

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k22-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin Number		Din Nama	Pin	Buffer	Description		
PDIP	TQFP	QFN	UQFN	FIII Name	Туре	Туре	Description	
18	37	37	33	RC3/SCK1/SCL1/AN15	_		-	
				RC3	I/O	ST	Digital I/O.	
				SCK1	I/O	ST	Synchronous serial clock input/output for SPI mode (MSSP).	
				SCL1	I/O	ST	Synchronous serial clock input/output for I ² C mode (MSSP).	
				AN15	I	Analog	Analog input 15.	
23	42	42	38	RC4/SDI1/SDA1/AN16				
				RC4	I/O	ST	Digital I/O.	
				SDI1	I	ST	SPI data in (MSSP).	
				SDA1	I/O	ST	I ² C data I/O (MSSP).	
				AN16	I	Analog	Analog input 16.	
24	43	43	39	RC5/SDO1/AN17				
				RC5	I/O	ST	Digital I/O.	
				SDO1	0	_	SPI data out (MSSP).	
				AN17	I	Analog	Analog input 17.	
25	44	44	40	RC6/TX1/CK1/AN18				
				RC6	I/O	ST	Digital I/O.	
				TX1	0		EUSART asynchronous transmit.	
				CK1	I/O	ST	EUSART synchronous clock (see related RXx/ DTx).	
				AN18	I	Analog	Analog input 18.	
26	1	1	1	RC7/RX1/DT1/AN19				
				RC7	I/O	ST	Digital I/O.	
				RX1	I	ST	EUSART asynchronous receive.	
				DT1	I/O	ST	EUSART synchronous data (see related TXx/ CKx).	
				AN19	I	Analog	Analog input 19.	
19	38	38	34	RD0/SCK2/SCL2/AN20				
				RD0	I/O	ST	Digital I/O.	
				SCK2	I/O	ST	Synchronous serial clock input/output for SPI mode (MSSP).	
				SCL2	I/O	ST	Synchronous serial clock input/output for I ² C mode (MSSP).	
				AN20	I	Analog	Analog input 20.	
20	39	39	35	RD1/CCP4/SDI2/SDA2/AM	N21			
				RD1	I/O	ST	Digital I/O.	
				CCP4	I/O	ST	Capture 4 input/Compare 4 output/PWM 4 output.	
				SDI2	I	ST	SPI data in (MSSP).	
				SDA2	I/O	ST	I ² C data I/O (MSSP).	
				AN21	I	Analog	Analog input 21.	

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

2.13 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the CONFIG1H Configuration register. The FSCM is applicable to all external oscillator modes (LP, XT, HS, EC, RC and RCIO).

FIGURE 2-10: FSCM BLOCK DIAGRAM

2.13.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64 (see Figure 2-10). Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the primary clock goes low.

2.13.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSCFIF of the PIR2 register. The OSCFIF flag will generate an interrupt if the OSCFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation. An automatic transition back to the failed clock source will not occur.

The internal clock source chosen by the FSCM is determined by the IRCF<2:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

2.13.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared by either one of the following:

- Any Reset
- · By toggling the SCS1 bit of the OSCCON register

Both of these conditions restart the OST. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared and the device automatically switches over to the external clock source. The Fail-Safe condition need not be cleared before the OSCFIF flag is cleared.

2.13.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed.

Note:	Due to the wide range of oscillator start-up
	times, the Fail-Safe circuit is not active
	during oscillator start-up (i.e., after exiting
	Reset or Sleep). After an appropriate
	amount of time, the user should check the
	OSTS bit of the OSCCON register to verify
	the oscillator start-up and that the system
	clock switchover has successfully
	completed.

Note: When the device is configured for Fail-Safe clock monitoring in either HS, XT, or LS Oscillator modes then the IESO configuration bit should also be set so that the clock will automatically switch from the internal clock to the external oscillator when the OST times out.

5.3.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as either two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of two and the LSb will always read '0' (see Section 5.1.1 "Program Counter").

Figure 5-4 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 5-4 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 25.0 "Instruction Set Summary" provides further details of the instruction set.

				-	
			LSB = 1	LSB = 0	Word Address \downarrow
	Program N	lemory			000000h
	Byte Locat	tions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	C1h	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

FIGURE 5-4: INSTRUCTIONS IN PROGRAM MEMORY

5.3.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instruction always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed and used by the instruction sequence.

If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 5-4 shows how this works.

Note:	See Section 5.8 "PIC18 Instruction Execution and the Extended
	Instruction Set" for information on
	two-word instructions in the extended instruction set.

CASE 1:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, RE	G2 ; No, skip this word
1111 0100 0101 0110		; Execute this word as a NOP
0010 0100 0000 0000	ADDWF REG3	; continue code
CASE 2:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, RE	G2 ; Yes, execute this word
1111 0100 0101 0110		; 2nd word of instruction
0010 0100 0000 0000	ADDWF REG3	; continue code

EXAMPLE 5-4: TWO-WORD INSTRUCTIONS

5.6 Data Addressing Modes

Note: The execution of some instructions in the core PIC18 instruction set are changed when the PIC18 extended instruction set is enabled. See Section 5.7 "Data Memory and the Extended Instruction Set" for more information.

While the program memory can be addressed in only one way – through the program counter – information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in **Section 5.7.1** "**Indexed Addressing with Literal Offset**".

5.6.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode. This is known as Literal Addressing mode because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

5.6.2 DIRECT ADDRESSING

Direct addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byteoriented instructions use some version of direct addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (**Section 5.4.3 "General** **Purpose Register File**") or a location in the Access Bank (Section 5.4.2 "Access Bank") as the data source for the instruction.

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 5.4.1 "Bank Select Register (BSR)") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

5.6.3 INDIRECT ADDRESSING

Indirect addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations which are to be read or written. Since the FSRs are themselves located in RAM as Special File Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables and arrays in data memory.

The registers for indirect addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code, using loops, such as the example of clearing an entire RAM bank in Example 5-5.

EXAMPLE 5-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0,	100h	;	
NEXT	CLRF	POSTIN	C0	;	Clear INDF
				;	register then
				;	inc pointer
	BTFSS	FSR0H,	1	;	All done with
				;	Bankl?
	BRA	NEXT		;	NO, clear next
CONTINU	E			;	YES, continue

6.3 Register Definitions: Memory Control

REGISTER 6-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
S = Bit can be	set by software	e, but not clear	ed	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
1 :							
Dit 7	EEPGD: Flas	n Program or L	Jata EEPRON	I Memory Selec	Ct Dit		
	1 = Access F 0 = Access d	ata EEPROM	memory				
bit 6	CFGS: Flash	Program/Data	EEPROM or (Configuration S	elect bit		
	1 = Access C	configuration re	gisters	0			
	0 = Access F	lash program o	or data EEPRO	OM memory			
bit 5	Unimplement	ted: Read as '	0'				
bit 4	FREE: Flash	Row (Block) E	rase Enable bi	t			
	1 = Erase the	e program men	nory block add	ressed by TBL	PTR on the ne	ext WR commar	nd
	0 = Perform v	write-only	or erase opera	lition)			
bit 3	WRERR: Flas	sh Program/Da	ta EEPROM E	Error Flag bit ⁽¹⁾			
	1 = A write op	peration is prei	maturely termi	nated (any Res	et during self-	timed programn	ning in normal
	operation	, or an improp	er write attemp	ot)			
bit 2	WREN: Flash	Program/Data	EEPROM WI	rite Enable bit			
	1 = Allows with 0 = Inhibits with	rite cycles to F	lash program/ lash program/	data EEPROM			
bit 1	WR: Write Co	ntrol bit	1 0				
	1 = Initiates a	data EEPRON	/l erase/write c	ycle or a progra	am memory era	ase cycle or writ	e cycle.
	(The operation of the o	ration is self-tir	ned and the b	it is cleared by	hardware onc	e write is compl	ete.
	0 = Write cvc	le to the EEPR	Set (not cleare	ed) by soπware ite	e.)		
bit 0	RD: Read Co	ntrol bit					
	1 = Initiates a	n EEPROM re	ad (Read take:	s one cycle. RD	is cleared by I	hardware. The F	RD bit can only
	be set (no	ot cleared) by s	oftware. RD bi	t cannot be set	when EEPGD	= 1 or CFGS =	1.)
	0 = Does not	Initiate an EEF	-ROM read				

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

6.3.1 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

6.3.2 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations on the TBLPTR affect only the low-order 21 bits.

6.3.3 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory directly into the TABLAT register.

When a TBLWT is executed the byte in the TABLAT register is written, not to Flash memory but, to a holding register in preparation for a program memory write. The holding registers constitute a write block which varies depending on the device (see Table 6-1). The 3, 4, or 5 LSbs of the TBLPTRL register determine which specific address within the holding register block is written to. The MSBs of the Table Pointer have no effect during TBLWT operations.

When a program memory write is executed the entire holding register block is written to the Flash memory at the address determined by the MSbs of the TBLPTR. The 3, 4, or 5 LSBs are ignored during Flash memory writes. For more detail, see **Section 6.6** "**Writing to Flash Program Memory**".

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 6-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

TABLE 6-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 6-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	—	RBIP
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7	RBPU: PORT 1 = All PORT 0 = PORTB p set.	TB Pull-up Enal TB pull-ups are pull-ups are ena	ble bit disabled abled provided	d that the pin is	an input and th	e correspondir	ng WPUB bit is
bit 6	INTEDG0: Ex1 = Interrupt0 = Interrupt	ternal Interrupt on rising edge on falling edge	0 Edge Seled	ct bit			
bit 5	INTEDG1: Ex 1 = Interrupt 0 = Interrupt	ternal Interrupt on rising edge on falling edge	1 Edge Seleo	ct bit			
bit 4	<pre>INTEDG2: Ex 1 = Interrupt 0 = Interrupt</pre>	ternal Interrupt on rising edge on falling edge	2 Edge Selec	ct bit			
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	bit 2 TMR0IP: TMR0 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority						
bit 1	Unimplemen	ted: Read as '	0'				
bit 0 RBIP: RB Port Change Interrupt Priority bit							
	1 = High prio 0 = Low prior	rity rity					
r							

REGISTER 9-2: INTCON2: INTERRUPT CONTROL 2 REGISTER

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit. User software should ensure
	the appropriate interrupt flag bits are clear
	prior to enabling an interrupt. This feature
	allows for software polling.

R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 7	INT2IP: INT2	External Inter	upt Priority bi	t			
	1 = High prio	rity					
bit 6	0 = 100 phot	External Inter	unt Priority hi	t			
bit 0	1 = High prio	rity	upt i nonty bi	·			
	0 = Low prior	rity					
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	INT2IE: INT2	External Intern	upt Enable bi	t			
	1 = Enables	the INT2 exter	nal interrupt				
	0 = Disables	the INT2 exter	nal interrupt				
bit 3	INT1IE: INT1	External Inter	upt Enable bi	t			
	1 = Enables 0 = Disables	the INT1 exter	nal interrupt				
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	INT2IF: INT2	External Interr	upt Flag bit				
	1 = The INT2	2 external inter	rupt occurred	(must be clear	ed by software)	1	
	0 = The INT2	2 external inter	rupt did not o	ccur			
bit 0	INT1IF: INT1	External Interr	upt Flag bit				
	1 = The INT1	l external inter	rupt occurred	(must be clear	ed by software)		
		i external inter	iupi ulu noi o	loui			
Note:	Interrupt flag bits a	re set when an	interrupt				
	its corresponding	enable bit or th	ne global				
	enable bit. User s	software shoul	d ensure				
	the appropriate int	errupt flag bits	are clear				
	prior to enabling a	n interrupt. Thi	s teature				
ł	anows for sonware	⇒ poliiliy.					

REGISTER 9-3: INTCON3: INTERRUPT CONTROL 3 REGISTER

13.6 Register Definitions: Timer2/4/6 Control

REGISTER 13-1: TxCON: TIMER2/TIMER4/TIMER6 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_		TxOUTPS<3:0>			TMRxON	TxCKP	S<1:0>		
bit 7							bit (
Lowende									
L egena: R – Roadah	le hit	W – Writable	hit	II – I Inimple	mented hit read	as 'O'			
					at DOP and POI		other Decete		
	changeu	X = DILIS ULKI			at FOR and BOI	R/Value at all 0			
T = BIT IS Se	et	0 = Bit is clear	ared						
oit 7	Unimpleme	ented: Read as '	0'						
bit 6-3	TxOUTPS<	: 3:0>: TimerX Οι	utput Postscal	ler Select bits					
	0000 = 1:1	Postscaler							
	0001 = 1:2	Postscaler							
	0010 = 1:3	Postscaler							
	0011 = 1 :4	Postscaler							
	0100 = 1:5	Postscaler							
	0101 = 1:6	Postscaler							
	0110 = 1:7	Postscaler							
	0111 = 1:8	Postscaler							
	1000 = 1.9								
	1001 = 1:10	1001 = 1:10 Postscaler							
	1010 = 1.11	2 Postscaler							
	1100 - 1.12	2 Postscaler							
	1100 = 1:100	4 Postscaler							
	1110 = 1:15	5 Postscaler							
	1111 = 1:16	6 Postscaler							
oit 2	TMRxON:	FimerX On bit							
	1 = TimerX	is on							
	0 = TimerX	is off							
oit 1-0	TxCKPS<1	:0>: Timer2-type	Clock Presc	ale Select bits					
	00 = Presca	aler is 1							
	01 = Presca	aler is 4							
	1 Dreese	1							

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPTMRS0	C3TSE	L<1:0>	_	C2TSE	C2TSEL<1:0> —		C1TSEL<1:0>		201
CCPTMRS1	—			—	C5TSE	L<1:0> C4TSEL<1:0		EL<1:0>	201
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR5	_			—	_	TMR6IP	TMR5IP	TMR4IP	124
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE5	_			—	_	TMR6IE	TMR5IE	TMR4IE	120
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR5	_			—	_	TMR6IF	TMR5IF	TMR4IF	116
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
PR2			-	Timer2 Peri	od Register				—
PR4			-	Timer4 Peri	od Register				—
PR6			-	Timer6 Peri	od Register				—
T2CON	—		T2OUTPS	S<3:0>		TMR2ON	T2CK	PS<1:0>	166
T4CON	—		T4OUTPS	S<3:0>		TMR4ON	T4CK	PS<1:0>	166
T6CON	—		T6OUTPS<3:0> TMR6ON T6CKPS<1:0>					PS<1:0>	166
TMR2				Timer2 I	Register				—
TMR4				Timer4 I	Register				
TMR6				Timer6 I	Register				—

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by Timer2/4/6.

15.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCLx pin is held low (see **Section 15.5.6 "Clock Stretching"** for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then the SCLx pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCLx input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes Idle and waits for another occurrence of the Start bit. If the SDAx line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, the SCLx pin must be released by setting bit CKP.

An MSSPx interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

15.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDAx line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCLxIF bit of the PIRx register is set. Once a bus collision is detected, the slave goes Idle and waits to be addressed again. User software can use the BCLxIF bit to handle a slave bus collision.

15.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 15-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDAx and SCLx.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/W bit set is received by the slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCLx, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.

Note 1: If the master ACKs the clock will be stretched.

2: ACKSTAT is the only bit updated on the rising edge of SCLx (9th) rather than the falling.

- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

- 16.1.2.9 Asynchronous Reception Setup:
- Initialize the SPBRGHx:SPBRGx register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 16.4 "EUSART Baud Rate Generator (BRG)").
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- 3. Enable the serial port by setting the SPEN bit and the RXx/DTx pin TRIS bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCxIE interrupt enable bit and set the GIE/GIEH and PEIE/GIEL bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Set the DTRXP if inverted receive polarity is desired.
- 7. Enable reception by setting the CREN bit.
- 8. The RCxIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCxIE interrupt enable bit was also set.
- 9. Read the RCSTAx register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREGx register.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

16.1.2.10 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRGHx, SPBRGx register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 16.4 "EUSART Baud Rate Generator (BRG)").
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCxIE interrupt enable bit and set the GIE/GIEH and PEIE/GIEL bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Set the DTRXP if inverted receive polarity is desired.
- 8. Enable reception by setting the CREN bit.
- The RCxIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCxIE interrupt enable bit was also set.
- 10. Read the RCSTAx register to get the error flags. The ninth data bit will always be set.
- 11. Get the received eight Least Significant data bits from the receive buffer by reading the RCREGx register. Software determines if this is the device's address.
- 12. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 13. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

20.5 Register Definitions: SR Latch Control

	REGISTER 20-1:	SRCON0: SR LATCH CONTROL REGISTER
--	----------------	-----------------------------------

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SRLEN		SRCLK<2:0>		SRQEN	SRNQEN	SRPS	SRPR
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable I	oit	U = Unimple	mented	C = Clearable	e only bit
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 7	SRLEN: SR	Latch Enable bi	t(1)				
	0 = SR late	n is disabled					
bit 6-4	SRCLK<2:0)>: SR Latch Clo	ck Divider Bi	ts			
bit 3	010 = Ger 011 = Ger 100 = Ger 101 = Ger 110 = Ger 111 = Ger SRQEN: SF	nerates a 2 Tosc nerates a 2 Tosc R Latch Q Output	wide pulse o wide pulse o wide pulse o wide pulse o wide pulse o Enable bit	n DIVSRCLK e n DIVSRCLK e n DIVSRCLK e n DIVSRCLK e n DIVSRCLK e n DIVSRCLK e	very 16 periph very 32 periph very 64 periph very 128 perip very 256 perip very 512 perip	eral clock cycle eral clock cycle eral clock cycle heral clock cycl heral clock cycl heral clock cycl	s s es es es
	$1 = \mathbf{Q}$ is pre $0 = \mathbf{Q}$ is int	ernal on the SRC	Q pin				
bit 2	SRNQEN: S	SR Latch \overline{Q} Outp	ut Enable bit				
	$1 = \overline{\mathbf{Q}}$ is present $0 = \overline{\mathbf{Q}}$ is int	ernal on the SRN	IQ pin				
bit 1	SRPS: Puls	e Set Input of the	e SR Latch bi	it ⁽²⁾			
	1 = Pulse s 0 = No effe	et input for two T ct on set input	osc clock cy	cles			
bit 0	SRPR: Puls	e Reset Input of	the SR Latch	n bit ⁽²⁾			
	1 = Pulse r 0 = No effe	eset input for two ct on Reset inpu	TOSC Clock (cycles			
Note 1:	Changing the SF inputs of the latc	₹CLK bits while tl h.	he SR latch is	s enabled may	cause false trig	gers to the set	and Reset
2:	Set only, always	reads back '0'.					

24.3 Watchdog Timer (WDT)

For PIC18(L)F2X/4XK22 devices, the WDT is driven by the LFINTOSC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the LFINTOSC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits of the OSCCON register are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits of the OSCCON register clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

FIGURE 24-1: WDT BLOCK DIAGRAM

SUBLW	Subtract	W from lite	ral	SUBWF	Subtract	W from f	
Syntax:	SUBLW I	k		Syntax:	SUBWF	f {,d {,a}}	
Operands:	$0 \le k \le 258$	5		Operands:	0 ≤ f ≤ 255	5	
Operation:	$k-(W) \rightarrow$	W			d ∈ [0,1]		
Status Affected:	N, OV, C,	DC, Z		Operations	$a \in [0,1]$	deet	
Encoding:	0000	1000 kki	kk kkkk	Operation:	(1) - (VV) -		
Description	W is subtr	acted from the	8-bit	Status Affected:	N, OV, C,	DU, Z	f
	literal 'k'. 7	The result is pl	aced in W.	Description:	Subtract V	V from register	r 'f' (2's
Words:	1			Description.	compleme	ent method). If	'd' is '0', the
Cycles:	1				result is st	ored in W. If 'c	d' is '1', the
Q Cycle Activity:			.		(default).	ored back in re	egister
Q1	Q2	Q3	Q4		If 'a' is '0',	the Access Ba	ank is
Decode	Read literal 'k'	Process Data	Write to W		selected.	If 'a' is '1', the he GPR bank.	BSR is used
Example 1:	SUBLW ()2h	<u>. </u>		lf 'a' is '0' a	and the extend	ed instruction
Before Instruc	tion				set is enal	bled, this instru n Indexed I ite	uction ral Offset
W	= 01h				Addressin	g mode whene	ever
After Instruction	e : on				f ≤ 95 (5Fl "Pute Ori	h). See Sectio	n 25.2.3
W C	= 01h = 1 :re	esult is positive	9		Instructio	ns in Indexed	Literal Offset
Z	= 0				Mode" for	details.	
Example 2:		1 <i>2</i> h		Words:	1		
Before Instruc	tion	5211		Cycles:	1		
W	= 02h			Q Cycle Activity:			
C After Instructio	= ? on			Q1	Q2	Q3	Q4
W	= 00h	eult is zero		Decode	Read	Process	Write to
Z	= 1	55011 15 2010		L			destination
N Fuerrale 2:	= 0			Example 1: Before Instru	SUBWF [®]	REG, I, U	
Example 3:	SUBLW (J2n		REG	= 3		
W	= 03h			C	= 2 = ?		
C After Instructio	= ? no			After Instructi	on _ 1		
W	= FFh ; (2's compleme	nt)	W	= 2		
Z	= 0 ; r = 0	esult is negati	ve	Z	= 1 ; re = 0	esult is positive	9
Ν	= 1			Ν	= 0		
				Example 2:	SUBWF	REG, 0, 0	
				REG	= 2		
				W	= 2 = ?		
				After Instructi	on .		
				REG W	= 2 = 0		
				Ç	= 1 ; re	esult is zero	
				Z N	= 1 = 0		
				Example 3:	SUBWF	REG, 1, 0	
				Before Instru	ction		
				W	= 2		
				C After Instructi	= ?		
				REG	= FFh ;(2	's complemen	t)
				W C	= 2 = 0 ; re	esult is negativ	/e
				ZN	= 0 = 1	-	
				1.4			

TBL	RD	Table Rea	d				
Synta	ax:	TBLRD (*;	*+; *-;	+*)			
Oper	ands:	None					
Oper	ation:	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR – No Change; if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT;					
Statu	s Affected:	None					
Enco	ding:	0000	000	00	0000)	10nn nn=0 * =1 *+ =2 *- =3 +*
Desc	ription:	=3 +1 This instruction is used to read the contents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word The TBLRD instruction can modify the value of TBLPTR as follows: • no change • post-increment • pore-increment					e contents dress the Table ints to . TBLPTR ificant Byte n Memory ficant Byte n Memory the value
Word	ls:	1					
Cycle	es:	2					
QC	ycle Activity	/: 			•••		.
1	Q1	Q2			Q3		Q4
	Decode	No operatio	on	оре	No eration		No operation

No operation (Read Program

Memory)

No

operation

No operation

(Write TABLAT)

TBLRD	Table Read	(Continued)
IBLRD	Table Read	(Continued)

Example1:	TBLRD *	+ ;	
Before Instruction	n		
TABLAT		=	55h
	(00A356h)	=	00A356h 34h
After Instruction	(00/100011)	_	UHII
TABLAT		=	34h
TBLPTR		=	00A357h
Example 2:		ч .	
<u>Examplez</u> .	IBLKD 4	-^ ;	
Before Instruction	n n	-^ ;	
Before Instructio	n IBLRD	=	AAh
Before Instruction TABLAT TBLPTR	181KD +	=	AAh 01A357h
Before Instruction TABLAT TBLPTR MEMORY MEMORY	(01A357h) (01A358h)	= = = =	AAh 01A357h 12h 34h
Before Instruction TABLAT TBLPTR MEMORY After Instruction	(01A357h) (01A358h)	= = = =	AAh 01A357h 12h 34h
Examplez. Before Instructio TABLAT TBLPTR MEMORY MEMORY After Instruction TABLAT	(01A357h) (01A358h)	- ^ ; = = = = =	AAh 01A357h 12h 34h 34h

No

operation

XOR	RWF	Exclusive OR W with f				
Synta	ax:	XORWF	f {,d {,a}}			
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Oper	ation:	(W) .XOR.	(f) \rightarrow dest			
Statu	is Affected:	N, Z				
Enco	oding:	0001	10da ffi	f ffff		
Desc	rription:	Exclusive OR the contents of W wit register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored b in the register 'f' (default). If 'a' is '0', the Access Bank is select If 'a' is '1', the BSR is used to select GPR bank. If 'a' is '0' and the extended instruct set is enabled, this instruction opera in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented an Bit-Oriented Instructions in Index				
Word	ls:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process Data	Write to destination		
<u>Exan</u>	nple:	XORWF 1	REG, 1, 0			
	Before Instruc REG W	tion = AFh = B5h				
	Atter Instruction REG	on = 1Ah				

B5h

=

 $\ensuremath{\textcircled{}^{\odot}}$ 2010-2016 Microchip Technology Inc.

W

27.5 DC Characteristics: Primary Run Supply Current, PIC18(L)F2X/4XK22

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
PIC18F2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Device Characteristics	Тур	Max	Units	Conditions				
D070	Supply Current (IDD)(1),(2)	0.11	0.20	mA	-40°C to +125°C	Vdd = 1.8V	Fosc = 1 MHz		
D071		0.17	0.25	mA	-40°C to +125°C	VDD = 3.0V	(PRI_RUN mode, ECM source)		
D072		0.15	0.25	mA	-40°C to +125°C	Vdd = 2.3V	Fosc = 1 MHz		
D073		0.20	0.30	mA	-40°C to +125°C	Vdd = 3.0V	(PRI_RUN mode,		
D074		0.25	0.35	mA	-40°C to +125°C	VDD = 5.0V	Low source)		
D075		1.45	2.0	mA	-40°C to +125°C	Vdd = 1.8V	Fosc = 20 MHz		
D076		2.60	3.5	mA	-40°C to +125°C	VDD = 3.0V	(PRI_RUN mode, ECH source)		
D077		1.95	2.5	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 20 MHz (PRI_RUN mode, ECH source)		
D078		2.65	3.5	mA	-40°C to +125°C	VDD = 3.0V			
D079		2.95	4.5	mA	-40°C to +125°C	VDD = 5.0V	Eon source)		
D080		7.5	10	mA	-40°C to +125°C	Vdd = 3.0V	Fosc = 64 MHz (PRI_RUN , ECH oscillator)		
D081		7.5	10	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz		
D082		8.5	11.5	mA	-40°C to +125°C	VDD = 5.0V	(PRI_RUN mode, ECH source)		
D083		1.0	1.5	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 4 MHz		
D084		1.8	3.0	mA	-40°C to +125°C	VDD = 3.0V	16 MHz Internal (PRI_RUN mode, ECM + PLL source)		
D085		1.4	2.0	mA	-40°C to +125°C	Vdd = 2.3V	Fosc = 4 MHz		
D086		1.85	2.5	mA	-40°C to +125°C	Vdd = 3.0V	16 MHz Internal		
D087		2.1	3.0	mA	-40°C to +125°C	Vdd = 5.0V	ECM + PLL source)		
D088		6.35	9.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 16 MHz 64 MHz Internal (PRI_RUN mode, ECH + PLL source)		
D089		6.35	9.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 16 MHz		
D090		7.0	10	mA	-40°C to +125°C	VDD = 5.0V	64 MHz Internal (PRI_RUN mode, ECH + PLL source)		

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

<u>All I/O</u> pins set as outputs driven to Vss; MCLR = VDD;

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

FIGURE 27-10: BROWN-OUT RESET TIMING

FIGURE 28-27: PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC