analog input 20.

20 39 39 35 RD1/CCP4/SDI2/SDA2/AN21

RD1 I/O ST Digital I/O.

CCP4 I/O ST Capture 4 input/Compare 4 output/PWM 4 output.

SDI2 I ST SPI data in (MSSP).

SDA2 I/O ST I2C data I/O (MSSP).

AN21 I Analog Analog input 21.

TABLE 1-3: PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Number
Pin Name

Pin 
Type

Buffer 
Type

Description
PDIP TQFP QFN UQFN

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels;   I 
= Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX
and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX,
CCP3MX and CCP2MX are clear.
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2.13 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device
to continue operating should the external oscillator fail.
The FSCM can detect oscillator failure any time after
the Oscillator Start-up Timer (OST) has expired. The
FSCM is enabled by setting the FCMEN bit in the
CONFIG1H Configuration register. The FSCM is
applicable to all external oscillator modes (LP, XT, HS,
EC, RC and RCIO).

FIGURE 2-10: FSCM BLOCK DIAGRAM 

2.13.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by
comparing the external oscillator to the FSCM sample
clock. The sample clock is generated by dividing the
LFINTOSC by 64 (see Figure 2-10). Inside the fail
detector block is a latch. The external clock sets the
latch on each falling edge of the external clock. The
sample clock clears the latch on each rising edge of the
sample clock. A failure is detected when an entire half-
cycle of the sample clock elapses before the primary
clock goes low.

2.13.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the
device clock to an internal clock source and sets the bit
flag OSCFIF of the PIR2 register. The OSCFIF flag will
generate an interrupt if the OSCFIE bit of the PIE2
register is also set. The device firmware can then take
steps to mitigate the problems that may arise from a
failed clock. The system clock will continue to be
sourced from the internal clock source until the device
firmware successfully restarts the external oscillator
and switches back to external operation. An automatic
transition back to the failed clock source will not occur.

The internal clock source chosen by the FSCM is
determined by the IRCF<2:0> bits of the OSCCON
register. This allows the internal oscillator to be
configured before a failure occurs.

2.13.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared by either one of the
following:

• Any Reset 

• By toggling the SCS1 bit of the OSCCON register

Both of these conditions restart the OST. While the
OST is running, the device continues to operate from
the INTOSC selected in OSCCON. When the OST
times out, the Fail-Safe condition is cleared and the
device automatically switches over to the external clock
source. The Fail-Safe condition need not be cleared
before the OSCFIF flag is cleared.

2.13.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure
after the Oscillator Start-up Timer (OST) has expired.
The OST is used after waking up from Sleep and after
any type of Reset. The OST is not used with the EC or
RC Clock modes so that the FSCM will be active as
soon as the Reset or wake-up has completed. 
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Note: Due to the wide range of oscillator start-up

times, the Fail-Safe circuit is not active
during oscillator start-up (i.e., after exiting
Reset or Sleep). After an appropriate
amount of time, the user should check the
OSTS bit of the OSCCON register to verify
the oscillator start-up and that the system
clock switchover has successfully
completed.

Note: When the device is configured for Fail-
Safe clock monitoring in either HS, XT, or
LS Oscillator modes then the IESO config-
uration bit should also be set so that the
clock will automatically switch from the
internal clock to the external oscillator
when the OST times out.
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5.3.3 INSTRUCTIONS IN PROGRAM 
MEMORY

The program memory is addressed in bytes.
Instructions are stored as either two bytes or four bytes
in program memory. The Least Significant Byte of an
instruction word is always stored in a program memory
location with an even address (LSb = 0). To maintain
alignment with instruction boundaries, the PC
increments in steps of two and the LSb will always read
‘0’ (see Section 5.1.1 “Program Counter”).

Figure 5-4 shows an example of how instruction words
are stored in the program memory.

The CALL and GOTO instructions have the absolute
program memory address embedded into the
instruction. Since instructions are always stored on word
boundaries, the data contained in the instruction is a
word address. The word address is written to PC<20:1>,
which accesses the desired byte address in program
memory. Instruction #2 in Figure 5-4 shows how the
instruction GOTO 0006h is encoded in the program
memory. Program branch instructions, which encode a
relative address offset, operate in the same manner. The
offset value stored in a branch instruction represents the
number of single-word instructions that the PC will be
offset by. Section 25.0 “Instruction Set Summary”
provides further details of the instruction set.

FIGURE 5-4: INSTRUCTIONS IN PROGRAM MEMORY

5.3.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word
instructions: CALL, MOVFF, GOTO and LSFR. In all
cases, the second word of the instruction always has
‘1111’ as its four Most Significant bits; the other 12 bits
are literal data, usually a data memory address. 

The use of ‘1111’ in the 4 MSbs of an instruction
specifies a special form of NOP. If the instruction is
executed in proper sequence – immediately after the
first word – the data in the second word is accessed
and used by the instruction sequence. 

If the first word is skipped for some reason and the
second word is executed by itself, a NOP is executed
instead. This is necessary for cases when the two-word
instruction is preceded by a conditional instruction that
changes the PC. Example 5-4 shows how this works.

EXAMPLE 5-4: TWO-WORD INSTRUCTIONS

Word Address
LSB = 1 LSB = 0 

Program Memory
Byte Locations        

000000h
000002h
000004h
000006h

Instruction 1: MOVLW 055h 0Fh 55h 000008h
Instruction 2: GOTO 0006h EFh 03h 00000Ah

F0h 00h 00000Ch
Instruction 3: MOVFF 123h, 456h C1h 23h 00000Eh

F4h 56h 000010h
000012h
000014h

Note: See Section 5.8 “PIC18 Instruction
Execution and the Extended
Instruction Set” for information on
two-word instructions in the extended
instruction set.

CASE 1:

Object Code Source Code

0110 0110 0000 0000 TSTFSZ REG1 ; is RAM location 0?
1100 0001 0010 0011 MOVFF REG1, REG2 ; No, skip this word

1111 0100 0101 0110 ; Execute this word as a NOP
0010 0100 0000 0000 ADDWF REG3 ; continue code

CASE 2:

Object Code Source Code

0110 0110 0000 0000 TSTFSZ REG1 ; is RAM location 0?
1100 0001 0010 0011 MOVFF REG1, REG2 ; Yes, execute this word
1111 0100 0101 0110 ; 2nd word of instruction

0010 0100 0000 0000 ADDWF REG3 ; continue code
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5.6 Data Addressing Modes

While the program memory can be addressed in only
one way – through the program counter – information
in the data memory space can be addressed in several
ways. For most instructions, the addressing mode is
fixed. Other instructions may use up to three modes,
depending on which operands are used and whether or
not the extended instruction set is enabled.

The addressing modes are:

• Inherent

• Literal

• Direct

• Indirect

An additional addressing mode, Indexed Literal Offset,
is available when the extended instruction set is
enabled (XINST Configuration bit = 1). Its operation is
discussed in greater detail in Section 5.7.1 “Indexed
Addressing with Literal Offset”. 

5.6.1 INHERENT AND LITERAL 
ADDRESSING

Many PIC18 control instructions do not need any argu-
ment at all; they either perform an operation that glob-
ally affects the device or they operate implicitly on one
register. This addressing mode is known as Inherent
Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an
additional explicit argument in the opcode. This is
known as Literal Addressing mode because they
require some literal value as an argument. Examples
include ADDLW and MOVLW, which respectively, add or
move a literal value to the W register. Other examples
include CALL and GOTO, which include a 20-bit
program memory address.

5.6.2 DIRECT ADDRESSING

Direct addressing specifies all or part of the source
and/or destination address of the operation within the
opcode itself. The options are specified by the
arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-
oriented instructions use some version of direct
addressing by default. All of these instructions include
some 8-bit literal address as their Least Significant
Byte. This address specifies either a register address in
one of the banks of data RAM (Section 5.4.3 “General

Purpose Register File”) or a location in the Access
Bank (Section 5.4.2 “Access Bank”) as the data
source for the instruction. 

The Access RAM bit ‘a’ determines how the address is
interpreted. When ‘a’ is ‘1’, the contents of the BSR
(Section 5.4.1 “Bank Select Register (BSR)”) are
used with the address to determine the complete 12-bit
address of the register. When ‘a’ is ‘0’, the address is
interpreted as being a register in the Access Bank.
Addressing that uses the Access RAM is sometimes
also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire
12-bit address (either source or destination) in their
opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation’s results is determined
by the destination bit ‘d’. When ‘d’ is ‘1’, the results are
stored back in the source register, overwriting its origi-
nal contents. When ‘d’ is ‘0’, the results are stored in
the W register. Instructions without the ‘d’ argument
have a destination that is implicit in the instruction; their
destination is either the target register being operated
on or the W register.

5.6.3 INDIRECT ADDRESSING

Indirect addressing allows the user to access a location
in data memory without giving a fixed address in the
instruction. This is done by using File Select Registers
(FSRs) as pointers to the locations which are to be read
or written. Since the FSRs are themselves located in
RAM as Special File Registers, they can also be
directly manipulated under program control. This
makes FSRs very useful in implementing data struc-
tures, such as tables and arrays in data memory.

The registers for indirect addressing are also
implemented with Indirect File Operands (INDFs) that
permit automatic manipulation of the pointer value with
auto-incrementing, auto-decrementing or offsetting
with another value. This allows for efficient code, using
loops, such as the example of clearing an entire RAM
bank in Example 5-5.

EXAMPLE 5-5: HOW TO CLEAR RAM 
(BANK 1) USING 
INDIRECT ADDRESSING   

Note: The execution of some instructions in the
core PIC18 instruction set are changed
when the PIC18 extended instruction set is
enabled. See Section 5.7 “Data Memory
and the Extended Instruction Set” for
more information.

LFSR FSR0, 100h ;   
NEXT CLRF POSTINC0 ; Clear INDF 

; register then 
; inc pointer 

BTFSS FSR0H, 1 ; All done with
; Bank1? 

BRA NEXT ; NO, clear next 
CONTINUE ; YES, continue 
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6.3  Register Definitions: Memory Control 

REGISTER 6-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

R/W-x R/W-x U-0 R/W-0 R/W-x R/W-0 R/S-0 R/S-0

EEPGD CFGS — FREE WRERR WREN WR RD

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit

S = Bit can be set by software, but not cleared U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 EEPGD: Flash Program or Data EEPROM Memory Select bit

1 = Access Flash program memory
0 = Access data EEPROM memory

bit 6 CFGS: Flash Program/Data EEPROM or Configuration Select bit

1 = Access Configuration registers
0 = Access Flash program or data EEPROM memory

bit 5 Unimplemented: Read as ‘0’

bit 4 FREE: Flash Row (Block) Erase Enable bit

1 = Erase the program memory block addressed by TBLPTR on the next WR command 
(cleared by completion of erase operation)

0 = Perform write-only

bit 3 WRERR: Flash Program/Data EEPROM Error Flag bit(1)

1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal
operation, or an improper write attempt)

0 = The write operation completed

bit 2 WREN: Flash Program/Data EEPROM Write Enable bit

1 = Allows write cycles to Flash program/data EEPROM
0 = Inhibits write cycles to Flash program/data EEPROM

bit 1 WR: Write Control bit

1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle. 
(The operation is self-timed and the bit is cleared by hardware once write is complete. 
The WR bit can only be set (not cleared) by software.)

0 = Write cycle to the EEPROM is complete

bit 0 RD: Read Control bit

1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared by hardware. The RD bit can only
be set (not cleared) by software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.)

0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the
error condition.
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6.3.1 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped
into the SFR space. The Table Latch register is used to
hold 8-bit data during data transfers between program
memory and data RAM.

6.3.2 TBLPTR – TABLE POINTER 
REGISTER

The Table Pointer (TBLPTR) register addresses a byte
within the program memory. The TBLPTR is comprised
of three SFR registers: Table Pointer Upper Byte, Table
Pointer High Byte and Table Pointer Low Byte
(TBLPTRU:TBLPTRH:TBLPTRL). These three
registers join to form a 22-bit wide pointer. The
low-order 21 bits allow the device to address up to 2
Mbytes of program memory space. The 22nd bit allows
access to the device ID, the user ID and the
Configuration bits.

The Table Pointer register, TBLPTR, is used by the
TBLRD and TBLWT instructions. These instructions can
update the TBLPTR in one of four ways based on the
table operation. These operations on the TBLPTR
affect only the low-order 21 bits.

6.3.3 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the
Flash program memory. 

When a TBLRD is executed, all 22 bits of the TBLPTR
determine which byte is read from program memory
directly into the TABLAT register.

When a TBLWT is executed the byte in the TABLAT
register is written, not to Flash memory but, to a holding
register in preparation for a program memory write. The
holding registers constitute a write block which varies
depending on the device (see Table 6-1).The 3, 4, or 5
LSbs of the TBLPTRL register determine which specific
address within the holding register block is written to.
The MSBs of the Table Pointer have no effect during
TBLWT operations. 

When a program memory write is executed the entire
holding register block is written to the Flash memory at
the address determined by the MSbs of the TBLPTR.
The 3, 4, or 5 LSBs are ignored during Flash memory
writes. For more detail, see Section 6.6 “Writing to
Flash Program Memory”.

When an erase of program memory is executed, the
16 MSbs of the Table Pointer register (TBLPTR<21:6>)
point to the 64-byte block that will be erased. The Least
Significant bits (TBLPTR<5:0>) are ignored.

Figure 6-3 describes the relevant boundaries of
TBLPTR based on Flash program memory operations.

    

FIGURE 6-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

TABLE 6-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example Operation on Table Pointer

TBLRD*
TBLWT*

TBLPTR is not modified

TBLRD*+
TBLWT*+

TBLPTR is incremented after the read/write

TBLRD*-
TBLWT*-

TBLPTR is decremented after the read/write

TBLRD+*
TBLWT+*

TBLPTR is incremented before the read/write

21 16 15 8 7 0

TABLE ERASE/WRITE TABLE WRITE

TABLE READ – TBLPTR<21:0>

TBLPTRLTBLPTRHTBLPTRU

TBLPTR<n:0>(1)TBLPTR<21:n+1>(1)

Note 1: n = 6 for block sizes of 64 bytes.
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REGISTER 9-2: INTCON2: INTERRUPT CONTROL 2 REGISTER

R/W-1 R/W-1 R/W-1 R/W-1 U-0 R/W-1 U-0 R/W-1

RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 RBPU: PORTB Pull-up Enable bit 

1 = All PORTB pull-ups are disabled 
0 = PORTB pull-ups are enabled provided that the pin is an input and the corresponding WPUB bit is

set. 

bit 6 INTEDG0: External Interrupt 0 Edge Select bit 

1 = Interrupt on rising edge 
0 = Interrupt on falling edge

bit 5 INTEDG1: External Interrupt 1 Edge Select bit 

1 = Interrupt on rising edge 
0 = Interrupt on falling edge 

bit 4 INTEDG2: External Interrupt 2 Edge Select bit 

1 = Interrupt on rising edge 
0 = Interrupt on falling edge 

bit 3 Unimplemented: Read as ‘0’

bit 2 TMR0IP: TMR0 Overflow Interrupt Priority bit 

1 = High priority 
0 = Low priority 

bit 1 Unimplemented: Read as ‘0’

bit 0 RBIP: RB Port Change Interrupt Priority bit

1 = High priority 
0 = Low priority 

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit. User software should ensure
the appropriate interrupt flag bits are clear
prior to enabling an interrupt. This feature
allows for software polling.
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REGISTER 9-3: INTCON3: INTERRUPT CONTROL 3 REGISTER

R/W-1 R/W-1 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0

INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 INT2IP: INT2 External Interrupt Priority bit

1 = High priority 
0 = Low priority

bit 6 INT1IP: INT1 External Interrupt Priority bit

1 = High priority 
0 = Low priority

bit 5 Unimplemented: Read as ‘0’

bit 4 INT2IE: INT2 External Interrupt Enable bit

1 = Enables the INT2 external interrupt 
0 = Disables the INT2 external interrupt 

bit 3 INT1IE: INT1 External Interrupt Enable bit 

1 = Enables the INT1 external interrupt 
0 = Disables the INT1 external interrupt 

bit 2 Unimplemented: Read as ‘0’

bit 1 INT2IF: INT2 External Interrupt Flag bit

1 = The INT2 external interrupt occurred (must be cleared by software) 
0 = The INT2 external interrupt did not occur

bit 0 INT1IF: INT1 External Interrupt Flag bit 

1 = The INT1 external interrupt occurred (must be cleared by software) 
0 = The INT1 external interrupt did not occur 

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit. User software should ensure
the appropriate interrupt flag bits are clear
prior to enabling an interrupt. This feature
allows for software polling.
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13.6 Register Definitions: Timer2/4/6 Control   

REGISTER 13-1: TxCON: TIMER2/TIMER4/TIMER6 CONTROL REGISTER

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— TxOUTPS<3:0> TMRxON TxCKPS<1:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 Unimplemented: Read as ‘0’

bit 6-3 TxOUTPS<3:0>: TimerX Output Postscaler Select bits

0000 = 1:1 Postscaler
0001 = 1:2 Postscaler
0010 = 1:3 Postscaler
0011 = 1:4 Postscaler
0100 = 1:5 Postscaler
0101 = 1:6 Postscaler
0110 = 1:7 Postscaler
0111 = 1:8 Postscaler
1000 = 1:9 Postscaler
1001 = 1:10 Postscaler
1010 = 1:11 Postscaler
1011 = 1:12 Postscaler
1100 = 1:13 Postscaler
1101 = 1:14 Postscaler
1110 = 1:15 Postscaler
1111 = 1:16 Postscaler

bit 2 TMRxON: TimerX On bit

1 = TimerX is on
0 = TimerX is off

bit 1-0 TxCKPS<1:0>: Timer2-type Clock Prescale Select bits

00 = Prescaler is 1
01 = Prescaler is 4
1x = Prescaler is 16
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TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

CCPTMRS0 C3TSEL<1:0> — C2TSEL<1:0> — C1TSEL<1:0> 201

CCPTMRS1 — — — — C5TSEL<1:0> C4TSEL<1:0> 201

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 109

IPR1 — ADIP RC1IP TX1IP SSP1IP CCP1IP TMR2IP TMR1IP 121

IPR5 — — — — — TMR6IP TMR5IP TMR4IP 124

PIE1 — ADIE RC1IE TX1IE SSP1IE CCP1IE TMR2IE TMR1IE 117

PIE5 — — — — — TMR6IE TMR5IE TMR4IE 120

PIR1 — ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF 112

PIR5 — — — — — TMR6IF TMR5IF TMR4IF 116

PMD0 UART2MD UART1MD TMR6MD TMR5MD TMR4MD TMR3MD TMR2MD TMR1MD 52

PR2 Timer2 Period Register —

PR4 Timer4 Period Register —

PR6 Timer6 Period Register —

T2CON — T2OUTPS<3:0> TMR2ON T2CKPS<1:0> 166

T4CON — T4OUTPS<3:0> TMR4ON T4CKPS<1:0> 166

T6CON — T6OUTPS<3:0> TMR6ON T6CKPS<1:0> 166

TMR2 Timer2 Register —

TMR4 Timer4 Register —

TMR6 Timer6 Register —

Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used by Timer2/4/6.
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15.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set
and an address match occurs, the R/W bit of the
SSPxSTAT register is set. The received address is
loaded into the SSPxBUF register, and an ACK pulse is
sent by the slave on the ninth bit. 

Following the ACK, slave hardware clears the CKP bit
and the SCLx pin is held low (see Section 15.5.6
“Clock Stretching” for more detail). By stretching the
clock, the master will be unable to assert another clock
pulse until the slave is done preparing the transmit
data.

The transmit data must be loaded into the SSPxBUF
register which also loads the SSPxSR register. Then
the SCLx pin should be released by setting the CKP bit
of the SSPxCON1 register. The eight data bits are
shifted out on the falling edge of the SCLx input. This
ensures that the SDAx signal is valid during the SCLx
high time.

The ACK pulse from the master-receiver is latched on
the rising edge of the ninth SCLx input pulse. This ACK
value is copied to the ACKSTAT bit of the SSPxCON2
register. If ACKSTAT is set (not ACK), then the data
transfer is complete. In this case, when the not ACK is
latched by the slave, the slave goes Idle and waits for
another occurrence of the Start bit. If the SDAx line was
low (ACK), the next transmit data must be loaded into
the SSPxBUF register. Again, the SCLx pin must be
released by setting bit CKP.

An MSSPx interrupt is generated for each data transfer
byte. The SSPxIF bit must be cleared by software and
the SSPxSTAT register is used to determine the status
of the byte. The SSPxIF bit is set on the falling edge of
the ninth clock pulse.

15.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting
data out on the SDAx line. If a bus collision is detected
and the SBCDE bit of the SSPxCON3 register is set,
the BCLxIF bit of the PIRx register is set. Once a bus
collision is detected, the slave goes Idle and waits to be
addressed again. User software can use the BCLxIF bit
to handle a slave bus collision.

15.5.3.2 7-bit Transmission

A master device can transmit a read request to a
slave, and then clock data out of the slave. The list
below outlines what software for a slave will need to do
to accomplish a standard transmission. Figure 15-18
can be used as a reference to this list.

1. Master sends a Start condition on SDAx and
SCLx.

2. S bit of SSPxSTAT is set; SSPxIF is set if inter-
rupt on Start detect is enabled.

3. Matching address with R/W bit set is received by
the slave setting SSPxIF bit.

4. Slave hardware generates an ACK and sets
SSPxIF.

5. SSPxIF bit is cleared by user.

6. Software reads the received address from
SSPxBUF, clearing BF.

7. R/W is set so CKP was automatically cleared
after the ACK.

8. The slave software loads the transmit data into
SSPxBUF.

9. CKP bit is set releasing SCLx, allowing the
master to clock the data out of the slave.

10. SSPxIF is set after the ACK response from the
master is loaded into the ACKSTAT register.

11. SSPxIF bit is cleared.

12. The slave software checks the ACKSTAT bit to
see if the master wants to clock out more data.

13. Steps 9-13 are repeated for each transmitted
byte.

14. If the master sends a not ACK; the clock is not
held, but SSPxIF is still set.

15. The master sends a Restart condition or a Stop.

16. The slave is no longer addressed.

Note 1: If the master ACKs the clock will be
stretched.

2: ACKSTAT is the only bit updated on the
rising edge of SCLx (9th) rather than the
falling.
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16.1.2.9 Asynchronous Reception Setup:

1. Initialize the SPBRGHx:SPBRGx register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 16.4 “EUSART
Baud Rate Generator (BRG)”).

2. Set the RXx/DTx and TXx/CKx TRIS controls to
‘1’.

3. Enable the serial port by setting the SPEN bit
and the RXx/DTx pin TRIS bit. The SYNC bit
must be clear for asynchronous operation.

4. If interrupts are desired, set the RCxIE interrupt
enable bit and set the GIE/GIEH and PEIE/GIEL
bits of the INTCON register.

5. If 9-bit reception is desired, set the RX9 bit.

6. Set the DTRXP if inverted receive polarity is
desired.

7. Enable reception by setting the CREN bit.

8. The RCxIF interrupt flag bit will be set when a
character is transferred from the RSR to the
receive buffer. An interrupt will be generated if
the RCxIE interrupt enable bit was also set.

9. Read the RCSTAx register to get the error flags
and, if 9-bit data reception is enabled, the ninth
data bit.

10. Get the received eight Least Significant data bits
from the receive buffer by reading the RCREGx
register.

11. If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.

16.1.2.10 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems.
To set up an Asynchronous Reception with Address
Detect Enable:

1. Initialize the SPBRGHx, SPBRGx register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 16.4 “EUSART
Baud Rate Generator (BRG)”).

2. Set the RXx/DTx and TXx/CKx TRIS controls to
‘1’.

3. Enable the serial port by setting the SPEN bit.
The SYNC bit must be clear for asynchronous
operation.

4. If interrupts are desired, set the RCxIE interrupt
enable bit and set the GIE/GIEH and PEIE/GIEL
bits of the INTCON register.

5. Enable 9-bit reception by setting the RX9 bit.

6. Enable address detection by setting the ADDEN
bit.

7. Set the DTRXP if inverted receive polarity is
desired.

8. Enable reception by setting the CREN bit.

9. The RCxIF interrupt flag bit will be set when a
character with the ninth bit set is transferred
from the RSR to the receive buffer. An interrupt
will be generated if the RCxIE interrupt enable
bit was also set.

10. Read the RCSTAx register to get the error flags.
The ninth data bit will always be set.

11. Get the received eight Least Significant data bits
from the receive buffer by reading the RCREGx
register. Software determines if this is the
device’s address.

12. If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.

13. If the device has been addressed, clear the
ADDEN bit to allow all received data into the
receive buffer and generate interrupts. 
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20.5  Register Definitions: SR Latch Control

REGISTER 20-1: SRCON0: SR LATCH CONTROL REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SRLEN SRCLK<2:0> SRQEN SRNQEN SRPS SRPR

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented C = Clearable only bit

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 SRLEN: SR Latch Enable bit(1)

1 = SR latch is enabled
0 = SR latch is disabled

bit 6-4 SRCLK<2:0>: SR Latch Clock Divider Bits

000  =  Generates a 2 TOSC wide pulse on DIVSRCLK every 4 peripheral clock cycles
001  =   Generates a 2 TOSC wide pulse on DIVSRCLK every 8 peripheral clock cycles
010  =  Generates a 2 TOSC wide pulse on DIVSRCLK every 16 peripheral clock cycles
011  =  Generates a 2 TOSC wide pulse on DIVSRCLK every 32 peripheral clock cycles
100  =  Generates a 2 TOSC wide pulse on DIVSRCLK every 64 peripheral clock cycles
101  =  Generates a 2 TOSC wide pulse on DIVSRCLK every 128 peripheral clock cycles
110  =  Generates a 2 TOSC wide pulse on DIVSRCLK every 256 peripheral clock cycles
111  =  Generates a 2 TOSC wide pulse on DIVSRCLK every 512 peripheral clock cycles

bit 3 SRQEN: SR Latch Q Output Enable bit

1 = Q is present on the SRQ pin
0 = Q is internal only

bit 2 SRNQEN: SR Latch Q Output Enable bit

1 = Q is present on the SRNQ pin
0 = Q is internal only

bit 1 SRPS: Pulse Set Input of the SR Latch bit(2)

1 = Pulse set input for two TOSC clock cycles
0 = No effect on set input

bit 0 SRPR: Pulse Reset Input of the SR Latch bit(2)

1 = Pulse reset input for two TOSC clock cycles
0 = No effect on Reset input

Note 1: Changing the SRCLK bits while the SR latch is enabled may cause false triggers to the set and Reset 
inputs of the latch.

2: Set only, always reads back ‘0’.
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24.3 Watchdog Timer (WDT)

For PIC18(L)F2X/4XK22 devices, the WDT is driven by
the LFINTOSC source. When the WDT is enabled, the
clock source is also enabled. The nominal WDT period
is 4 ms and has the same stability as the LFINTOSC
oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit
postscaler. Any output of the WDT postscaler is
selected by a multiplexer, controlled by bits in
Configuration Register 2H. Available periods range
from 4 ms to 131.072 seconds (2.18 minutes). The
WDT and postscaler are cleared when any of the
following events occur: a SLEEP or CLRWDT instruction
is executed, the IRCF bits of the OSCCON register are
changed or a clock failure has occurred.

FIGURE 24-1: WDT BLOCK DIAGRAM

Note 1: The CLRWDT and SLEEP instructions
clear the WDT and postscaler counts
when executed.

2: Changing the setting of the IRCF bits of
the OSCCON register clears the WDT
and postscaler counts.

3: When a CLRWDT instruction is executed,
the postscaler count will be cleared.

LFINTOSC Source

WDT 

Wake-up

Reset

 WDT Counter

Programmable Postscaler
1:1 to 1:32,768

Enable WDT

WDTPS<3:0>

SWDTEN
WDTEN

CLRWDT

4

from Power

Reset

All Device Resets

Sleep

128

Change on IRCF bits
Managed Modes
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SUBLW Subtract W from literal

Syntax: SUBLW   k

Operands: 0 k 255

Operation: k – (W) W

Status Affected: N, OV, C, DC, Z

Encoding: 0000 1000 kkkk kkkk

Description W is subtracted from the 8-bit 
literal ‘k’. The result is placed in W.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process 
Data

Write to W

Example 1: SUBLW 02h

Before Instruction
W = 01h
C = ?

After Instruction
W = 01h
C = 1      ; result is positive
Z = 0
N = 0

Example 2: SUBLW 02h

Before Instruction
W = 02h
C = ?

After Instruction
W = 00h
C = 1      ; result is zero
Z = 1
N = 0

Example 3: SUBLW 02h

Before Instruction
W = 03h
C = ?

After Instruction
W = FFh ; (2’s complement)
C = 0 ; result is negative
Z = 0
N = 1

SUBWF Subtract W from f

Syntax: SUBWF    f {,d {,a}}

Operands: 0 f 255
d  [0,1]
a  [0,1]

Operation: (f) – (W) dest

Status Affected: N, OV, C, DC, Z

Encoding: 0101 11da ffff ffff

Description: Subtract W from register ‘f’ (2’s 
complement method). If ‘d’ is ‘0’, the 
result is stored in W. If ‘d’ is ‘1’, the 
result is stored back in register ‘f’ 
(default). 
If ‘a’ is ‘0’, the Access Bank is 
selected. If ‘a’ is ‘1’, the BSR is used 
to select the GPR bank.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction 
operates in Indexed Literal Offset 
Addressing mode whenever 
f 95 (5Fh). See Section 25.2.3 
“Byte-Oriented and Bit-Oriented 
Instructions in Indexed Literal Offset 
Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

Example 1: SUBWF   REG, 1, 0

Before Instruction
REG = 3
W = 2
C = ?

After Instruction
REG = 1
W = 2
C = 1 ; result is positive
Z = 0
N = 0

Example 2: SUBWF   REG, 0, 0

Before Instruction
REG = 2
W = 2
C = ?

After Instruction
REG = 2
W = 0
C = 1 ; result is zero
Z = 1
N = 0

Example 3: SUBWF   REG, 1, 0

Before Instruction
REG = 1
W = 2
C = ?

After Instruction
REG = FFh ;(2’s complement)
W = 2
C = 0 ; result is negative
Z = 0
N = 1
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TBLRD Table Read

Syntax: TBLRD ( *; *+; *-; +*)

Operands: None

Operation: if TBLRD *,
(Prog Mem (TBLPTR))  TABLAT;
TBLPTR – No Change;
if TBLRD *+,
(Prog Mem (TBLPTR))  TABLAT;
(TBLPTR) + 1  TBLPTR;
if TBLRD *-,
(Prog Mem (TBLPTR))  TABLAT;
(TBLPTR) – 1  TBLPTR;
if TBLRD +*,
(TBLPTR) + 1  TBLPTR;
(Prog Mem (TBLPTR))  TABLAT;

Status Affected: None

Encoding: 0000 0000 0000 10nn
 nn=0 * 
   =1 *+
   =2 *-
   =3 +*

Description: This instruction is used to read the contents 
of Program Memory (P.M.). To address the 
program memory, a pointer called Table 
Pointer (TBLPTR) is used.
The TBLPTR (a 21-bit pointer) points to 
each byte in the program memory. TBLPTR 
has a 2-Mbyte address range. 

TBLPTR[0] = 0: Least Significant Byte 
of Program Memory 
Word

TBLPTR[0] = 1: Most Significant Byte 
of Program Memory 
Word

The TBLRD instruction can modify the value 
of TBLPTR as follows:
• no change
• post-increment
• post-decrement
• pre-increment

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No 
operation

No 
operation

No 
operation

No 
operation

No operation
(Read Program 

Memory)

No 
operation

No operation
(Write TABLAT)

TBLRD Table Read (Continued)

Example1: TBLRD  *+ ;

Before Instruction
TABLAT = 55h
TBLPTR = 00A356h
MEMORY (00A356h) = 34h

After Instruction
TABLAT = 34h
TBLPTR = 00A357h

Example2: TBLRD  +* ;

Before Instruction
TABLAT = AAh
TBLPTR = 01A357h
MEMORY (01A357h) = 12h
MEMORY (01A358h) = 34h

After Instruction
TABLAT = 34h
TBLPTR = 01A358h
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XORWF Exclusive OR W with f

Syntax: XORWF     f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (W) .XOR. (f) dest

Status Affected: N, Z

Encoding: 0001 10da ffff ffff

Description: Exclusive OR the contents of W with 
register ‘f’. If ‘d’ is ‘0’, the result is stored 
in W. If ‘d’ is ‘1’, the result is stored back 
in the register ‘f’ (default). 
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See 
Section 25.2.3 “Byte-Oriented and 
Bit-Oriented Instructions in Indexed 
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

Example: XORWF   REG, 1, 0

Before Instruction
REG = AFh
W = B5h

After Instruction
REG = 1Ah
W = B5h
 2010-2016 Microchip Technology Inc.  DS40001412G-page 401



PIC18(L)F2X/4XK22
27.5 DC Characteristics: Primary Run Supply Current, PIC18(L)F2X/4XK22

PIC18LF2X/4XK22 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C  TA  +125°C

PIC18F2X/4XK22 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C  TA  +125°C

Param 
No.

Device Characteristics Typ Max Units Conditions

D070 Supply Current (IDD)(1),(2) 0.11 0.20 mA -40°C to +125°C VDD = 1.8V FOSC = 1 MHz
(PRI_RUN mode,
ECM source)

D071 0.17 0.25 mA -40°C to +125°C VDD = 3.0V

D072 0.15 0.25 mA -40°C to +125°C VDD = 2.3V FOSC = 1 MHz
(PRI_RUN mode,
ECM source)

D073 0.20 0.30 mA -40°C to +125°C VDD = 3.0V

D074 0.25 0.35 mA -40°C to +125°C VDD = 5.0V

D075 1.45 2.0 mA -40°C to +125°C VDD = 1.8V FOSC = 20 MHz
(PRI_RUN mode,
ECH source)

D076 2.60 3.5 mA -40°C to +125°C VDD = 3.0V

D077 1.95 2.5 mA -40°C to +125°C VDD = 2.3V FOSC = 20 MHz
(PRI_RUN mode,
ECH source)

D078 2.65 3.5 mA -40°C to +125°C VDD = 3.0V

D079 2.95 4.5 mA -40°C to +125°C VDD = 5.0V

D080 7.5 10 mA -40°C to +125°C VDD = 3.0V FOSC = 64 MHz
(PRI_RUN,
ECH oscillator)

D081 7.5 10 mA -40°C to +125°C VDD = 3.0V FOSC = 64 MHz
(PRI_RUN mode,
ECH source)

D082 8.5 11.5 mA -40°C to +125°C VDD = 5.0V

D083 1.0 1.5 mA -40°C to +125°C VDD = 1.8V FOSC = 4 MHz
16 MHz Internal
(PRI_RUN mode,
ECM + PLL source)

D084 1.8 3.0 mA -40°C to +125°C VDD = 3.0V

D085 1.4 2.0 mA -40°C to +125°C VDD = 2.3V FOSC = 4 MHz
16 MHz Internal
(PRI_RUN mode,
ECM + PLL source)

D086 1.85 2.5 mA -40°C to +125°C VDD = 3.0V

D087 2.1 3.0 mA -40°C to +125°C VDD = 5.0V

D088 6.35 9.0 mA -40°C to +125°C VDD = 3.0V FOSC = 16 MHz
64 MHz Internal
(PRI_RUN mode,
ECH + PLL source)

D089 6.35 9.0 mA -40°C to +125°C VDD = 3.0V FOSC = 16 MHz
64 MHz Internal
(PRI_RUN mode,
ECH + PLL source)

D090 7.0 10 mA -40°C to +125°C VDD = 5.0V

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading 
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on 
the current consumption.
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to ‘1’. 

2: The test conditions for all IDD measurements in active operation mode are: 
All I/O pins set as outputs driven to Vss;
MCLR = VDD;
OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).
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FIGURE 27-9: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND 
POWER-UP TIMER TIMING       

FIGURE 27-10: BROWN-OUT RESET TIMING       
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FIGURE 28-26: PIC18LF2X/4XK22 TYPICAL IDD: RC_RUN HF-INTOSC

FIGURE 28-27: PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC
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