

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f43k22-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABI	LE 3:	P	PIC18(L)F4>	(K22 F	PIN SUM	MARY	_						÷		
40-PDIP	40-UQFN	44-TQFP	44-QFN	0/1	Analog	Comparator	СТМИ	SR Latch	Reference	(E)CCP	EUSART	MSSP	Timers	Interrupts	Pull-up	Basic
2	17	19	19	RA0	AN0	C12IN0-										
3	18	20	20	RA1	AN1	C12IN1-										
4	19	21	21	RA2	AN2	C2IN+			VREF- DACOU T							
5	20	22	22	RA3	AN3	C1IN+			VREF+							
6	21	23	23	RA4		C1OUT		SRQ					TOCKI			
7	22	24	24	RA5	AN4	C2OUT		SRNQ	HLVDIN			SS1				
14	29	31	33	RA6												OSC2 CLKO
13	28	30	32	RA7												OSC1 CLKI
33	8	8	9	RB0	AN12			SRI		FLT0				INT0	Υ	
34	9	9	10	RB1	AN10	C12IN3-								INT1	Y	
35	10	10	11	RB2	AN8		CTED1							INT2	Y	
36	11	11	12	RB3	AN9	C12IN2-	CTED2			CCP2 P2A ⁽¹⁾			7-0	10.0	Y	
37	12	14	14	RB4	AN11					0000			15G	100	Y	
38	13	15	15	RB5	AN13					P3A ⁽³⁾			T3CKI ⁽²⁾	100	Y	500
39	14	16	16	RB6										IOC	Y	PGC
40	15	17	17	RB/						DOD(4)			00000	IOC	Y	PGD
15	30	32	34	KCU						F2D, ,			T1CKI T3CKI ⁽²⁾ T3G			
16	31	35	35	RC1						CCP2 ⁽¹⁾ P2A			SOSCI			
17	32	36	36	RC2	AN14		CTPLS			CCP1 P1A			T5CKI			
18	33	37	37	RC3	AN15							SCK1 SCL1				
23	38	42	42	RC4	AN16							SDI1 SDA1				
24	39	43	43	RC5	AN17							SDO1				
25	40	44	44	RC6	AN18						TX1 CK1					
26	1	1	1	RC7	AN19						RX1 DT1					
19	34	38	38	RD0	AN20							SCK2 SCL2				
20	35	39	39	RD1	AN21					CCP4		SDI2 SDA2				
21	36	40	40	RD2	AN22					P2B ⁽⁴⁾						
22	37	41	41	RD3	AN23					P2C		SS2			_	
27	2	2	2	RD4	AN24					P2D		SD02			-	
28	3	3	3	RD5	AN25					P1B	T) (0					
29	4	4	4	RD6	AN26					P1C	CK2					
30	5	5	5	RD7	AN27					P1D	RX2 DT2					
8	23	25	25	RE0	AN5					CCP3 P3A ⁽³⁾						

ABLE 3:	PIC18(L)F4XK22	PIN S	SUMMA	RY
ADEL V.	1 10 10(50	

 Note
 1:
 CCP2 multiplexed in fuses.

 2:
 T3CKI multiplexed in fuses.

 3:
 CCP3/P3A multiplexed in fuses.

 4:
 P2B multiplexed in fuses.

The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the Top-of-Stack (TOS) Special File Registers. Data can also be pushed to, or popped from the stack, using these registers.

A CALL type instruction causes a push onto the stack; the Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack; the contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.

The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits indicate if the stack is full or has overflowed or has underflowed.

5.1.2.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, hold the contents of the stack location pointed to by the STKPTR register (Figure 5-2). This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

The user must disable the Global Interrupt Enable (GIE) bits while accessing the stack to prevent inadvertent stack corruption.

FIGURE 5-2: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

5.1.2.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 5-1) contains the Stack Pointer value, the STKFUL (stack full) Status bit and the STKUNF (Stack Underflow) Status bits. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to **Section 24.1 "Configuration Bits"** for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs.

Note: Returning a value of zero to the PC on an underflow has the effect of vectoring the program to the Reset vector, where the stack conditions can be verified and appropriate actions can be taken. This is not the same as a Reset, as the contents of the SFRs are not affected.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
FFFh	TOSU	—	—	—		Top-of-Stack,	Upper Byte (T	OS<20:16>)		0 0000
FFEh	TOSH			Тор	-of-Stack, High	Byte (TOS<15	5:8>)			0000 0000
FFDh	TOSL			Тор	o-of-Stack, Low	Byte (TOS<7	:0>)			0000 0000
FFCh	STKPTR	STKFUL	STKUNF	_		Ş	STKPTR<4:0>			00-0 0000
FFBh	PCLATU	_	_	_		Holding F	Register for PC	<20:16>		0 0000
FFAh	PCLATH			ŀ	Holding Registe	er for PC<15:8	>			0000 0000
FF9h	PCL			n	Holding Regist	er for PC<7:0>	>			0000 0000
FF8h	TBLPTRU	_	—	Pi	rogram Memor	y Table Pointer	r Upper Byte(T	BLPTR<21:16	S>)	00 0000
FF7h	TBLPTRH		F	Program Memo	ory Table Point	er High Byte(T	BLPTR<15:8>)		0000 0000
FF6h	TBLPTRL		Р	rogram Memo	ory Table Point	er Low Byte(Th	3LPTR<7:0>)			0000 0000
FF5h	TABLAT		Program Memory Table Latch							
FF4h	PRODH				Product Regis	ter, High Byte				XXXX XXXX
FF3h	PRODL				Product Regis	ter, Low Byte				XXXX XXXX
FF2h	INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x
FF1h	INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	—	RBIP	1111 -1-1
FF0h	INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE		INT2IF	INT1IF	11-0 0-00
FEFh	INDF0	Uses cont	ents of FSR0	to address da	ta memory – va	alue of FSR0 r	not changed (n	ot a physical r	egister)	
FEEh	POSTINC0	Uses conte	ents of FSR0 1	to address dat	ta memory – va	alue of FSR0 p	ost-incremente	ed (not a phys	ical register)	
FEDh	POSTDECO	Uses cont	ents of FSR0	to address da	ta memory – va	alue of FSR0 p	ost-decrement	ed (not a phys	sical register)	
FECh	PREINC0	Uses conte	ents of FSR01	to address dat	ta memory – va	alue of FSR0 p	re-incremente	d (not a physic	cal register)	
FEBh	PLUSW0	Uses conten	value of FSR0 offset by W							
FEAh	FSR0H	-		—	_	Indirect Dat	a Memory Add	ress Pointer 0), High Byte	0000
FE9h	FSR0L	In	Indirect Data Memory Address Pointer 0, Low Byte							XXXX XXXX
FE8h	WREG				Working Regis	ier				XXXX XXXX
FE7h	INDF1	Uses cor	ntents of FSR1	to address d	ata memory -	value of FSR1	not changed (not a physical	register)	
FE6h	POSTINC1	Uses cor	tents of FSR1	to address d	ata memory –	value of FSR1	post-incremen	ted (not a phy	vsical register)	
FE5h	POSTDEC1	Uses con	itents of FSR1	to address d	ata memory –	value of FSR1	post-decreme	nted (not a phy	ysical register	
FE4h	PREINC1	Uses cor	ntents of FSR1	to address d	ata memory –	value of FSR1	pre-increment	ed (not a phys	sical register)	
FE3h	PLUSW1	Uses conter	nts of FSR1 to	address data	value of FSR	ue of FSR1 pro 1 offset by W	e-incremented	(not a physica	al register) –	
FE2h	FSR1H	—	—	—	—	Indirect Dat	a Memory Add	ress Pointer 1	, High Byte	0000
FE1h	FSR1L			Indirect Data I	Memory Addre	ss Pointer 1, L	ow Byte			XXXX XXXX
FE0h	BSR	—	—	—	—		Bank Selec	t Register		0000
FDFh	INDF2	Uses co	ntents of FSR	2 to address o	lata memory –	value of FSR2	not changed (not a physical	l register)	
FDEh	POSTINC2	Uses cor	ntents of FSR2	2 to address d	lata memory –	value of FSR2	post-incremer	ited (not a phy	/sical register)	
FDDh	POSTDEC2	Uses cor	ntents of FSR2	2 to address d	ata memory –	value of FSR2	post-decreme	nted (not a ph	ysical register)
FDCh	PREINC2	Uses co	ontents of FSR	2 to address	data memory –	value of FSR2	2 pre-incremen	ted (not a phy	vsical register)	
FDBh	PLUSW2	Uses conter	nts of FSR2 to	address data	value of FSR	ue of FSR2 pre 2 offset by W	e-incremented	(not a physica	al register) –	
FDAh	FSR2H	_	—	—	—	Indirect Dat	a Memory Add	ress Pointer 2	2, High Byte	0000
FD9h	FSR2L		lı	ndirect Data N	lemory Addres	s Pointer 2, Lo	ow Byte			XXXX XXXX
FD8h	STATUS	—	—	—	Ν	OV	Z	DC	С	x xxxx
FD7h	TMR0H				Timer0 Registe	er, High Byte				0000 0000
FD6h	TMR0L			r	Timer0 Regist	er, Low Byte				XXXX XXXX
FD5h	T0CON	TMR0ON	T08BIT	TOCS	TOSE	PSA		T0PS<2:0>		1111 1111
FD3h	OSCCON	IDLEN		IRCF<2:0>	1	OSTS	HFIOFS	SCS	<1:0>	0011 q000
FD2h	OSCCON2	PLLRDY	SOSCRUN	—	MFIOSEL	SOSCGO	PRISD	MFIOFS	LFIOFS	00-0 01x0

TABLE 5-2: REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: PIC18(L)F4XK22 devices only.

2: PIC18(L)F2XK22 devices only.

3: PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.

4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form of indexed addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

5.6.3.3 Operations by FSRs on FSRs

Indirect addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains FE7h, the address of INDF1. Attempts to read the value of the INDF1 using INDF0 as an operand will return 00h. Attempts to write to INDF1 using INDF0 as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to either the INDF2 or POSTDEC2 register will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses indirect addressing.

Similarly, operations by indirect addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

5.7 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different; this is due to the introduction of a new addressing mode for the data memory space.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect addressing with FSR0 and FSR1 also remain unchanged.

5.7.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of indirect addressing using the FSR2 register pair within Access RAM. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of indexed addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal Offset mode.

When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0) and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in direct addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

5.7.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use direct addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 5-11.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 25.2.1** "Extended Instruction Syntax".

EXAMPLE 6-3:	WRITING T	O FLASH PROGRAM M	EMORY
	MOVLW	D'64′	; number of bytes in erase block
	MOVWF	COUNTER	-
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
DEAD DIOGU	MOVWF	TBLDTRL	
READ_BLOCK	+ * תם זמיד		· road into TAPIAT and inc
	IBLRD"+	ייא איז איז איז	; read Into TABLAI, and Inc
	MOVWE	POSTINCO	; store data
	DECESZ	COUNTER	; done?
	BRA	READ BLOCK	; repeat
MODIFY WORD			
	MOVLW	BUFFER ADDR HIGH	; point to buffer
	MOVWF	FSROH	-
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	NEW_DATA_LOW	; update buffer word
	MOVWF	POSTINC0	
	MOVLW	NEW_DATA_HIGH	
	MOVWF	INDF0	
ERASE_BLOCK			
	MOVLW	CODE_ADDR_UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF'	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	IBLPIRL FEGONI FEDOD	: noint to Elach program moments
	BCF	FECON1 CEGS	; access Elash program memory
	BSF	EECON1 WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Erase operation
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	*
Required	MOVWF	EECON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts
	TBLRD*-		; dummy read decrement
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
WRITE_BUFFER_BACK	A MOUT W		·
		COINTED COINTED	, number of bytes in notaing register
	MOVWF	COUNTER D/64//DlockSize	, number of write blocks in 64 butes
	MULIME	COUNTERS	, number of wire blocks in 64 bytes
שפוקב פעקב ה∖ הסו	EGS	COULTERS	
"WTID_DIID_IO_HKI	TVOM	POSTINCO. W	; get low byte of buffer data
	MOVWF	TABLAT	; present data to table latch
	TBLWT+*		; write data, perform a short write
			; to internal TBLWT holding register

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0					
EEPGE	D CFGS	_	FREE	WRERR	WREN	WR	RD					
bit 7							bit 0					
Legend:												
R = Reada	able bit	W = Writable	bit									
S = Bit ca	S = Bit can be set by software, but not cleared $U = Unimplemented bit, read as '0'$											
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown												
hit 7	EEPCD: Elas	h Program or F		Momory Solo	ot hit							
	1 – Access F	ll Flograffi of L	nemory	I Memory Sele								
	0 = Access d	ata EEPROM I	memory									
bit 6	CFGS: Flash	Program/Data	EEPROM or	Configuration S	Select bit							
	1 = Access C	Configuration re	gisters									
	0 = Access Flash program or data EEPROM memory											
bit 5	it 5 Unimplemented: Read as '0'											
bit 4	FREE: Flash Row (Block) Erase Enable bit											
	1 = Erase the	e program men	nory block add	fressed by TBL	PIR on the ne	ext WR commai	nd					
	0 = Perform	write-only										
bit 3	WRERR: Flas	sh Program/Da	ta EEPROM E	Error Flag bit ⁽¹⁾								
	1 = A write or	peration is prer	maturely termi	nated (any Res	set during self-	timed programr	ming in normal					
	operation	, or an improp	er write attem	pt)								
bit 2	WREN: Flash	Program/Data	EEPROM W	rite Enable bit								
	1 = Allows with 0 = Inhibits with 0 = Inhibits with 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	rite cycles to Fi	lash program/ lash program/	data EEPROM /data EEPROM	1							
bit 1	WR: Write Co	ntrol bit	J J									
	1 = Initiates a	data EEPRON	/l erase/write c	cycle or a progra	am memory er	ase cycle or writ	te cycle.					
	(The ope	ration is self-tir	ned and the b	it is cleared by	hardware onc	e write is compl	lete.					
	0 = Write cvc	bit can only be le to the FFPR	set (not clear	ed) by software	e.)							
bit 0	RD: Read Co	ntrol bit										
	1 = Initiates a	IN EEPROM rea	ad (Read take	s one cycle. RD) is cleared by	hardware. The F	RD bit can only					
	be set (no	ot cleared) by s	oftware. RD b	it cannot be set	when EEPGD	= 1 or CFGS =	1.)					
	0 = Does not	initiate an EEF	PROM read									
Note 1:	When a WRERR of	occurs, the EEF	PGD and CFG	S bits are not o	cleared. This a	llows tracing of	the					

REGISTER 7-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

error condition.

7.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit of the EECON1 register and then set control bit, RD. The data is available on the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 7-1.

7.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 7-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared by hardware and the EEPROM Interrupt Flag bit, EEIF, is set. The user may either enable this interrupt or poll this bit. EEIF must be cleared by software.

7.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

EXAMPLE 7-1: DATA EEPROM READ

MOVLW	DATA_EE_ADDR	;	
MOVWF	EEADR	;	Data Memory Address to read
BCF	EECON1, EEPGD	;	Point to DATA memory
BCF	EECON1, CFGS	;	Access EEPROM
BSF	EECON1, RD	;	EEPROM Read
MOVF	EEDATA, W	;	W = EEDATA

EXAMPLE 7-2:	DATA EEPROM WRITE

	MOVLW MOVWF	DATA_EE_ADDR_LOW EEADR	Data M	emory Address to write
	MOVLW	DATA_EE_ADDR_HI		
	MOVWF	EEADRH		
	MOVLW	DATA_EE_DATA		
	MOVWF	EEDATA	Data M	emory Value to write
	BCF	EECON1, EEPGD	Point	to DATA memory
	BCF	EECON1, CFGS	Access	EEPROM
	BSF	EECON1, WREN	Enable	writes
	BCF	INTCON, GIE	Disabl	e Interrupts
	MOVLW	55h		
Required	MOVWF	EECON2	Write	55h
Sequence	MOVLW	0AAh		
	MOVWF	EECON2	Write	0AAh
	BSF	EECON1, WR	Set WR	bit to begin write
	BSF	INTCON, GIE	Enable	Interrupts
			User c	ode execution
	BCF	EECON1, WREN	Disabl	e writes on write complete (EEIF set)

Dort bit	Port Function Priority by Port Pin									
Port bit	PORTA	PORTB	PORTC	PORTD ⁽²⁾	PORTE ⁽²⁾					
5	SRNQ	CCP3 ⁽³⁾	SDO1	P1B						
	C2OUT	P3A ⁽³⁾	RC5	RD5						
	RA5	P2B ⁽¹⁾⁽⁴⁾								
		RB5								
6	OSC2	PGC	TX1/CK1	TX2/CK2						
	CLKO	TX2/CK2 ⁽¹⁾	CCP3 ⁽¹⁾⁽⁷⁾	P1C						
	RA6	RB6	P3A(1)(7)	RD6						
		ICDCK	RC6							
7	RA7									
	OSC1	PGD	RX1/DT1	RX2/DT2						
	RA7	RX2/DT2 ⁽¹⁾	P3B ⁽¹⁾	P1D						
		RB7	RC7	RD7						
		ICDDT								

TABLE 10-4: PORT PIN FUNCTION PRIORITY (CONTINUED)

Note 1: PIC18(L)F2XK22 devices.

2: PIC18(L)F4XK22 devices.

3: Function default pin.

4: Function default pin (28-pin devices).

5: Function default pin (40/44-pin devices).

6: Function alternate pin.

7: Function alternate pin (28-pin devices).

8: Function alternate pin (40/44-pin devices)

15.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF, and reset the I²C port to its Idle state (Figure 15-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the l^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

19.4 Measuring Capacitance with the CTMU

There are two separate methods of measuring capacitance with the CTMU. The first is the absolute method, in which the actual capacitance value is desired. The second is the relative method, in which the actual capacitance is not needed, rather an indication of a change in capacitance is required.

19.4.1 ABSOLUTE CAPACITANCE MEASUREMENT

For absolute capacitance measurements, both the current and capacitance calibration steps found in **Section 19.3 "Calibrating the CTMU Module"** should be followed. Capacitance measurements are then performed using the following steps:

- 1. Initialize the A/D Converter.
- 2. Initialize the CTMU.
- 3. Set EDG1STAT.
- 4. Wait for a fixed delay, *T*.
- 5. Clear EDG1STAT.
- 6. Perform an A/D conversion.
- 7. Calculate the total capacitance, CTOTAL = (I * T)/V, where *I* is known from the current source measurement step (see **Section 19.3.1 "Current Source Calibration"**), *T* is a fixed delay and *V* is measured by performing an A/D conversion.
- 8. Subtract the stray and A/D capacitance (*C*OFFSET from **Section 19.3.2** "**Capacitance Calibration**") from *CTOTAL* to determine the measured capacitance.

19.4.2 RELATIVE CHARGE MEASUREMENT

An application may not require precise capacitance measurements. For example, when detecting a valid press of a capacitance-based switch, detecting a relative change of capacitance is of interest. In this type of application, when the switch is open (or not touched), the total capacitance is the capacitance of the combination of the board traces, the A/D Converter, etc. A larger voltage will be measured by the A/D Converter. When the switch is closed (or is touched), the total capacitance is larger due to the addition of the capacitances, and a smaller voltage will be measured by the A/D Converter.

Detecting capacitance changes is easily accomplished with the CTMU using these steps:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT.
- 3. Wait for a fixed delay.
- 4. Clear EDG1STAT.
- 5. Perform an A/D conversion.

The voltage measured by performing the A/D conversion is an indication of the relative capacitance. Note that in this case, no calibration of the current source or circuit capacitance measurement is needed. See Example 19-4 for a sample software routine for a capacitive touch switch.

23.6 Applications

In many applications, it is desirable to detect a drop below, or rise above, a particular voltage threshold. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 23-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and a controlled shutdown before the device voltage exits the valid operating range at TB. This would give the application a time window, represented by the difference between TA and TB, to safely exit.

U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
—	—		WDT	PS<3:0>		WDTEI	N<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	P = Programma	ble bit	U = Unimpleme	ented bit, read as	0'	
-n = Value wh	en device is unprog	Irammed		x = Bit is unkno	wn		
bit 7-6	Unimplemente	ed: Read as '0'					
bit 5-2	WDTPS<3:0>:	Watchdog Timer	Postscale Selec	ct bits			
	1111 = 1:32,76	68					
	1110 = 1:16,3 8	34					
	1101 = 1:8,192	2					
	1100 = 1:4,096	6					
	1011 = 1:2,048	3					
	1010 = 1:1,024	1					
	1001 = 1:512						
	1000 = 1:256						
	0111 = 1:128						
	0110 = 1:64						
	0101 = 1:32						
	0100 = 1:16						
	0011 = 1:8						
	0010 = 1:4						
	0001 = 1:2						
	0000 = 1.1						
bit 1-0	WDTEN<1:0>:	Watchdog Timer	Enable bits				
	11 = WDT ena	bled in hardware;	SWDTEN bit di	sabled			
	10 = WDI cont	trolled by the SWL	DIEN bit				
	01 = WDT ena	bled when device	is active, disab	led when device is	s in Sleep; SWDTI	EN bit disabled	
	00 = WDT disa	bled in hardware;	SWDTEN bit d	isabled			

REGISTER 24-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH

Mnemo	onic,	Description	Cycles	16-	Bit Instr	uction W	/ord	Status	Notos	
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes	
BYTE-ORI	ENTED C	OPERATIONS								
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2	
ADDWFC	f, d, a	Add WREG and CARRY bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2	
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2	
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2	
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2	
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4	
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4	
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2	
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4	
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4	
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2	
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4	
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4	
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2	
IORWF	f, d, a	Inclusive OR WREG with f	1 ΄	0001	00da	ffff	ffff	Z, N	1, 2	
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1	
MOVFF	f_s, f_d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None		
	0. u	f _d (destination) 2nd word		1111	ffff	ffff	ffff			
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None		
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N		
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	-	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N		
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N		
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	,	
		borrow								
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2	
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	-	
		borrow								
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4	
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2	
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N		

TABLE 25-2: PIC18(L)F2X/4XK22 INSTRUCTION SET

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
PIC18F2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Device Characteristics	Тур	Max	Units	Conditions			
D055		0.25	0.40	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 1 MHz	
D056		0.35	0.50	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, HFINTOSC source)	
D057		0.30	0.45	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 1 MHz (RC_IDLE mode, HFINTOSC source)	
D058		0.40	0.50	mA	-40°C to +125°C	VDD = 3.0V		
D059		0.45	0.60	mA	-40°C to +125°C	Vdd = 5.0V		
D060		0.50	0.7	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 16 MHz (RC_IDLE mode, HFINTOSC source)	
D061		0.80	1.1	mA	-40°C to +125°C	VDD = 3.0V		
D062		0.65	1.0	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 16 MHz (RC_IDLE mode, HFINTOSC source)	
D063		0.80	1.1	mA	-40°C to +125°C	VDD = 3.0V		
D064		0.95	1.2	mA	-40°C to +125°C	VDD = 5.0V		
D066		2.5	3.5	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz (RC_IDLE mode, HFINTOSC + PLL source)	
D068		2.5	3.5	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz (RC_IDLE mode, HFINTOSC + PLL source)	
D069		3.0	4.5	mA	-40°C to +125°C	VDD = 5.0V		

27.4 DC Characteristics: RC Idle Supply Current, PIC18(L)F2X/4XK22 (Continued)

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

27.11 AC (Timing) Characteristics

27.11.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)	
2. TppS		4. Ts	(I ² C specifications only)	
Т				
F	Frequency	т	Time	
Lowercase	letters (pp) and their meanings:			
рр				
сс	CCP1	osc	OSC1	
ck	CLKOUT	rd	RD	
CS	CS	rw	RD or WR	
di	SDI	sc	SCK	
do	SDO	SS	SS	
dt	Data in	tO	TOCKI	
io	I/O port	t1	T13CKI	
mc	MCLR	wr	WR	
Uppercase	letters and their meanings:			
S				
F	Fall	Р	Period	
н	High	R	Rise	
I	Invalid (High-impedance)	V	Valid	
L	Low	Z	High-impedance	
I ² C only				
AA	output access	High	High	
BUF	Bus free	Low	Low	
Tcc:st (I ² C specifications only)				
CC				
HD	Hold	SU	Setup	
ST				
DAT	DATA input hold	STO	Stop condition	
STA	Start condition			

27.11.2 TIMING CONDITIONS

The temperature and voltages specified in Table 27-6 apply to all timing specifications unless otherwise noted. Figure 27-6 specifies the load conditions for the timing specifications.

TABLE 27-6: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)					
	Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
AC CHARACTERISTICS	Operating voltage VDD range as described in Section 27.1 "DC Characteristics:					
	Supply Voltage, PIC18(L)F2X/4XK22" and Section 27.9 "Memory Programming					
	Requirements".					

FIGURE 27-6: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions	
90	TSU:STA	Start Condition	100 kHz mode	4700		ns	Only relevant for Repeated Start condition	
		Setup Time	400 kHz mode	600	—			
91	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first clock pulse is generated	
		Hold Time	400 kHz mode	600	—			
92	Tsu:sto	Stop Condition	100 kHz mode	4700	—	ns		
		Setup Time	400 kHz mode	600	—			
93	THD:STO	Stop Condition	100 kHz mode	4000		ns		
		Hold Time	400 kHz mode	600	—			

TABLE 27-15: I²C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

FIGURE 27-18: I²C BUS DATA TIMING

© 2010-2016 Microchip Technology Inc.

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.