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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC18(L)F2X/4XK22
2.5.4 EXTERNAL RC MODES

The external Resistor-Capacitor (RC) modes support
the use of an external RC circuit. This allows the
designer maximum flexibility in frequency choice while
keeping costs to a minimum when clock accuracy is not
required. There are two modes: RC and RCIO.

2.5.4.1 RC Mode

In RC mode, the RC circuit connects to OSC1. OSC2/
CLKOUT outputs the RC oscillator frequency divided
by four. This signal may be used to provide a clock for
external circuitry, synchronization, calibration, test or
other application requirements. Figure 2-8 shows the
external RC mode connections.

FIGURE 2-8: EXTERNAL RC MODES 

2.5.4.2 RCIO Mode

In RCIO mode, the RC circuit is connected to OSC1.
OSC2 becomes a general purpose I/O pin.

The RC oscillator frequency is a function of the supply
voltage, the resistor (REXT) and capacitor (CEXT) values
and the operating temperature. Other factors affecting
the oscillator frequency are:

• input threshold voltage variation
• component tolerances
• packaging variations in capacitance

The user also needs to take into account variation due
to tolerance of external RC components used.

2.6 Internal Clock Modes

The oscillator module has three independent, internal
oscillators that can be configured or selected as the
system clock source.

1. The HFINTOSC (High-Frequency Internal
Oscillator) is factory calibrated and operates at
16 MHz. The frequency of the HFINTOSC can
be user-adjusted via software using the
OSCTUNE register (Register 2-3).

2. The MFINTOSC (Medium-Frequency Internal
Oscillator) is factory calibrated and operates
at 500 kHz. The frequency of the MFINTOSC
can be user-adjusted via software using the
OSCTUNE register (Register 2-3). 

3. The LFINTOSC (Low-Frequency Internal
Oscillator) is factory calibrated and operates at
31.25 kHz. The LFINTOSC cannot be user-
adjusted, but is designed to be stable over
temperature and voltage. 

The system clock speed can be selected via software
using the Internal Oscillator Frequency select bits
IRCF<2:0> of the OSCCON register. 

The system clock can be selected between external or
internal clock sources via the System Clock Selection
(SCS<1:0>) bits of the OSCCON register. See
Section 2.11 “Clock Switching” for more information.

2.6.1 INTOSC WITH I/O OR CLOCKOUT

Two of the clock modes selectable with the FOSC<3:0>
bits of the CONFIG1H Configuration register configure
the internal oscillator block as the primary oscillator.
Mode selection determines whether the OSC2/
CLKOUT pin will be configured as general purpose I/O
or FOSC/4 (CLKOUT). In both modes, the OSC1/CLKIN
pin is configured as general purpose I/O. See
Section 24.0 “Special Features of the CPU” for more
information.

The CLKOUT signal may be used to provide a clock for
external circuitry, synchronization, calibration, test or
other application requirements.

OSC2/CLKOUT(1)

CEXT

REXT

PIC® MCU

OSC1/CLKIN

FOSC/4 or

Internal
Clock

VDD

VSS

Recommended values: 10 k  REXT  100 k
CEXT > 20 pF

Note 1: Alternate pin functions are listed in 
Section 1.0 “Device Overview”.

2: Output depends upon RC or RCIO clock mode.

I/O(2)
DS40001412G-page 34  2010-2016 Microchip Technology Inc.



PIC18(L)F2X/4XK22
2.13 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device
to continue operating should the external oscillator fail.
The FSCM can detect oscillator failure any time after
the Oscillator Start-up Timer (OST) has expired. The
FSCM is enabled by setting the FCMEN bit in the
CONFIG1H Configuration register. The FSCM is
applicable to all external oscillator modes (LP, XT, HS,
EC, RC and RCIO).

FIGURE 2-10: FSCM BLOCK DIAGRAM 

2.13.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by
comparing the external oscillator to the FSCM sample
clock. The sample clock is generated by dividing the
LFINTOSC by 64 (see Figure 2-10). Inside the fail
detector block is a latch. The external clock sets the
latch on each falling edge of the external clock. The
sample clock clears the latch on each rising edge of the
sample clock. A failure is detected when an entire half-
cycle of the sample clock elapses before the primary
clock goes low.

2.13.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the
device clock to an internal clock source and sets the bit
flag OSCFIF of the PIR2 register. The OSCFIF flag will
generate an interrupt if the OSCFIE bit of the PIE2
register is also set. The device firmware can then take
steps to mitigate the problems that may arise from a
failed clock. The system clock will continue to be
sourced from the internal clock source until the device
firmware successfully restarts the external oscillator
and switches back to external operation. An automatic
transition back to the failed clock source will not occur.

The internal clock source chosen by the FSCM is
determined by the IRCF<2:0> bits of the OSCCON
register. This allows the internal oscillator to be
configured before a failure occurs.

2.13.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared by either one of the
following:

• Any Reset 

• By toggling the SCS1 bit of the OSCCON register

Both of these conditions restart the OST. While the
OST is running, the device continues to operate from
the INTOSC selected in OSCCON. When the OST
times out, the Fail-Safe condition is cleared and the
device automatically switches over to the external clock
source. The Fail-Safe condition need not be cleared
before the OSCFIF flag is cleared.

2.13.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure
after the Oscillator Start-up Timer (OST) has expired.
The OST is used after waking up from Sleep and after
any type of Reset. The OST is not used with the EC or
RC Clock modes so that the FSCM will be active as
soon as the Reset or wake-up has completed. 

 

External

LFINTOSC
÷ 64

S

R

Q

31 kHz
(~32 s)

488 Hz
(~2 ms)

Clock Monitor
Latch

Clock
Failure

Detected

Oscillator

Clock

Q

Sample Clock
Note: Due to the wide range of oscillator start-up

times, the Fail-Safe circuit is not active
during oscillator start-up (i.e., after exiting
Reset or Sleep). After an appropriate
amount of time, the user should check the
OSTS bit of the OSCCON register to verify
the oscillator start-up and that the system
clock switchover has successfully
completed.

Note: When the device is configured for Fail-
Safe clock monitoring in either HS, XT, or
LS Oscillator modes then the IESO config-
uration bit should also be set so that the
clock will automatically switch from the
internal clock to the external oscillator
when the OST times out.
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PIC18(L)F2X/4XK22
FIGURE 3-5: TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL) 

3.4.1 PRI_IDLE MODE

This mode is unique among the three low-power Idle
modes, in that it does not disable the primary device
clock. For timing sensitive applications, this allows for
the fastest resumption of device operation with its more
accurate primary clock source, since the clock source
does not have to “warm-up” or transition from another
oscillator.

PRI_IDLE mode is entered from PRI_RUN mode by
setting the IDLEN bit and executing a SLEEP instruc-
tion. If the device is in another Run mode, set IDLEN
first, then clear the SCS bits and execute SLEEP.
Although the CPU is disabled, the peripherals continue
to be clocked from the primary clock source specified
by the FOSC<3:0> Configuration bits. The OSTS bit
remains set (see Figure 3-6).

When a wake event occurs, the CPU is clocked from the
primary clock source. A delay of interval TCSD is
required between the wake event and when code
execution starts. This is required to allow the CPU to
become ready to execute instructions. After the wake-
up, the OSTS bit remains set. The IDLEN and SCS bits
are not affected by the wake-up (see Figure 3-7).

3.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the
peripherals continue to be clocked from the SOSC
oscillator. This mode is entered from SEC_RUN by
setting the IDLEN bit and executing a SLEEP
instruction. If the device is in another Run mode, set the
IDLEN bit first, then set the SCS<1:0> bits to ‘01’ and
execute SLEEP. When the clock source is switched to
the SOSC oscillator, the primary oscillator is shut down,
the OSTS bit is cleared and the SOSCRUN bit is set.

When a wake event occurs, the peripherals continue to
be clocked from the SOSC oscillator. After an interval
of TCSD following the wake event, the CPU begins exe-
cuting code being clocked by the SOSC oscillator. The
IDLEN and SCS bits are not affected by the wake-up;
the SOSC oscillator continues to run (see Figure 3-7).

FIGURE 3-6: TRANSITION TIMING FOR ENTRY TO IDLE MODE 

Q3 Q4 Q1 Q2

OSC1

Peripheral

Program PC

PLL Clock

Q3 Q4

Output

CPU Clock

Q1 Q2 Q3 Q4 Q1 Q2

Clock

Counter PC + 6PC + 4

Q1 Q2 Q3 Q4

Wake Event

Note1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.

TOST(1)
TPLL(1)

OSTS bit set

PC + 2

Note: The SOSC oscillator should already be
running prior to entering SEC_IDLE
mode. At least one of the secondary
oscillator enable bits (SOSCGO,
T1SOSCEN, T3SOSCEN or T5SOSCEN)
must be set when the SLEEP instruction is
executed. Otherwise, the main system
clock will continue to operate in the
previously selected mode and the
corresponding IDLE mode will be entered
(i.e., PRI_IDLE or RC_IDLE). 

Q1

Peripheral

Program PC PC + 2

OSC1

Q3 Q4 Q1

CPU Clock

Clock

Counter

Q2
 2010-2016 Microchip Technology Inc.  DS40001412G-page 49



PIC18(L)F2X/4XK22
9.8 Register Definitions: Interrupt Control 

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-x

GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 GIE/GIEH: Global Interrupt Enable bit
When IPEN = 0:
1 = Enables all unmasked interrupts
0 = Disables all interrupts including peripherals
When IPEN = 1:
1 = Enables all high priority interrupts 
0 = Disables all interrupts including low priority

bit 6 PEIE/GIEL: Peripheral Interrupt Enable bit
When IPEN = 0:
1 = Enables all unmasked peripheral interrupts 
0 = Disables all peripheral interrupts 
When IPEN = 1:
1 = Enables all low priority interrupts 
0 = Disables all low priority interrupts

bit 5 TMR0IE: TMR0 Overflow Interrupt Enable bit 
1 = Enables the TMR0 overflow interrupt 
0 = Disables the TMR0 overflow interrupt 

bit 4 INT0IE: INT0 External Interrupt Enable bit 
1 = Enables the INT0 external interrupt 
0 = Disables the INT0 external interrupt 

bit 3 RBIE: Port B Interrupt-On-Change (IOCx) Interrupt Enable bit(2) 
1 = Enables the IOCx port change interrupt 
0 = Disables the IOCx port change interrupt 

bit 2 TMR0IF: TMR0 Overflow Interrupt Flag bit 
1 = TMR0 register has overflowed (must be cleared by software) 
0 = TMR0 register did not overflow 

bit 1 INT0IF: INT0 External Interrupt Flag bit 
1 = The INT0 external interrupt occurred (must be cleared by software) 
0 = The INT0 external interrupt did not occur

bit 0 RBIF: Port B Interrupt-On-Change (IOCx) Interrupt Flag bit(1) 
1 = At least one of the IOC<3:0> (RB<7:4>) pins changed state (must be cleared by software) 
0 = None of the IOC<3:0> (RB<7:4>) pins have changed state

Note 1: A mismatch condition will continue to set the RBIF bit. Reading PORTB will end the 
mismatch condition and allow the bit to be cleared.

2: RB port change interrupts also require the individual pin IOCB enables.

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit. User software should ensure
the appropriate interrupt flag bits are clear
prior to enabling an interrupt. This feature
allows for software polling.
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REGISTER 9-2: INTCON2: INTERRUPT CONTROL 2 REGISTER

R/W-1 R/W-1 R/W-1 R/W-1 U-0 R/W-1 U-0 R/W-1

RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 RBPU: PORTB Pull-up Enable bit 

1 = All PORTB pull-ups are disabled 
0 = PORTB pull-ups are enabled provided that the pin is an input and the corresponding WPUB bit is

set. 

bit 6 INTEDG0: External Interrupt 0 Edge Select bit 

1 = Interrupt on rising edge 
0 = Interrupt on falling edge

bit 5 INTEDG1: External Interrupt 1 Edge Select bit 

1 = Interrupt on rising edge 
0 = Interrupt on falling edge 

bit 4 INTEDG2: External Interrupt 2 Edge Select bit 

1 = Interrupt on rising edge 
0 = Interrupt on falling edge 

bit 3 Unimplemented: Read as ‘0’

bit 2 TMR0IP: TMR0 Overflow Interrupt Priority bit 

1 = High priority 
0 = Low priority 

bit 1 Unimplemented: Read as ‘0’

bit 0 RBIP: RB Port Change Interrupt Priority bit

1 = High priority 
0 = Low priority 

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit. User software should ensure
the appropriate interrupt flag bits are clear
prior to enabling an interrupt. This feature
allows for software polling.
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REGISTER 9-15: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

OSCFIP C1IP C2IP EEIP BCL1IP HLVDIP TMR3IP CCP2IP

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 OSCFIP: Oscillator Fail Interrupt Priority bit

1 = High priority
0 = Low priority

bit 6 C1IP: Comparator C1 Interrupt Priority bit

1 = High priority
0 = Low priority

bit 5 C2IP: Comparator C2 Interrupt Priority bit

1 = High priority
0 = Low priority

bit 4 EEIP: Data EEPROM/Flash Write Operation Interrupt Priority bit 

1 = High priority
0 = Low priority

bit 3 BCL1IP: MSSP1 Bus Collision Interrupt Priority bit 

1 = High priority
0 = Low priority

bit 2 HLVDIP: Low-Voltage Detect Interrupt Priority bit 

1 = High priority
0 = Low priority

bit 1 TMR3IP: TMR3 Overflow Interrupt Priority bit 

1 = High priority
0 = Low priority

bit 0 CCP2IP: CCP2 Interrupt Priority bit

1 = High priority
0 = Low priority
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10.2 PORTB Registers

PORTB is an 8-bit wide, bidirectional port. The
corresponding data direction register is TRISB. Setting
a TRISB bit (= 1) will make the corresponding PORTB
pin an input (i.e., disable the output driver). Clearing a
TRISB bit (= 0) will make the corresponding PORTB
pin an output (i.e., enable the output driver and put the
contents of the output latch on the selected pin).

The Data Latch register (LATB) is also memory
mapped. Read-modify-write operations on the LATB
register read and write the latched output value for
PORTB. 

EXAMPLE 10-2: INITIALIZING PORTB 

10.2.1 PORTB OUTPUT PRIORITY

Each PORTB pin is multiplexed with other functions.
The pins, their combined functions and their output
priorities are briefly described here. For additional
information, refer to the appropriate section in this data
sheet.

When multiple outputs are enabled, the actual pin
control goes to the peripheral with the higher priority.
Table 10-4 lists the PORTB pin functions from the
highest to the lowest priority.

Analog input functions, such as ADC, comparator and
SR latch inputs, are not shown in the priority lists.

These inputs are active when the I/O pin is set for
Analog mode using the ANSELx registers. Digital
output functions may control the pin when it is in Analog
mode with the priority shown below.

10.3 Additional PORTB Pin Functions

PORTB pins RB<7:4> have an interrupt-on-change
option. All PORTB pins have a weak pull-up option.

10.3.1 WEAK PULL-UPS

Each of the PORTB pins has an individually controlled
weak internal pull-up. When set, each bit of the WPUB
register enables the corresponding pin pull-up. When
cleared, the RBPU bit of the INTCON2 register enables
pull-ups on all pins which also have their corresponding
WPUB bit set. When set, the RBPU bit disables all
weak pull-ups. The weak pull-up is automatically turned
off when the port pin is configured as an output. The
pull-ups are disabled on a Power-on Reset.

10.3.2 INTERRUPT-ON-CHANGE

Four of the PORTB pins (RB<7:4>) are individually
configurable as interrupt-on-change pins. Control bits
in the IOCB register enable (when set) or disable (when
clear) the interrupt function for each pin.

When set, the RBIE bit of the INTCON register enables
interrupts on all pins which also have their
corresponding IOCB bit set. When clear, the RBIE bit
disables all interrupt-on-changes.

Only pins configured as inputs can cause this interrupt
to occur (i.e., any RB<7:4> pin configured as an output
is excluded from the interrupt-on-change comparison). 

For enabled interrupt-on-change pins, the values are
compared with the old value latched on the last read of
PORTB. The ‘mismatch’ outputs of the last read are
OR’d together to set the PORTB Change Interrupt flag
bit (RBIF) in the INTCON register.

This interrupt can wake the device from the Sleep
mode, or any of the Idle modes. The user, in the
Interrupt Service Routine, can clear the interrupt in the
following manner:

a) Any read or write of PORTB to clear the mis-
match condition (except when PORTB is the
source or destination of a MOVFF instruction). 

b) Execute at least one instruction after reading or
writing PORTB, then clear the flag bit, RBIF.

MOVLB 0xF ; Set BSR for banked SFRs
CLRF PORTB ; Initialize PORTB by

; clearing output
; data latches

CLRF LATB ; Alternate method
; to clear output
; data latches

MOVLW 0F0h ; Value for init
MOVWF ANSELB ; Enable RB<3:0> for

; digital input pins
; (not required if config bit
; PBADEN is clear)

MOVLW 0CFh ; Value used to
; initialize data 
; direction

MOVWF TRISB ; Set RB<3:0> as inputs
; RB<5:4> as outputs
; RB<7:6> as inputs

Note: On a Power-on Reset, RB<5:0> are
configured as analog inputs by default and
read as ‘0’; RB<7:6> are configured as
digital inputs. 

When the PBADEN Configuration bit is
set to ‘1’, RB<5:0> will alternatively be
configured as digital inputs on POR.
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10.5 PORTD Registers

PORTD is an 8-bit wide, bidirectional port. The
corresponding data direction register is TRISD. Setting
a TRISD bit (= 1) will make the corresponding PORTD
pin an input (i.e., disable the output driver). Clearing a
TRISD bit (= 0) will make the corresponding PORTD
pin an output (i.e., enable the output driver and put the
contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory
mapped. Read-modify-write operations on the LATD
register read and write the latched output value for
PORTD.

All pins on PORTD are implemented with Schmitt
Trigger input buffers. Each pin is individually
configurable as an input or output.

All of the PORTD pins are multiplexed with analog and
digital peripheral modules. See Table 10-11.

EXAMPLE 10-4: INITIALIZING PORTD      

10.5.1 PORTD OUTPUT PRIORITY

Each PORTD pin is multiplexed with other functions.
The pins, their combined functions and their output
priorities are briefly described here. For additional
information, refer to the appropriate section in this data
sheet.

When multiple outputs are enabled, the actual pin
control goes to the peripheral with the higher priority.
Table 10-4 lists the PORTD pin functions from the
highest to the lowest priority.

Analog input functions, such as ADC, comparator and
SR latch inputs, are not shown in the priority lists.

These inputs are active when the I/O pin is set for
Analog mode using the ANSELx registers. Digital
output functions may control the pin when it is in Analog
mode with the priority shown below.

Note: PORTD is only available on 40-pin and
44-pin devices.

Note: On a Power-on Reset, these pins are
configured as analog inputs.

MOVLB 0xF ; Set BSR for banked SFRs
CLRF PORTD ; Initialize PORTD by
 ; clearing output
 ; data latches
CLRF LATD ; Alternate method

; to clear output
; data latches

MOVLW 0CFh ; Value used to 
; initialize data 
; direction

MOVWF TRISD ; Set RD<3:0> as inputs
; RD<5:4> as outputs
; RD<7:6> as inputs

MOVLW 30h ; Value used to
; enable digital inputs

MOVWF ANSELD ; RD<3:0> dig input enable
; RC<7:6> dig input enable
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The I2C interface supports the following modes and
features:

• Master mode

• Slave mode

• Byte NACKing (Slave mode)

• Limited Multi-master support

• 7-bit and 10-bit addressing

• Start and Stop interrupts

• Interrupt masking

• Clock stretching

• Bus collision detection

• General call address matching

• Address masking

• Address Hold and Data Hold modes

• Selectable SDAx hold times

Figure 15-2 is a block diagram of the I2C interface
module in Master mode. Figure 15-3 is a diagram of the
I2C interface module in Slave mode.

The PIC18(L)F2X/4XK22 has two MSSP modules,
MSSP1 and MSSP2, each module operating
independently from the other.

FIGURE 15-2: MSSPx BLOCK DIAGRAM (I2C MASTER MODE)

Note 1: In devices with more than one MSSP
module, it is very important to pay close
attention to SSPxCONx register names.
SSP1CON1 and SSP1CON2 registers
control different operational aspects of
the same module, while SSP1CON1 and
SSP2CON1 control the same features for
two different modules.

2: Throughout this section, generic
references to an MSSP module in any of
its operating modes may be interpreted
as being equally applicable to MSSP1 or
MSSP2. Register names, module I/O
signals, and bit names may use the
generic designator ‘x’ to indicate the use
of a numeral to distinguish a particular
module when required.
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REGISTER 15-7: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I2C MODE)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

ADD<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

Master mode:

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits
SCLx pin clock period = ((ADD<7:0> + 1) *4)/FOSC

10-Bit Slave mode — Most Significant Address byte:

bit 7-3 Not used: Unused for Most Significant Address byte. Bit state of this register is a “don’t care”. Bit 
pattern sent by master is fixed by I2C specification and must be equal to ‘11110’. However, those bits 
are compared by hardware and are not affected by the value in this register.

bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address

bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.

10-Bit Slave mode — Least Significant Address byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1 ADD<7:1>: 7-bit address

bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.
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16.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the
standard non-return-to-zero (NRZ) format. NRZ is
implemented with two levels: a VOH Mark state which
represents a ‘1’ data bit, and a VOL Space state which
represents a ‘0’ data bit. NRZ refers to the fact that
consecutively transmitted data bits of the same value
stay at the output level of that bit without returning to a
neutral level between each bit transmission. An NRZ
transmission port idles in the Mark state. Each character
transmission consists of one Start bit followed by eight
or nine data bits and is always terminated by one or
more Stop bits. The Start bit is always a space and the
Stop bits are always marks. The most common data
format is eight bits. Each transmitted bit persists for a
period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-
bit Baud Rate Generator is used to derive standard
baud rate frequencies from the system oscillator. See
Table 16-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The
EUSART’s transmitter and receiver are functionally
independent, but share the same data format and baud
rate. Parity is not supported by the hardware, but can
be implemented in software and stored as the ninth
data bit.

16.1.1 EUSART ASYNCHRONOUS 
TRANSMITTER

The EUSART transmitter block diagram is shown in
Figure 16-1. The heart of the transmitter is the serial
Transmit Shift Register (TSR), which is not directly
accessible by software. The TSR obtains its data from
the transmit buffer, which is the TXREGx register.

16.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous
operations by configuring the following three control
bits:

• TXEN = 1
• SYNC = 0

• SPEN = 1

All other EUSART control bits are assumed to be in
their default state.

Setting the TXEN bit of the TXSTAx register enables the
transmitter circuitry of the EUSART. Clearing the SYNC
bit of the TXSTAx register configures the EUSART for
asynchronous operation. Setting the SPEN bit of the
RCSTAx register enables the EUSART and
automatically configures the TXx/CKx I/O pin as an
output. If the TXx/CKx pin is shared with an analog
peripheral the analog I/O function must be disabled by
clearing the corresponding ANSEL bit.

 

16.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the
TXREGx register. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREGx is immediately
transferred to the TSR register. If the TSR still contains
all or part of a previous character, the new character
data is held in the TXREGx until the Stop bit of the
previous character has been transmitted. The pending
character in the TXREGx is then transferred to the TSR
in one TCY immediately following the Stop bit
transmission. The transmission of the Start bit, data bits
and Stop bit sequence commences immediately
following the transfer of the data to the TSR from the
TXREGx.

16.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with
the CKTXP bit of the BAUDCONx register. The default
state of this bit is ‘0’ which selects high true transmit
idle and data bits. Setting the CKTXP bit to ‘1’ will invert
the transmit data resulting in low true idle and data bits.
The CKTXP bit controls transmit data polarity only in
Asynchronous mode. In Synchronous mode the
CKTXP bit has a different function.

16.1.1.4 Transmit Interrupt Flag

The TXxIF interrupt flag bit of the PIR1/PIR3 register is
set whenever the EUSART transmitter is enabled and
no character is being held for transmission in the
TXREGx. In other words, the TXxIF bit is only clear
when the TSR is busy with a character and a new
character has been queued for transmission in the
TXREGx. The TXxIF flag bit is not cleared immediately
upon writing TXREGx. TXxIF becomes valid in the
second instruction cycle following the write execution.
Polling TXxIF immediately following the TXREGx write
will return invalid results. The TXxIF bit is read-only, it
cannot be set or cleared by software.

The TXxIF interrupt can be enabled by setting the
TXxIE interrupt enable bit of the PIE1/PIE3 register.
However, the TXxIF flag bit will be set whenever the
TXREGx is empty, regardless of the state of TXxIE
enable bit.

To use interrupts when transmitting data, set the TXxIE
bit only when there is more data to send. Clear the
TXxIE interrupt enable bit upon writing the last
character of the transmission to the TXREGx.

Note: The TXxIF transmitter interrupt flag is set
when the TXEN enable bit is set.
 2010-2016 Microchip Technology Inc.  DS40001412G-page 261
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REGISTER 16-3: BAUDCONx: BAUD RATE CONTROL REGISTER

R/W-0 R-1 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0

ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 ABDOVF: Auto-Baud Detect Overflow bit
Asynchronous mode:
1 = Auto-baud timer overflowed
0 = Auto-baud timer did not overflow
Synchronous mode:
Don’t care

bit 6 RCIDL: Receive Idle Flag bit
Asynchronous mode:
1 = Receiver is Idle
0 = Start bit has been detected and the receiver is active
Synchronous mode:
Don’t care

bit 5 DTRXP: Data/Receive Polarity Select bit
Asynchronous mode:
1 = Receive data (RXx) is inverted (active-low)
0 = Receive data (RXx) is not inverted (active-high)
Synchronous mode:
1 = Data (DTx) is inverted (active-low)
0 = Data (DTx) is not inverted (active-high)

bit 4 CKTXP: Clock/Transmit Polarity Select bit
Asynchronous mode:
1 = Idle state for transmit (TXx) is low
0 = Idle state for transmit (TXx) is high
Synchronous mode:
1 = Data changes on the falling edge of the clock and is sampled on the rising edge of the clock
0 = Data changes on the rising edge of the clock and is sampled on the falling edge of the clock

bit 3 BRG16: 16-bit Baud Rate Generator bit
1 = 16-bit Baud Rate Generator is used (SPBRGHx:SPBRGx)
0 = 8-bit Baud Rate Generator is used (SPBRGx)

bit 2 Unimplemented: Read as ‘0’

bit 1 WUE: Wake-up Enable bit
Asynchronous mode:
1 = Receiver is waiting for a falling edge. No character will be received but RCxIF will be set on the falling

edge. WUE will automatically clear on the rising edge.
0 = Receiver is operating normally
Synchronous mode:
Don’t care

bit 0 ABDEN: Auto-Baud Detect Enable bit
Asynchronous mode:
1 = Auto-Baud Detect mode is enabled (clears when auto-baud is complete)
0 = Auto-Baud Detect mode is disabled
Synchronous mode:
Don’t care
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16.5 EUSART Synchronous Mode

Synchronous serial communications are typically used
in systems with a single master and one or more
slaves. The master device contains the necessary
circuitry for baud rate generation and supplies the clock
for all devices in the system. Slave devices can take
advantage of the master clock by eliminating the
internal clock generation circuitry. 

There are two signal lines in Synchronous mode: a
bidirectional data line and a clock line. Slaves use the
external clock supplied by the master to shift the serial
data into and out of their respective receive and
transmit shift registers. Since the data line is
bidirectional, synchronous operation is half-duplex
only. Half-duplex refers to the fact that master and
slave devices can receive and transmit data but not
both simultaneously. The EUSART can operate as
either a master or slave device.

Start and Stop bits are not used in synchronous
transmissions.

16.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART
for Synchronous Master operation:

• SYNC = 1
• CSRC = 1
• SREN = 0 (for transmit); SREN = 1 (for receive)

• CREN = 0 (for transmit); CREN = 1 (for receive)

• SPEN = 1

Setting the SYNC bit of the TXSTAx register configures
the device for synchronous operation. Setting the CSRC
bit of the TXSTAx register configures the device as a
master. Clearing the SREN and CREN bits of the
RCSTAx register ensures that the device is in the
Transmit mode, otherwise the device will be configured
to receive. Setting the SPEN bit of the RCSTAx register
enables the EUSART. If the RXx/DTx or TXx/CKx pins
are shared with an analog peripheral the analog I/O
functions must be disabled by clearing the corresponding
ANSEL bits.

The TRIS bits corresponding to the RXx/DTx and
TXx/CKx pins should be set.

16.5.1.1 Master Clock

Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device configured
as a master transmits the clock on the TXx/CKx line. The
TXx/CKx pin output driver is automatically enabled when
the EUSART is configured for synchronous transmit or
receive operation. Serial data bits change on the leading
edge to ensure they are valid at the trailing edge of each
clock. One clock cycle is generated for each data bit.
Only as many clock cycles are generated as there are
data bits.

16.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire
compatibility. Clock polarity is selected with the CKTXP
bit of the BAUDCONx register. Setting the CKTXP bit
sets the clock Idle state as high. When the CKTXP bit
is set, the data changes on the falling edge of each
clock and is sampled on the rising edge of each clock.
Clearing the CKTXP bit sets the Idle state as low. When
the CKTXP bit is cleared, the data changes on the
rising edge of each clock and is sampled on the falling
edge of each clock. 

16.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RXx/DTx
pin. The RXx/DTx and TXx/CKx pin output drivers are
automatically enabled when the EUSART is configured
for synchronous master transmit operation. 

A transmission is initiated by writing a character to the
TXREGx register. If the TSR still contains all or part of
a previous character the new character data is held in
the TXREGx until the last bit of the previous character
has been transmitted. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREGx is immediately trans-
ferred to the TSR. The transmission of the character
commences immediately following the transfer of the
data to the TSR from the TXREGx.

Each data bit changes on the leading edge of the
master clock and remains valid until the subsequent
leading clock edge.

16.5.1.4 Data Polarity

The polarity of the transmit and receive data can be
controlled with the DTRXP bit of the BAUDCONx
register. The default state of this bit is ‘0’ which selects
high true transmit and receive data. Setting the DTRXP
bit to ‘1’ will invert the data resulting in low true transmit
and receive data.

Note: The TSR register is not mapped in data
memory, so it is not available to the user.
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TABLE 16-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

BAUDCON1 ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 271

BAUDCON2 ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 271

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 109

IPR1 — ADIP RC1IP TX1IP SSP1IP CCP1IP TMR2IP TMR1IP 121

IPR3 SSP2IP BCL2IP RC2IP TX2IP CTMUIP TMR5GIP TMR3GIP TMR1GIP 123

PIE1 — ADIE RC1IE TX1IE SSP1IE CCP1IE TMR2IE TMR1IE 117

PIE3 SSP2IE BCL2IE RC2IE TX2IE CTMUIE TMR5GIE TMR3GIE TMR1GIE 119

PIR1 — ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF 112

PIR3 SSP2IF BCL2IF RC2IF TX2IF CTMUIF TMR5GIF TMR3GIF TMR1GIF 114

PMD0 UART2MD UART1MD TMR6MD TMR5MD TMR4MD TMR3MD TMR2MD TMR1MD 52

RCSTA1 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 270

RCSTA2 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 270

SPBRG1 EUSART1 Baud Rate Generator, Low Byte —

SPBRGH1  EUSART1 Baud Rate Generator, High Byte —

SPBRG2 EUSART2 Baud Rate Generator, Low Byte —

SPBRGH2  EUSART2 Baud Rate Generator, High Byte —

TRISB(2) TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 151

TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 151

TRISD(1) TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 151

ANSELC ANSC7 ANSC6 ANSC5 ANSC4 ANSC3 ANSC2 — — 150

ANSELD(1) ANSD7 ANSD6 ANSD5 ANSD4 ANSD3 ANSD2 ANSD1 ANSD0 150

TXREG1  EUSART1 Transmit Register —

TXSTA1 CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 269

TXREG2  EUSART2 Transmit Register —

TXSTA2 CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 269

Legend:  — = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous master transmission.

Note 1: PIC18(L)F4XK22 devices.

2: PIC18(L)F2XK22 devices. 
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FIGURE 16-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)       

CREN bit

RXx/DTx

Write to
bit SREN

SREN bit

RCxIF bit
(Interrupt)

Read
RCREGx

‘0’

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

‘0’

Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TXx/CKx pin

TXx/CKx pin

pin

(SCKP = 0)

(SCKP = 1)

TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

BAUDCON1 ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 271

BAUDCON2 ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 271

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 109

IPR1 — ADIP RC1IP TX1IP SSP1IP CCP1IP TMR2IP TMR1IP 121

IPR3 SSP2IP BCL2IP RC2IP TX2IP CTMUIP TMR5GIP TMR3GIP TMR1GIP 123

PIE1 — ADIE RC1IE TX1IE SSP1IE CCP1IE TMR2IE TMR1IE 117

PIE3 SSP2IE BCL2IE RC2IE TX2IE CTMUIE TMR5GIE TMR3GIE TMR1GIE 119

PIR1 — ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF 112

PIR3 SSP2IF BCL2IF RC2IF TX2IF CTMUIF TMR5GIF TMR3GIF TMR1GIF 114

PMD0 UART2MD UART1MD TMR6MD TMR5MD TMR4MD TMR3MD TMR2MD TMR1MD 52

RCREG1 EUSART1 Receive Register —

RCSTA1 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 270

RCREG2 EUSART2 Receive Register —

RCSTA2 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 270

SPBRG1 EUSART1 Baud Rate Generator, Low Byte —

SPBRGH1 EUSART1 Baud Rate Generator, High Byte —

SPBRG2 EUSART2 Baud Rate Generator, Low Byte —

SPBRGH2 EUSART2 Baud Rate Generator, High Byte —

TXSTA1 CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 269

TXSTA2 CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 269

Legend:  — = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous master reception.
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24.3 Watchdog Timer (WDT)

For PIC18(L)F2X/4XK22 devices, the WDT is driven by
the LFINTOSC source. When the WDT is enabled, the
clock source is also enabled. The nominal WDT period
is 4 ms and has the same stability as the LFINTOSC
oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit
postscaler. Any output of the WDT postscaler is
selected by a multiplexer, controlled by bits in
Configuration Register 2H. Available periods range
from 4 ms to 131.072 seconds (2.18 minutes). The
WDT and postscaler are cleared when any of the
following events occur: a SLEEP or CLRWDT instruction
is executed, the IRCF bits of the OSCCON register are
changed or a clock failure has occurred.

FIGURE 24-1: WDT BLOCK DIAGRAM

Note 1: The CLRWDT and SLEEP instructions
clear the WDT and postscaler counts
when executed.

2: Changing the setting of the IRCF bits of
the OSCCON register clears the WDT
and postscaler counts.

3: When a CLRWDT instruction is executed,
the postscaler count will be cleared.
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Reset

 WDT Counter

Programmable Postscaler
1:1 to 1:32,768
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SWDTEN
WDTEN
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4

from Power

Reset
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Sleep

128

Change on IRCF bits
Managed Modes
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26.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code
development in a PC-hosted environment by simulat-
ing the PIC MCUs and dsPIC DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers. 

The MPLAB X SIM Software Simulator fully supports
symbolic debugging using the MPLAB XC Compilers,
and the MPASM and MPLAB Assemblers. The soft-
ware simulator offers the flexibility to develop and
debug code outside of the hardware laboratory envi-
ronment, making it an excellent, economical software
development tool. 

26.7 MPLAB REAL ICE In-Circuit 
Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs all 8, 16 and 32-bit MCU, and DSC devices
with the easy-to-use, powerful graphical user interface of
the MPLAB X IDE.

The emulator is connected to the design engineer’s
PC using a high-speed USB 2.0 interface and is
connected to the target with either a connector
compatible with in-circuit debugger systems (RJ-11)
or with the new high-speed, noise tolerant, Low-
Voltage Differential Signal (LVDS) interconnection
(CAT5). 

The emulator is field upgradable through future firmware
downloads in MPLAB X IDE. MPLAB REAL ICE offers
significant advantages over competitive emulators
including full-speed emulation, run-time variable
watches, trace analysis, complex breakpoints, logic
probes, a ruggedized probe interface and long (up to
three meters) interconnection cables.

26.8 MPLAB ICD 3 In-Circuit Debugger 
System

The MPLAB ICD 3 In-Circuit Debugger System is
Microchip’s most cost-effective, high-speed hardware
debugger/programmer for Microchip Flash DSC and
MCU devices. It debugs and programs PIC Flash
microcontrollers and dsPIC DSCs with the powerful,
yet easy-to-use graphical user interface of the MPLAB
IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is
connected to the design engineer’s PC using a high-
speed USB 2.0 interface and is connected to the target
with a connector compatible with the MPLAB ICD 2 or
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3
supports all MPLAB ICD 2 headers.

26.9 PICkit 3 In-Circuit Debugger/
Programmer

The MPLAB PICkit 3 allows debugging and program-
ming of PIC and dsPIC Flash microcontrollers at a most
affordable price point using the powerful graphical user
interface of the MPLAB IDE. The MPLAB PICkit 3 is
connected to the design engineer’s PC using a full-
speed USB interface and can be connected to the tar-
get via a Microchip debug (RJ-11) connector (compati-
ble with MPLAB ICD 3 and MPLAB REAL ICE). The
connector uses two device I/O pins and the Reset line
to implement in-circuit debugging and In-Circuit Serial
Programming™ (ICSP™).

26.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages, and a mod-
ular, detachable socket assembly to support various
package types. The ICSP cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices, and incorporates an MMC card for file
storage and data applications.
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FIGURE 28-48: PIC18LF2X/4XK22 TYPICAL IDD: PRI_RUN EC MEDIUM POWER

FIGURE 28-49: PIC18LF2X/4XK22 MAXIMUM IDD: PRI_RUN EC MEDIUM POWER
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PIC18(L)F2X/4XK22
FIGURE 28-100: PIC18(L)F2X/4XK22 HF-INTOSC FREQUENCY vs. TEMPERATURE at 16 MHZ
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