

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f43k22-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	11
2.0	Oscillator Module (With Fail-Safe Clock Monitor))	. 25
3.0	Power-Managed Modes	. 44
4.0	Reset	. 55
5.0	Memory Organization	. 64
6.0	Flash Program Memory	. 90
7.0	Data EEPROM Memory	. 99
8.0	8 x 8 Hardware Multiplier	104
9.0	Interrupts	106
10.0	I/O Ports	127
11.0	Timer0 Module	154
12.0	Timer1/3/5 Module with Gate Control	157
13.0	Timer2/4/6 Module	169
14.0	Capture/Compare/PWM Modules	173
15.0	Master Synchronous Serial Port (MSSP1 and MSSP2) Module	204
16.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	259
17.0	Analog-to-Digital Converter (ADC) Module	288
18.0	Comparator Module	302
19.0	Charge Time Measurement Unit (CTMU)	311
20.0	SR LATCH	326
21.0	Fixed Voltage Reference (FVR)	331
22.0	Digital-to-Analog Converter (DAC) Module	333
23.0	High/Low-Voltage Detect (HLVD)	337
24.0	Special Features of the CPU	343
25.0	nstruction Set Summary	360
26.0	Development Support.	410
27.0	Electrical Specifications	414
28.0	DC and AC Characteristics Graphs and Tables	453
29.0	Packaging Information	509
Appe	ndix A: Revision History	534
Appe	ndix B: Device Differences	535
The N	Aicrochip Web Site	536
Custo	omer Change Notification Service	536
Custo	omer Support	536
Produ	uct Identification System	537

2.12.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- 2. Instructions begin executing by the internal oscillator at the frequency set in the IRCF<2:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 external clock cycles.
- 4. OST timed out. External clock is ready.
- 5. OSTS is set.
- 6. Clock switch finishes according to Figure 2-9

2.12.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCCON register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in CONFIG1H Configuration register, or the internal oscillator. OSTS = 0 when the external oscillator is not ready, which indicates that the system is running from the internal oscillator.

	terret de América Estat-de América	Crock -	<u> Syna</u>		Bares	<u>oğ</u>
New Clock				·····		····
Rew Cik Reboy 🛄						
IRCF <2:0>	ien Oist 🗴 - Beien Gew					
System Clock						
Low Speed Sig	y Sibood					
Low Spind Hig Old Clock	8 8peed 8en-us Time ⁹	Clock Sync				
Low Sprind Hig Old Clock New Clock	5 8peed 	Ciccix Sync				<u>`````````````````````````````````````</u>
Low Spried Hig Old Clock New Clock New Clock	5 8peed 	Clock Syno			Rumi	N9
Low Spired Hig Old Clock New Clock New Clic Ready IPCF <= 0.5 Select	5 8peed 	Cieck Syno				¥2

FIGURE 2-9: CLOCK SWITCH TIMING

6.6 Writing to Flash Program Memory

The programming block size is 64 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are only as many holding registers as there are bytes in a write block (64 bytes).

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction needs to be executed 64 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. After all the holding registers have been written, the programming operation of that block of memory is started by configuring the EECON1 register for a program memory write and performing the long write sequence. The long write is necessary for programming the internal Flash. Instruction execution is halted during a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all holding registers before executing a long write operation.

FIGURE 6-5: TABLE WRITES TO FLASH PROGRAM MEMORY

6.6.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the block erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write the 64-byte block into the holding registers with auto-increment.
- 7. Set the EECON1 register for the write operation:
 - set EEPGD bit to point to program memory;
 - · clear the CFGS bit to access program memory;
 - set WREN to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Verify the memory (table read).

This procedure will require about 6 ms to update each write block of memory. An example of the required code is given in Example 6-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the bytes in the holding registers.

					<u> </u>		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 7	OSCFIE: Osc 1 = Enabled	cillator Fail Inte	rrupt Enable I	oit			
bit 6	C1IE: Compa 1 = Enabled 0 = Disabled	arator C1 Interro	upt Enable bit	t			
bit 5	C2IE: Compa 1 = Enabled 0 = Disabled	arator C2 Intern	upt Enable bit	t			
bit 4	EEIE: Data E 1 = Enabled 0 = Disabled	EPROM/Flash	Write Operat	ion Interrupt Er	nable bit		
bit 3	BCL1IE: MS 1 = Enabled 0 = Disabled	SP1 Bus Collisi	on Interrupt E	Enable bit			
bit 2	HLVDIE: Low 1 = Enabled 0 = Disabled	v-Voltage Detec	t Interrupt En	able bit			
bit 1	TMR3IE: TM 1 = Enabled 0 = Disabled	R3 Overflow In	terrupt Enable	e bit			
bit 0	CCP2IE: CCI 1 = Enabled 0 = Disabled	P2 Interrupt En	able bit				

REGISTER 9-10: PIE2: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 2

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u		
TMRxGE	TxGPOL	TxGTM	TxGSPM	TxGGO/DONE	TxGVAL	TxGSS	5<1:0>		
bit 7	·						bit 0		
Legend:									
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'									
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at F	POR and BOR	OR and BOR/Value at all other Res			
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is clear	ed by hardwar	re			
bit 7	T = Bit is set O = Bit is cleared HC = Bit is cleared by hardware bit 7 TMRxGE: Timer1/3/5 Gate Enable bit If TMRxON = 0: This bit is ignored If TMRxON = 1: 1 = Timer1/3/5 counting is controlled by the Timer1/3/5 gate function								
bit 6	TxGPOL: Tim 1 = Timer1/3 0 = Timer1/3	ner1/3/5 Gate F /5 gate is activ /5 gate is activ	Polarity bit e-high (Timer1 e-low (Timer1/	/3/5 counts when 3/5 counts when g	gate is high) gate is low)				
bit 5	TxGTM: Time 1 = Timer1/3 0 = Timer1/3 Timer1/3/5 ga	er1/3/5 Gate To /5 Gate Toggle /5 Gate Toggle ate flip-flop togg	ggle Mode bit mode is enab mode is disat gles on every r	led bled and toggle flip rising edge.	o-flop is cleare	d			
bit 4	TxGSPM: Tin 1 = Timer1/3 0 = Timer1/3	ner1/3/5 Gate 3 /5 gate Single- /5 gate Single-	Single-Pulse M Pulse mode is Pulse mode is	lode bit enabled and is co disabled	ontrolling Time	r1/3/5 gate			
bit 3	TxGGO/DON 1 = Timer1/3 0 = Timer1/3 This bit is aut	E: Timer1/3/5 /5 gate single- _l /5 gate single- _l omatically clea	Gate Single-P oulse acquisition oulse acquisition red when TxG	ulse Acquisition S on is ready, waitin on has completed SPM is cleared.	tatus bit g for an edge or has not bee	en started			
bit 2	TxGVAL: Tim Indicates the Unaffected by	ner1/3/5 Gate C current state o / Timer1/3/5 Ga	Current State b f the Timer1/3, ate Enable (TM	it /5 gate that could /IRxGE).	be provided to	TMRxH:TMR	xL.		
bit 1-0	TxGSS<1:0> 00 = Timer1/3 01 = Timer2/4 10 = Compar 11 = Compar	: Timer1/3/5 G 3/5 Gate pin 4/6 Match PR2 ator 1 optional ator 2 optional	ate Source Se /4/6 output (Se ly synchronize ly synchronize	lect bits ee Table 12-5 for p d output (sync_C1 d output (sync_C2	proper timer m IOUT) 2OUT)	atch selection))		

REGISTER 12-2: TXGCON: TIMER1/3/5 GATE CONTROL REGISTER

17.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 17-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 17-5. The maximum recommended impedance for analog sources is $3 \ k\Omega$. As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D

acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 17-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 17-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 50°C and external impedance of 10k
$$\Omega$$
 3.0V VDD

$$TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
= TAMP + TC + TCOFF
= 5µs + TC + [(Temperature - 25°C)(0.05µs/°C)]
The value for TC can be approximated with the following equations:
$$V_{APPLIED}\left(1 - \frac{1}{2047}\right) = V_{CHOLD} \qquad :[1] V_{CHOLD} charged to within 1/2 lsb
$$V_{APPLIED}\left(1 - e^{-\frac{TC}{RC}}\right) = V_{CHOLD} \qquad :[2] V_{CHOLD} charge response to VAPPLIED
$$V_{APPLIED}\left(1 - e^{-\frac{TC}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{2047}\right) \qquad :combining [1] and [2]$$
Solving for Tc:

$$T_{C} = -C_{HOLD}(RIC + RSS + RS) ln(1/2047)$$

$$= -13.5pF(Ik\Omega + 700\Omega + 10k\Omega) ln(0.0004885)$$

$$= 1.20\mu s$$$$$$$$

 $TACQ = 5\mu s + 1.20\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$ = 7.45\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.

18.2 Comparator Control

Each comparator has a separate control and Configuration register: CM1CON0 for Comparator C1 and CM2CON0 for Comparator C2. In addition, Comparator C2 has a second control register, CM2CON1, for controlling the interaction with Timer1 and simultaneous reading of both comparator outputs.

The CM1CON0 and CM2CON0 registers (see Register 18-1) contain the control and status bits for the following:

- Enable
- Input selection
- Reference selection
- Output selection
- Output polarity
- Speed selection

18.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

18.2.2 COMPARATOR INPUT SELECTION

The CxCH<1:0> bits of the CMxCON0 register direct one of four analog input pins to the comparator inverting input.

Note:	To us inputs	e CxIN+ an s, the appro	d C12INx- p priate bits n	ins as ai nust be :	nalog set in
	the	ANSEL	register	and	the
	corre	sponding T	RIS bits mus	st also b	e set
	to dis	able the ou	tput drivers.		

18.2.3 COMPARATOR REFERENCE SELECTION

Setting the CxR bit of the CMxCON0 register directs an internal voltage reference or an analog input pin to the non-inverting input of the comparator. See **Section 21.0 "Fixed Voltage Reference (FVR)"** for more information on the Internal Voltage Reference module.

18.2.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CM2CON1 register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- CxON bit of the CMxCON0 register must be set

- Note 1: The CxOE bit overrides the PORT data latch. Setting the CxON has no impact on the port override.
 - 2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

18.2.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 18-1 shows the output state versus input conditions, including polarity control.

TABLE 18-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVIN - > CxVIN +	0	0
CxVIN- < CxVIN+	0	1
CxVIN - > CxVIN +	1	1
CxVIN- < CxVIN+	1	0

18.2.6 COMPARATOR SPEED SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the normal speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

18.3 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 27.0 "Electrical Specifications"** for more details.

18.8 Additional Comparator Features

There are four additional comparator features:

- Simultaneous read of comparator outputs
- Internal reference selection
- Hysteresis selection
- Output Synchronization

18.8.1 SIMULTANEOUS COMPARATOR OUTPUT READ

The MC1OUT and MC2OUT bits of the CM2CON1 register are mirror copies of both comparator outputs. The ability to read both outputs simultaneously from a single register eliminates the timing skew of reading separate registers.

Note 1:	Obtaining	the	status	of	C10UT	or
	C2OUT by	read	ling CM	2CO	N1 does	not
	affect the c	compa	arator in	terru	upt misma	atch
	registers.					

18.8.2 INTERNAL REFERENCE SELECTION

There are two internal voltage references available to the non-inverting input of each comparator. One of these is the Fixed Voltage Reference (FVR) and the other is the variable Digital-to-Analog Converter (DAC). The CxRSEL bit of the CM2CON1 register determines which of these references is routed to the Comparator Voltage reference output (CxVREF). Further routing to the comparator is accomplished by the CxR bit of the CMxCON0 register. See **Section 21.0 "Fixed Voltage Reference (FVR)"** and Figure 18-2 for more detail.

18.8.3 COMPARATOR HYSTERESIS

Each Comparator has a selectable hysteresis feature. The hysteresis can be enabled by setting the CxHYS bit of the CM2CON1 register. See **Section 27.0 "Electrical Specifications"** for more details.

18.8.4 SYNCHRONIZING COMPARATOR OUTPUT TO TIMER1

The Comparator Cx output can be synchronized with Timer1 by setting the CxSYNC bit of the CM2CON1 register. When enabled, the Cx output is latched on the falling edge of the Timer1 source clock. To prevent a race condition when gating Timer1 clock with the comparator output, Timer1 increments on the rising edge of its clock source, and the falling edge latches the comparator output. See the Comparator Block Diagram (Figure 18-2) and the Timer1 Block Diagram (Figure 12-1) for more information.

Note 1: The comparator synchronized output should not be used to gate the external Timer1 clock when the Timer1 synchronizer is enabled.

2: The Timer1 prescale should be set to 1:1 when synchronizing the comparator output as unexpected results may occur with other prescale values. The module uses the edge Status bits to control the current source output to external analog modules (such as the A/D Converter). Current is only supplied to external modules when only one (but not both) of the Status bits is set, and shuts current off when both bits are either set or cleared. This allows the CTMU to measure current only during the interval between edges. After both Status bits are set, it is necessary to clear them before another measurement is taken. Both bits should be cleared simultaneously, if possible, to avoid re-enabling the CTMU current source.

In addition to being set by the CTMU hardware, the edge Status bits can also be set by software. This is also the user's application to manually enable or disable the current source. Setting either one (but not both) of the bits enables the current source. Setting or clearing both bits at once disables the source.

19.1.5 INTERRUPTS

The CTMU sets its interrupt flag (PIR3<2>) whenever the current source is enabled, then disabled. An interrupt is generated only if the corresponding interrupt enable bit (PIE3<2>) is also set. If edge sequencing is not enabled (i.e., Edge 1 must occur before Edge 2), it is necessary to monitor the edge Status bits and determine which edge occurred last and caused the interrupt.

19.2 CTMU Module Initialization

The following sequence is a general guideline used to initialize the CTMU module:

- 1. Select the current source range using the IRNG bits (CTMUICON<1:0>).
- 2. Adjust the current source trim using the ITRIM bits (CTMUICON<7:2>).
- 3. Configure the edge input sources for Edge 1 and Edge 2 by setting the EDG1SEL and EDG2SEL bits (CTMUCONL<3:2 and 6:5>).
- 4. Configure the input polarities for the edge inputs using the EDG1POL and EDG2POL bits (CTMUCONL<4,7>). The default configuration is for negative edge polarity (high-to-low transitions).
- 5. Enable edge sequencing using the EDGSEQEN bit (CTMUCONH<2>). By default, edge sequencing is disabled.
- 6. Select the operating mode (Measurement or Time Delay) with the TGEN bit. The default mode is Time/Capacitance Measurement.
- Discharge the connected circuit by setting the IDISSEN bit (CTMUCONH<1>); after waiting a sufficient time for the circuit to discharge, clear IDISSEN.
- 8. Disable the module by clearing the CTMUEN bit (CTMUCONH<7>).
- 9. Enable the module by setting the CTMUEN bit.
- 10. Clear the Edge Status bits: EDG2STAT and EDG1STAT (CTMUCONL<1:0>).
- 11. Enable both edge inputs by setting the EDGEN bit (CTMUCONH<3>).

Depending on the type of measurement or pulse generation being performed, one or more additional modules may also need to be initialized and configured with the CTMU module:

- Edge Source Generation: In addition to the external edge input pins, both Timer1 and the Output Compare/PWM1 module can be used as edge sources for the CTMU.
- Capacitance or Time Measurement: The CTMU module uses the A/D Converter to measure the voltage across a capacitor that is connected to one of the analog input channels.
- Pulse Generation: When generating system clock independent output pulses, the CTMU module uses Comparator 2 and the associated comparator voltage reference.

FIGURE 22-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

REGISTER 2	24-2: CONF	IG2L: CONFI	GURATION	REGISTER	2 LOW		
U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_	—		BOR	/<1:0> ⁽¹⁾	BOREN	l<1:0> ⁽²⁾	PWRTEN(2)
bit 7							bit 0
Legend:							
R = Readable bi	it	P = Programma	ble bit	U = Unimplem	ented bit, read as	'0'	
-n = Value when	device is unprogr	rammed		x = Bit is unkno	own		
bit 7-5	Unimplemente	d: Read as '0'					
bit 4-3	BORV<1:0>: Bu 11 = VBOR set t 10 = VBOR set t 01 = VBOR set t 00 = VBOR set t	rown-out Reset Vo o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal	oltage bits ⁽¹⁾				
bit 2-1	BOREN<1:0>: 11 = Brown-ou 10 = Brown-ou (SBOREN) 01 = 01 = Brown-ou 00 = Brown-ou	Brown-out Reset it Reset enabled i it Reset enabled i N is disabled) it Reset enabled a it Reset disabled	Enable bits ⁽²⁾ n hardware only n hardware only and controlled b in hardware and	y (SBOREN is dis y and disabled in by software (SBO d software	sabled) Sleep mode REN is enabled)		
bit 0	PWRTEN: Pow 1 = PWRT disal 0 = PWRT enab	er-up Timer Enab bled bled	le bit ⁽²⁾				
Note 1: See	e Section 27.1 "D	C Characteristic	s: Supply Volta	age, PIC18(L)F2	X/4XK22" for spec	cifications.	

2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

ADDWFC ADD W and CARRY bit to f						
Synta	ax:	ADDWFC	f {,d {,	a}}		
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Oper	ation:	(W) + (f) +	$(C) \rightarrow de$	est		
Statu	is Affected:	N,OV, C, DC, Z				
Enco	oding:					
		ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'. If 'a' is '0', the Access Bank is selecte If 'a' is '1', the BSR is used to select th GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed				
Word	ds:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3			Q4
	Decode	Read register 'f'	Proce Data	ess a	V de	Vrite to stination
<u>Exan</u>	nple:	ADDWFC	REG,	0, 3	1	
	Before Instruc CARRY I REG W After Instructio CARRY I REG W	tion it = 1 = 02h = 4Dh on it = 0 = 02h = 50h				

AND	DLW	Α	ND lite	al with	W		
Synt	ax:	A	NDLW	k			
Oper	rands:	0	≤ k ≤ 258	5			
Oper	ration:	(V	V) .AND.	$k\toW$			
Status Affected: N, Z							
Encoding: 0000 1011 kkł					kkk	k	kkkk
Description: The contents of W are AND'ed with the 8-bit literal 'k'. The result is placed in					d with the aced in W.		
Word	ds:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1		Q2	Q3	3		Q4
	Decode	Re	ad literal 'k'	Proce Dat	ess a	W	rite to W
Exar	nple:	A	NDLW	05Fh			
	Before Instruc	tion					
	W	=	A3h				
	After Instruction	on					
	W	=	03h				

CNT Z C DC

After Instruction

CNT Z C DC

FFh 0 ? ?

00h

= = = =

= = = 1 1 1

GOTO	Unconditi	ional Brancl	n	INCF	Incremen	tf		
Syntax:	GOTO k			Syntax:	INCF f{,c	INCF f {,d {,a}}		
Operands:	$0 \le k \le 1048$	8575		Operands:	$0 \leq f \leq 255$			
Operation:	$k \rightarrow PC < 20$:1>			$d \in [0,1]$			
Status Affected:	None			Oneretine	a ∈ [0,1]			
Encoding:				Operation:	$(1) + 1 \rightarrow 00$			
1st word (k<7:0>)	1110	1111 k ₇ k	kk kkkk ₀	Status Affected:	C, DC, N, 0	JV, Z		
2nd word(k<19:8>)	1111 1	k ₁₉ kkk kkł	ck kkkk ₈	Encoding:	0010	10da ff	ff ffff	
Words:	anywhere w 2-Mbyte me value 'k' is l GOTO is alw instruction. 2	vithin entire emory range. 1 oaded into PC vays a 2-cycle	Fhe 20-bit C<20:1>.		incremente placed in W placed back If 'a' is '0', t If 'a' is '1', t GPR bank.	d. If 'd' is '0', t /. If 'd' is '1', th < in register 'f' he Access Ba he BSR is use	he result is ne result is (default). nk is selected. ed to select the	
Cycles:	2				set is enabl	na the extena ed. this instru	ction operates	
Q Cycle Activity:					in Indexed	Literal Offset	Addressing	
Q1	Q2	Q3	Q4		mode when	ever f ≤ 95 (5	Fh). See	
Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC		Bit-Oriente	ed Instruction set Mode" for	details.	
No	No	No	No	Words:	1			
operation	operation	operation	operation	Cycles:	1			
				Q Cycle Activity:				
Example:	GOTO THEF	RE		Q1	Q2	Q3	Q4	
After Instruction PC =	n Address (TH	HERE)		Decode	Read register 'f'	Process Data	Write to destination	
				Example: Before Instru	INCF	CNT, 1, 0		

TBLWT	Table Write							
Syntax:	TBLWT (*; *+; *-; +*)							
Operands:	None							
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change; if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR; (TABLAT) \rightarrow Holding Register;							
Status Affected:	None							
Encoding:	0000	0000	0000	11nn nn=0 * =1 *+ =2 *- =3 +*				
Description:	This instruction uses the three LSBs of TBLPTR to determine which of the eight holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 6.0 "Flash Program Memory" for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-MByte address range. The LSb of the TBLPTR selects which byte of the program memory location to access. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word The TBLWT instruction can modify the value of TBLPTR as follows: • no change • post-increment • pre-increment							
Words:	1							
Cycles:	2							
Q Cycle Activity:			0.0	<u>.</u>				
	Q1	Q2	Q3	Q4				
	Decode	No	No operation	No				
	No	No	No	No				
	operation	operation (Read	operation	operation (Write to				

TBLWT Table Write (Continued)

Example1:	TBLWT *+;		
Before Instruc	ction		
TABLAT TBLPTR HOLDIN		= =	55h 00A356h
(00A35	6h)	=	FFh
After Instructi	ons (table write	comp	letion)
TABLAT		=	55h
		=	00A357h
(00A35	i6h)	=	55h
Example 2:	TBLWT +*;		
Before Instruc	ction		
TABLAT		=	34h
		=	01389Ah
(01389 HOLDIN	Ah) IG REGISTER	=	FFh
(01389	Bh)	=	FFh
After Instructi	on (table write c	omple	etion)
TABLAT		=	34h
		=	01389Bh
(01389 HOLDIN	Ah) IG REGISTER	=	FFh
(01389	Bh)	=	34h

TABLAT)

Holding Register)

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
PIC18F2X/4XK22Standard Operating Conditions (unless otherwise Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				tated)				
Param No.	Device Characteristics	Тур	Max	Units	Conditions			
D100	Supply Current (IDD)(1),(2)	0.030	0.050	mA	-40°C to +125°C	Vdd = 1.8V	Fosc = 1 MHz (PRI_IDLE mode, ECM source)	
D101		0.045	0.065	mA	-40°C to +125°C	VDD = 3.0V		
D102		0.06	0.12	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 1 MHz (PRI_IDLE mode,	
D103		0.08	0.15	mA	-40°C to +125°C	VDD = 3.0V		
D104		0.13	0.20	mA	-40°C to +125°C	VDD = 5.0V	Low source)	
D105		0.45	0.8	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 20 MHz	
D106		0.70	1.0	mA	-40°C to +125°C	VDD = 3.0V	(PRI_IDLE mode, ECH source)	
D107		0.55	0.8	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 20 MHz (PRI_IDLE mode, ECH source)	
D108		0.75	1.0	mA	-40°C to +125°C	VDD = 3.0V		
D109		0.90	1.2	mA	-40°C to +125°C	VDD = 5.0V		
D110		2.25	3.0	mA	-40°C to +125°C	Vdd = 3.0V	Fosc = 64 MHz (PRI_IDLE mode, ECH source)	
D111		2.25	3.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz (PRI_IDLE mode, ECH source)	
D112		2.60	3.5	mA	-40°C to +125°C	VDD = 5.0V		
D113		0.35	0.6	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 4 MHz	
D114		0.55	0.8	mA	-40°C to +125°C	VDD = 3.0V	16 MHz Internal (PRI_IDLE mode, ECM + PLL source)	
D115		0.45	0.6	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 4 MHz 16 MHz Internal (PRI_IDLE mode, ECM + PLL source)	
D116		0.60	0.9	mA	-40°C to +125°C	VDD = 3.0V		
D117		0.70	1.0	mA	-40°C to +125°C	VDD = 5.0V		
D118		2.2	3.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 16 MHz 64 MHz Internal (PRI_IDLE mode, ECH + PLL source)	
D119		2.2	3.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 16 MHz	
D120		2.5	3.5	mA	-40°C to +125°C	VDD = 5.0V	64 MHz Internal (PRI_IDLE mode, ECH + PLL source)	

27.6 DC Characteristics: Primary Idle Supply Current, PIC18(L)F2X/4XK22

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

MCLR = VDD;

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

FIGURE 28-33: PIC18F2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC with PLL

FIGURE 28-53: PIC18LF2X/4XK22 MAXIMUM IDD: PRI_RUN EC HIGH POWER

© 2010-2016 Microchip Technology Inc.

29.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	11.26				
	Units		INCHES		
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	_	.430	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Leads	N	44			
Lead Pitch	е	0.80 BSC			
Overall Height	A	1.20			
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Overall Width	E	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Width	b	0.30	0.37	0.45	
Lead Thickness	С	0.09	-	0.20	
Lead Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	θ	0° 3.5° 7°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2