

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k22t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- Memory Endurance: The Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles up to 10K for program memory and 100K for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-programmability: These devices can write to their own program memory spaces under internal software control. By using a bootloader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18(L)F2X/ 4XK22 family introduces an optional extension to the PIC18 instruction set, which adds eight new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced CCP module: In PWM mode, this module provides one, two or four modulated outputs for controlling half-bridge and full-bridge drivers. Other features include:
 - Auto-Shutdown, for disabling PWM outputs on interrupt or other select conditions
 - Auto-Restart, to reactivate outputs once the condition has cleared
 - Output steering to selectively enable one or more of four outputs to provide the PWM signal.
- Enhanced Addressable EUSART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- **10-bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead.
- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit postscaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 27.0 "Electrical Specifications" for time-out periods.
- Charge Time Measurement Unit (CTMU)
- SR Latch Output:

1.3 Details on Individual Family Members

Devices in the PIC18(L)F2X/4XK22 family are available in 28-pin and 40/44-pin packages. The block diagram for the device family is shown in Figure 1-1.

The devices have the following differences:

- 1. Flash program memory
- 2. Data Memory SRAM
- 3. Data Memory EEPROM
- 4. A/D channels
- 5. I/O ports
- 6. ECCP modules (Full/Half Bridge)
- 7. Input Voltage Range/Power Consumption

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in the pin summary tables: Table 2 and Table 3, and I/O description tables: Table 1-2 and Table 1-3.

2.13 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the CONFIG1H Configuration register. The FSCM is applicable to all external oscillator modes (LP, XT, HS, EC, RC and RCIO).

FIGURE 2-10: FSCM BLOCK DIAGRAM

2.13.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64 (see Figure 2-10). Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the primary clock goes low.

2.13.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSCFIF of the PIR2 register. The OSCFIF flag will generate an interrupt if the OSCFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation. An automatic transition back to the failed clock source will not occur.

The internal clock source chosen by the FSCM is determined by the IRCF<2:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

2.13.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared by either one of the following:

- Any Reset
- · By toggling the SCS1 bit of the OSCCON register

Both of these conditions restart the OST. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared and the device automatically switches over to the external clock source. The Fail-Safe condition need not be cleared before the OSCFIF flag is cleared.

2.13.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed.

Note:	Due to the wide range of oscillator start-up
	times, the Fail-Safe circuit is not active
	during oscillator start-up (i.e., after exiting
	Reset or Sleep). After an appropriate
	amount of time, the user should check the
	OSTS bit of the OSCCON register to verify
	the oscillator start-up and that the system
	clock switchover has successfully
	completed.

Note: When the device is configured for Fail-Safe clock monitoring in either HS, XT, or LS Oscillator modes then the IESO configuration bit should also be set so that the clock will automatically switch from the internal clock to the external oscillator when the OST times out.

FIGURE 12-7:	TIMER1/3/5 GATE SING	LE-PULSE AND TOGGLE COMBINED MODE
TMRxGE		
TxGPOL		
TxGSPM		
TxGTM		
TxGG <u>O/</u> DONE	 Set by software Counting enabled of the set of the	Cleared by hardware on falling edge of TxGVAL
TxG_IN	rising edge of TxG	
ТхСКІ		
TxGVAL		
TIMER1/3/5	Ν	<u>N + 1</u> <u>N + 2</u> <u>N + 3</u> <u>N + 4</u>
TMRxGIF	Cleared by software	Set by hardware on falling edge of TxGVAL

12.12 Peripheral Module Disable

When a peripheral module is not used or inactive, the module can be disabled by setting the Module Disable bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the PMD bits holds the module in Reset and disconnects the module's clock source. The Module Disable bits for Timer1 (TMR1MD), Timer3 (TMR3MD) and Timer5 (TMR5MD) are in the PMD0 Register. See Section 3.0 "Power-Managed Modes" for more information.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u				
TMRxGE	TxGPOL	TxGTM	TxGSPM	TxGGO/DONE	TxGVAL	TxGSS	5<1:0>				
bit 7	·						bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemer	nted bit, read a	as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is clear	ed by hardwar	re					
bit 7	TMRxGE: Tir <u>If TMRxON =</u> This bit is igno <u>If TMRxON =</u> 1 = Timer1/3 0 = Timer1/3	ner1/3/5 Gate <u>0</u> : ored <u>1</u> : /5 counting is c /5 counts regal	Enable bit controlled by the rdless of Time	ne Timer1/3/5 gate r1/3/5 gate functio	e function n						
bit 6 TxGPOL: Timer1/3/5 Gate Polarity bit 1 = Timer1/3/5 gate is active-high (Timer1/3/5 counts when gate is high) 0 = Timer1/3/5 gate is active-low (Timer1/3/5 counts when gate is low)											
bit 5	TxGTM: Time 1 = Timer1/3 0 = Timer1/3 Timer1/3/5 ga	er1/3/5 Gate To /5 Gate Toggle /5 Gate Toggle ate flip-flop togg	ggle Mode bit mode is enab mode is disat gles on every r	led bled and toggle flip rising edge.	o-flop is cleare	d					
bit 4	TxGSPM: Tin 1 = Timer1/3 0 = Timer1/3	ner1/3/5 Gate 3 /5 gate Single- /5 gate Single-	Single-Pulse M Pulse mode is Pulse mode is	lode bit enabled and is co disabled	ontrolling Time	r1/3/5 gate					
bit 3	TxGGO/DON 1 = Timer1/3 0 = Timer1/3 This bit is aut	E: Timer1/3/5 /5 gate single- _l /5 gate single- _l omatically clea	Gate Single-P oulse acquisition oulse acquisition red when TxG	ulse Acquisition S on is ready, waitin on has completed SPM is cleared.	tatus bit g for an edge or has not bee	en started					
bit 2	TxGVAL: Tim Indicates the Unaffected by	ner1/3/5 Gate C current state o / Timer1/3/5 Ga	Current State b f the Timer1/3, ate Enable (TM	it /5 gate that could /IRxGE).	be provided to	TMRxH:TMR	xL.				
bit 1-0	TxGSS<1:0> 00 = Timer1/3 01 = Timer2/4 10 = Compar 11 = Compar	: Timer1/3/5 G 3/5 Gate pin 4/6 Match PR2 ator 1 optional ator 2 optional	ate Source Se /4/6 output (Se ly synchronize ly synchronize	lect bits ee Table 12-5 for p d output (sync_C1 d output (sync_C2	proper timer m IOUT) 2OUT)	atch selection))				

REGISTER 12-2: TXGCON: TIMER1/3/5 GATE CONTROL REGISTER

13.0 TIMER2/4/6 MODULE

There are three identical 8-bit Timer2-type modules available. To maintain pre-existing naming conventions, the Timers are called Timer2, Timer4 and Timer6 (also Timer2/4/6).

Note:	The 'x' variable used in this section is
	used to designate Timer2, Timer4, or
	Timer6. For example, TxCON references
	T2CON, T4CON, or T6CON. PRx
	references PR2, PR4, or PR6.

The Timer2/4/6 module incorporates the following features:

- 8-bit Timer and Period registers (TMRx and PRx, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMRx match with PRx, respectively
- Optional use as the shift clock for the MSSPx modules (Timer2 only)

See Figure 13-1 for a block diagram of Timer2/4/6.

14.1 Capture Mode

The Capture mode function described in this section is identical for all CCP and ECCP modules available on this device family.

Capture mode makes use of the 16-bit Timer resources, Timer1, Timer3 and Timer5. The timer resources for each CCP capture function are independent and are selected using the CCPTMRS0 and CCPTMRS1 registers. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMRxH:TMRxL register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

When a capture is made, the corresponding Interrupt Request Flag bit CCPxIF of the PIR1, PIR2 or PIR4 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH:CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

TABLE 14-2: CCP PIN MULTIPLEXING

Figure 14-1 shows a simplified diagram of the Capture operation.

FIGURE 14-1:

CAPTURE MODE OPERATION BLOCK

14.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Some CCPx outputs are multiplexed on a couple of pins. Table 14-2 shows the CCP output pin multiplexing. Selection of the output pin is determined by the CCPxMX bits in Configuration register 3H (CONFIG3H). Refer to Register 24-4 for more details.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

CCP OUTPUT	CONFIG 3H Control Bit	Bit Value	PIC18(L)F2XK22 I/O pin	PIC18(L)F4XK22 I/O pin
CCP2	CCD2MX	0	RB3	RB3
	COFZIVIA	1(*)	RC1	RC1
CCP3	CCD2MX	0(*)	RC6	RE0
	CCF3IVIA	1	RB5	RB5

Legend: * = Default

14.1.2 TIMER1 MODE RESOURCE

The 16-bit Timer resource must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 12.0 "Timer1/3/5 Module with Gate Control" for more information on configuring the 16-bit Timers.

14.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIE1, PIE2 or PIE4 register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIR1, PIR2 or PIR4 register following any change in Operating mode.

Note: Clocking the 16-bit Timer resource from the system clock (Fosc) should not be used in Capture mode. In order for Capture mode to recognize the trigger event on the CCPx pin, the Timer resource must be clocked from the instruction clock (Fosc/4) or from an external clock source.

R/x-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PxM	<1:0>	DCxl	3<1:0>		CCPxN	/<3:0>					
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, rea	id as '0'					
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value a	at POR and B	OR/Value at al	l other Reset				
'1' = Bit is set		'0' = Bit is clea	ired								
bit 7-6 PxM<1:0> : Enhanced PWM Output Configuration bits If CCPxM<3:2> = 00, 01, 10: (Capture/Compare modes) xx = PxA assigned as Capture/Compare input; PxB, PxC, PxD assigned as port pins Half-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes)											
	Half-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 0x = Single output; PxA modulated; PxB assigned as port pin 1x = Half-Bridge output; PxA, PxB modulated with dead-band control										
 Full-Bridge ECCP Modules⁽¹⁾: If CCPxM<3:2> = 11: (PWM modes) 00 = Single output; PxA modulated; PxB, PxC, PxD assigned as port pins 01 = Full-Bridge output forward; PxD modulated; PxA active; PxB, PxC inactive 10 = Half-Bridge output; PxA, PxB modulated with dead-band control; PxC, PxD assigned pins 											
bit 5-4	DCxB<1:0>:	PWM Duty Cyc	le Least Signif	icant bits							
	<u>Capture mode</u> Unused	<u>e:</u>									
	<u>Compare mod</u> Unused	<u>de:</u>									
	<u>PWM mode:</u> These bits are	e the two LSbs	of the PWM du	uty cycle. The ei	ght MSbs are f	ound in CCPF	RxL.				
Note 1: Se	e Table 14-1 to	determine full-b	ridge and half-	bridge ECCPs f	or the device b	eing used.					

REGISTER 14-2: CCPxCON: ENHANCED CCPx CONTROL REGISTER

FIGURE 15-9:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
	\ \										
- 80%) ((367 - 2 - 0%) - 0)	2 2 2 2										· · · ·
- 80%x - (389° = 0, - (389° = 0)	·										3
980908-00 SURPARATE VIREA	•		2 2 2 2 4	2 5 5 5 7	4 6 5 6 	· · · · · · · · · · · · · · · · · · · ·	2 2 2 2 2 2	· · · · · · · · · · · · · · · · · · · ·	<pre><</pre>		• • • • •
- 555%)×		1. 232. 7 			× 1931 4. 	X 88.3	7. 394. 2.	/		68 0 Ma	· · · · · · · · · · · · · · · · · · ·
		- 1997 - 1995, 12 - 120				, ""				//// -3	· ·
- 1920-1925 - 3557255 - 1936/1925			2		(·	2		5		
- Fileg - SSP2SR & - SSF2SDF	•	· · ·	2 2 2 2	 2 2 2	\$ 5 5 5 • • • • • • • • • • • • • • • • •	· · · ·	2		6 6 5 6 5 5 5	: //p.	
Varias Codiscon detection activa									. ,		~~

FIGURE 15-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

								/			
SSx Nex Optional										/	
SCKx (CKP = <u>0</u> CKE = 1)	, , , , ,										
SCKx (CKP = 1 CKE = 1)	; ; ; ;										
Write to SSPxBUF	 	1 1 1 1 1	1 1 1 1	 	 	 	1 1 1 1	 			
SDOx	<u> </u>	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
SDIx ———		bit 7	\bigcirc		\sim		\sim	\sim	bit 0	, , , , ,	
Input Sample	1 1 1 1	1	1	1	1	1	1	1	1		
SSPxIF Interrupt Flag	1 1 1 1 1			, , , , ,	 	, , , , ,	1 1 1 1 1	 			
SSPxSR to SSPxBUF	1 1 1 1 1	1 1 1 1 1		 	1 1 1 1	 	, , , ,	1 1 1 1		×	
Wille Collesion detection solity	1	•			•		•				

TABLE 16-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 6 Bit 5 Bit 4 Bit 3		Bit 2	Bit 1	Bit 0	Reset Values on Page	
BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	271
BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	271
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE1	—	ADIE	RC1IE TX1IE SSP1IE C		CCP1IE	TMR2IE	TMR1IE	117	
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SPBRG1			EUSART	1 Baud Rate	Generator, I	_ow Byte			_
SPBRGH1			EUSART1	I Baud Rate	Generator, H	ligh Byte			_
SPBRG2			EUSART2	2 Baud Rate	Generator, I	_ow Byte			_
SPBRGH2			EUSART2	2 Baud Rate	Generator, H	ligh Byte			_
TXREG1			EL	JSART1 Tra	nsmit Regist	er			_
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269
TXREG2			EL	JSART2 Trai	nsmit Regist	er			—
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for asynchronous transmission.

		SYNC = 0, BRGH = 0, BRG16 = 1													
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz					
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)			
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207			
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51			
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25			
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_			
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5			
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_			
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_			
115.2k	_	_	_	_	_	_	115.2k	0.00	1	_	_	_			

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1													
BAUD	Fosc = 64.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fos	Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)		
300	300	0.00	53332	300.0	0.00	15359	300.0	0.00	13332	300.0	0.00	9215		
1200	1200	0.00	13332	1200	0.00	3839	1200.1	0.01	3332	1200	0.00	2303		
2400	2400	0.00	6666	2400	0.00	1919	2399.5	-0.02	1666	2400	0.00	1151		
9600	9598.1	-0.02	1666	9600	0.00	479	9592	-0.08	416	9600	0.00	287		
10417	10417	0.00	1535	10425	0.08	441	10417	0.00	383	10433	0.16	264		
19.2k	19.21k	0.04	832	19.20k	0.00	239	19.23k	0.16	207	19.20k	0.00	143		
57.6k	57.55k	-0.08	277	57.60k	0.00	79	57.97k	0.64	68	57.60k	0.00	47		
115.2k	115.11k	-0.08	138	115.2k	0.00	39	114.29k	-0.79	34	115.2k	0.00	23		

				SYNC	C = 0, BR	GH = 1, BRG1	6 = 1 or S	/NC = 1, I	BRG16 = 1			
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz		Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0.00	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_

17.3 Register Definitions: ADC Control

Note: Analog pin control is determined by the ANSELx registers (see Register 10-2)

REGISTER 17-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0

Longitude				
Legend:				
R = Readat	ble bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	Unimple	mented: Read as '0'		
bit 6-2	CHS<4:0	>: Analog Channel Select bits		
	00000 =	AN0		
	00001 =	AN1		
	00010 =	AN2		
	00011 =	AN3		
	00100 =	AN4		
	00101 =	AN5(')		
	00110 =	$AN6^{(\prime)}$		
	00111 =			
	01000 =			
	01001 =	AN10		
	01011 =	AN11		
	01100 =	AN12		
	01101 =	AN13		
	01110 =	AN14		
	01111 =	AN15		
	10000 =	AN16		
	10001 =	AN17		
	10010 =	AN18		
	10011 =	AN19		
	10100 =	$AN20^{(1)}$		
	10101 =	AN21 ¹¹		
	10110 =	AN22(1)		
	10111 =	A_{N23}		
	11000 =	AN24		
	11001 =	AN26 ⁽¹⁾		
	11011 =	AN27 ⁽¹⁾		
	11100 =	Reserved		
	11101 =	СТМИ		
	11110 =	DAC		
	11111 =	FVR BUF2 (1.024V/2.048V/2.09	96V Volt Fixed Voltage Reference)	(2)
bit 1	GO/DON	E: A/D Conversion Status bit		
	1 = A/D c	conversion cycle in progress. Se	tting this bit starts an A/D conversi	on cycle.
	This I	pit is automatically cleared by ha	ardware when the A/D conversion	has completed.
	0 = A/D c	conversion completed/not in prog	gress	
bit 0	ADON: A	DC Enable bit		
	1 = ADC	is enabled		
	0 = ADC	is disabled and consumes no op	perating current	
Note 1:	Available on P	IC18(L)F4XK22 devices only.		

2: Allow greater than 15 μs acquisition time when measuring the Fixed Voltage Reference.

FIGURE 18-2: COMPARATOR C1/C2 SIMPLIFIED BLOCK DIAGRAM

25.2.2 EXTENDED INSTRUCTION SET

ADD	DFSR	Add Lite	ral to F	SR				
Synta	ax:	ADDFSR	ADDFSR f, k					
Oper	ands:	$0 \le k \le 63$						
		f ∈ [0, 1, 1	2]					
Oper	ation:	FSR(f) + k	$s \rightarrow FSR($	f)				
Statu	is Affected:	None						
Enco	oding:	1110	1000	ffkl	k	kkkk		
Description:		The 6-bit I	literal 'k' i	s add	ed to	o the		
	1-	contents c						
vvorc	IS:	.I	1					
Cycle	es:	1						
QC	ycle Activity:							
Q1		Q2	Q3			Q4		
	Decode	Read	Proce	Process		Write to		
		literal 'k'	Data	a		FSR		

Example:	ADDFSR	2,	23h

Before Instruction									
FSR2	03FFh								
After Instruct	After Instruction								
FSR2	=	0422h							

ADDULNK	K Add Literal to FSR2 and Return					
Syntax:	ADDULN	Kk				
Operands:	$0 \le k \le 63$	3				
Operation:	FSR2 + k	$x \rightarrow FSR2$,			
	$(TOS) \rightarrow$	PC				
Status Affected:	None					
Encoding:	1110	1000	11kk	kkkk		
Description:	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where $f = 3$ (binary '11'); it operates					
Words:	1					
Cycles:	2					

Q Cycle Activity:

_	Q1	Q2	Q3	Q4
	Decode	Read	Process	Write to
		literal 'k'	Data	FSR
	No	No	No	No
	Operation	Operation	Operation	Operation

0422h

(TOS)

Example: ADDULNK 23h

=

=

Before Instru	ction	
FSR2	=	03FFh
PC	=	0100h
After Instruct	ion	

FSR2

PC

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

27.3	DC Characteristics:	RC Run Supply	Current, PIC18(L)	F2X/4XK22 (Continued)
------	---------------------	----------------------	-------------------	-----------------------

PIC18LF	Standa Operati	i rd Ope ing tem	e rating peratur	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ss otherwise state +125°C	d)			
PIC18F2	2X/4XK22	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Device Characteristics	Тур	Max	Units		Conditions			
D030		0.35	0.50	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 1 MHz		
D031		0.45	0.65	mA	-40°C to +125°C	Vdd = 3.0V	(RC_RUN mode, HFINTOSC source)		
D032		0.40	0.60	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 1 MHz		
D033		0.50	0.65	mA	-40°C to +125°C	VDD = 3.0V	(RC_RUN mode, HFINTOSC source)		
D034		0.55	0.75	mA	-40°C to +125°C	VDD = 5.0V			
D035		1.3	2.0	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 16 MHz		
D036		2.2	3.0	mA	-40°C to +125°C	Vdd = 3.0V	(RC_RUN mode, HFINTOSC source)		
D037		1.7	2.0	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 16 MHz		
D038		2.2	3.0	mA	-40°C to +125°C	VDD = 3.0V	(RC_RUN mode,		
D039		2.5	3.5	mA	-40°C to +125°C	VDD = 5.0V	source)		
D041		6.2	8.5	mA	-40°C to +125°C	Vdd = 3.0V	Fosc = 64 MHz (RC_RUN mode, HFINTOSC + PLL source)		
D043		6.2	8.5	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz		
D044		6.8	9.5	mA	-40°C to +125°C	VDD = 5.0V	(RC_RUN mode, HFINTOSC + PLL source)		

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

 $\overline{MCLR} = VDD;$

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
PIC18F2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Device Characteristics	Тур	Max	Units		Conditions	5	
D135		0.9	18	μΑ	-40°C	VDD = 1.8V	Fosc = 32 kHz	
		1.0	18	μΑ	+25°C		(SEC_IDLE mode,	
		1.1	_	μΑ	+60°C			
		1.3	20	μΑ	+85°C			
		2.3	22	μΑ	+125°C			
D136		1.3	20	μΑ	-40°C	VDD = 3.0V		
		1.4	20	μΑ	+25°C			
		1.5	—	μΑ	+60°C			
		1.8	22	μΑ	+85°C			
		2.9	25	μΑ	+125°C			
D137		12	30	μΑ	-40°C	VDD = 2.3V	Fosc = 32 kHz	
		13	30	μΑ	+25°C		(SEC_IDLE mode,	
		14	30	μΑ	+85°C			
		16	45	μΑ	+125°C			
D138		13	35	μΑ	-40°C	VDD = 3.0V		
		14	35	μΑ	+25°C			
		16	35	μΑ	+85°C			
		18	50	μΑ	+125°C			
D139		14	40	μΑ	-40°C	VDD = 5.0V		
		15	40	μΑ	+25°C			
		16	40	μΑ	+85°C			
		18	60	μΑ	+125°C			

27.7 DC Characteristics: Secondary Oscillator Supply Current, PIC18(L)F2X/4XK22

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

 $\overline{MCLR} = VDD;$

SOSCI / SOSCO = complementary external square wave, from rail-to-rail.

TABLE 27-3: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)								
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments	
VR01	Vrout	VR voltage output to ADC	0.973	1.024	1.085	V	$1x$ output, VDD $\ge 2.5V$	
			1.946	2.048	2.171	V	$2\mathbf{x}$ output, VDD $\geq 2.5V$	
			3.891	4.096	4.342	V	$4x$ output, VDD \ge 4.75V (PIC18F2X/4XK22)	
VR02	Vrout	VR voltage output all other	0.942	1.024	1.096	V	\texttt{lx} output, $V\text{DD} \geq 2.5V$	
		modules	1.884	2.048	2.191	V	$2x$ output, VDD $\ge 2.5V$	
			3.768	4.096	4.383	V	$4x$ output, VDD \geq 4.75V (PIC18F2X/4XK22)	
VR04*	TSTABLE	Settling Time	_	25	100	μS	0 to 125°C	

* These parameters are characterized but not tested.

TABLE 27-4: CHARGE TIME MEASUREMENT UNIT (CTMU) SPECIFICATIONS

Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)							
Param No.	Sym	Characteristics	Min	Typ ⁽¹⁾	Max	Units	Comments
CT01	Ιουτ1	CTMU Current Source, Base Range		0.55	_	μA	IRNG<1:0>=01
CT02	Ιουτ2	CTMU Current Source, 10X Range	—	5.5	—	μA	IRNG<1:0>=10
CT03	Ιουτ3	CTMU Current Source, 100X Range	—	55	—	μΑ	IRNG<1:0>=11 VDD ≥ 3.0V

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2>=000000).

TABLE 21-11: WASTER 33PT C DUS START/STUP DITS REQUIREMENT	TABLE 27-17:	MASTER SS	P I ² C BUS	START/STOP	BITS REQ	UIREMENTS
--	--------------	-----------	------------------------	------------	-----------------	-----------

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions		
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		Repeated Start	Repeated Start	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		condition		
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the		
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is generated		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_				
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns			
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_				
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)					
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns			
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)					
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_				

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

FIGURE 27-20: MASTER SSP I²C BUS DATA TIMING

FIGURE 28-27: PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC

© 2010-2016 Microchip Technology Inc.

FIGURE 28-84: PIC18(L)F2X/4XK22 PIN INPUT LEAKAGE