

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f43k22-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3: PIC18(L)F4XK22 PIN SUMMARY (CONTINUED)

40-PDIP	40-UQFN	44-TQFP	44-QFN	0/1	Analog	Comparator	СТМИ	SR Latch	Reference	(E)CCP	EUSART	MSSP	Timers	Interrupts	dn-lluq	Basic
9	24	26	26	RE1	AN6					P3B						
10	25	27	27	RE2	AN7					CCP5						
1	16	18	18	RE3											Y	MCLR VPP
11, 32	7, 26	7, 28	7,8 28, 29	Vdd												Vdd
12, 31	6, 27	6, 29	6, 30, 31	Vss												Vss
_	-	12, 13 33, 34	13	NC												

CCP2 multiplexed in fuses. T3CKI multiplexed in fuses. Note 1:

2:

3: CCP3/P3A multiplexed in fuses.

4: P2B multiplexed in fuses.

Pin Nu	mber				
PDIP, SOIC	QFN, UQFN	Pin Name	Pin Type	Buffer Type	Description
2	27	RA0/C12IN0-/AN0			·
		RA0	I/O	TTL	Digital I/O.
		C12IN0-	I	Analog	Comparators C1 and C2 inverting input.
		ANO	I	Analog	Analog input 0.
3	28	RA1/C12IN1-/AN1			
		RA1	I/O	TTL	Digital I/O.
		C12IN1-	I	Analog	Comparators C1 and C2 inverting input.
		AN1	I	Analog	Analog input 1.
4	1	RA2/C2IN+/AN2/DACOUT/VREF-		-	-
		RA2	I/O	TTL	Digital I/O.
		C2IN+	I	Analog	Comparator C2 non-inverting input.
		AN2	Ι	Analog	Analog input 2.
		DACOUT	0	Analog	DAC Reference output.
		Vref-	I	Analog	A/D reference voltage (low) input.
5	2	RA3/C1IN+/AN3/VREF+			
		RA3	I/O	TTL	Digital I/O.
		C1IN+	I	Analog	Comparator C1 non-inverting input.
		AN3	I	Analog	Analog input 3.
		VREF+	I	Analog	A/D reference voltage (high) input.
6	3	RA4/CCP5/C1OUT/SRQ/T0CKI	1	n	r
		RA4	I/O	ST	Digital I/O.
		CCP5	I/O	ST	Capture 5 input/Compare 5 output/PWM 5 output.
		C1OUT	0	CMOS	Comparator C1 output.
		SRQ	0	TTL	SR latch Q output.
		ТОСКІ	I	ST	Timer0 external clock input.
7	4	RA5/C2OUT/SRNQ/SS1/HLVDIN/AN	4		
		RA5	I/O	TTL	Digital I/O.
		C2OUT	0	CMOS	Comparator C2 output.
		SRNQ	0	TTL	SR latch \overline{Q} output.
		SS1	I	TTL	SPI slave select input (MSSP).
		HLVDIN	I	Analog	High/Low-Voltage Detect input.
		AN4	I	Analog	Analog input 4.
10	7	RA6/CLKO/OSC2	1	I	1
		RA6	I/O	TTL	Digital I/O.
		CLKO	0		In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
		OSC2	0		Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.

TABLE 1-2.	PIC18/I)E2XK22 PINOLIT I/O DESCRIPTIONS
IADLE I-Z.	FIG10(L)FZAKZZ FINOUT I/O DESCRIFTIONS

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

5.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 Enhanced microcontroller devices:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate buses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Flash program memory is provided in **Section 6.0 "Flash Program Memory"**. Data EEPROM is discussed separately in **Section 7.0 "Data EEPROM Memory"**.

5.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

This family of devices contain the following:

- PIC18(L)F23K22, PIC18(L)F43K22: 8 Kbytes of Flash Memory, up to 4,096 single-word instructions
- PIC18(L)F24K22, PIC18(L)F44K22: 16 Kbytes of Flash Memory, up to 8,192 single-word instructions
- PIC18(L)F25K22, PIC18(L)F45K22: 32 Kbytes of Flash Memory, up to 16,384 single-word instructions
- PIC18(L)F26K22, PIC18(L)F46K22: 64 Kbytes of Flash Memory, up to 37,768 single-word instructions

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory map for PIC18(L)F2X/4XK22 devices is shown in Figure 5-1. Memory block details are shown in Figure 20-2.

5.3 PIC18 Instruction Cycle

5.3.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the program counter is incremented on every Q1; the instruction is fetched from the program memory and latched into the instruction register during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 5-3.

5.3.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles: Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 5-3).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 5-3: INSTRUCTION PIPELINE FLOW

	Тсү0	TCY1	Tcy2	Тсү3	TCY4	TCY5		
1. MOVLW 55h	Fetch 1	Execute 1						
2. MOVWF PORTB		Fetch 2	Execute 2		_			
3. BRA SUB_1			Fetch 3	Execute 3				
4. BSF PORTA, BIT3	(Forced N	IOP)		Fetch 4	Flush (NOP)			
5. Instruction @ address SUB_1 Fetch SUB_1 Execute SUB_1								

Note: All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	_	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	150
ECCP2AS	CCP2ASE	(CCP2AS<2:0>	>	PSS2AC<	1:0>	PSS2B	202	
CCP2CON	P2M	<1:0>	DC2B-	<1:0>		CCP2M<3	:0>		198
ECCP3AS	CCP3ASE	(CCP3AS<2:0>	•	PSS3AC<	1:0>	PSS3B	D<1:0>	202
CCP3CON	P3M	<1:0>	DC3B-	<1:0>		CCP3M<3	:0>		198
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	—	RBIP	110
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	—	INT2IF	INT1IF	111
IOCB	IOCB7	IOCB6	IOCB5	IOCB4		—	—		153
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	152
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	148
SLRCON	—	—	_	SLRE ⁽¹⁾	SLRD ⁽¹⁾	SLRC	SLRB	SLRA	153
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	167
T3CON	TMR3C	CS<1:0>	T3CKP	S<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	166
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GSS<1:0>		167
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	152

TABLE 10-6: REGISTERS ASSOCIATED WITH PORTB

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTB.

Note 1: Available on PIC18(L)F4XK22 devices.

TABLE 10-7: CONFIGURATION REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	_	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348
CONFIG4L	DEBUG	XINST	_	_	_	LVP ⁽¹⁾	_	STRVEN	349

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTB.

Note 1: Can only be changed when in high voltage programming mode.

FIGURE 14-7:	EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)
--------------	--

∕xM<1	:0>	Signal	0	Pulse		PRx+1
			<	Width	- Period	
00	(Single Output)	PxA Modulated				
		PxA Modulated	- <u> </u>			i
10	(Half-Bridge)	PxB Modulated		elay",		
		PxA Active				
01	(Full-Bridge,	PxB Inactive	- :		 1 1	I
	i orward)	PxC Inactive	- :			I
		PxD Modulated				
		PxA Inactive			1 1 1	1 1 1
11	(Full-Bridge,	PxB Modulated				I
Reverse)	Reveise)	PxC Active			1 	
		PxD Inactive			<u> </u>	<u> </u>

Period = 4 * Tosc * (PRx + 1) * (TMRx Prescale Value)
Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
Delay = 4 * Tosc * (PWMxCON<6:0>)

Note 1: Dead-band delay is programmed using the PWMxCON register (Section 14.4.5 "Programmable Dead-Band Delay Mode").

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ECCP1AS	CCP1ASE		CCP1AS<2:0>		PSS1A	C<1:0>	PSS1B	D<1:0>	202
CCP1CON	P1M-	<1:0>	DC1B	<1:0>		CCP1N	1<3:0>		198
ECCP2AS	CCP2ASE		CCP2AS<2:0>		PSS2A	C<1:0>	PSS2B	D<1:0>	202
CCP2CON	P2M-	<1:0>	DC2B	DC2B<1:0> CCP2M<3:0>					198
ECCP3AS	CCP3ASE		CCP3AS<2:0>		PSS3A	C<1:0>	PSS3B	D<1:0>	202
CCP3CON	P3M-	<1:0>	DC3B	<1:0>		CCP3N	1<3:0>		198
CCPTMRS0	C3TSE	L<1:0>	—	C2TSE	L<1:0>	—	C1TSE	L<1:0>	201
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
IPR4	—	—	—	_	_	CCP5IP	CCP4IP	CCP3IP	124
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIE4	—	—	—	—	_	CCP5IE	CCP4IE	CCP3IE	120
PIR1		ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIR4	—	—	—	—	_	CCP5IF	CCP4IF	CCP3IF	115
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
PMD1	MSSP2MD	MSSP1MD	—	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	53
PR2		•		Timer2 Peric	od Register	•	•		_
PR4				Timer4 Peric	od Register				_
PR6				Timer6 Peric	od Register				_
PSTR1CON	_	—	_	STR1SYNC	STR1D	STR1C	STR1B	STR1A	203
PSTR2CON	_	—	—	STR2SYNC	STR2D	STR2C	STR2B	STR2A	203
PSTR3CON	_	—	—	STR3SYNC	STR3D	STR3C	STR3B	STR3A	203
PWM1CON	P1RSEN		•	•	P1DC<6:0>	•	•		203
PWM2CON	P2RSEN				P2DC<6:0>				203
PWM3CON	P3RSEN				P3DC<6:0>				203
T2CON	—		T2OUT	PS<3:0>		TMR2ON	T2CKP	S<1:0>	166
T4CON	_		T4OUTI	PS<3:0>		TMR4ON	T4CKP	S<1:0>	166
T6CON	_		T6OUTI	PS<3:0>		TMR6ON	T6CKP	S<1:0>	166
TMR2				Timer2 R	egister				_
TMR4	Timer4 Register								_
TMR6				Timer6 R	egister				_
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
TRISE	WPUE3	_	—	—	—	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	151

TABLE 14-13: REGISTERS ASSOCIATED WITH ENHANCED PWM

 Legend:
 — = Unimplemented location, read as '0'. Shaded bits are not used by Enhanced PWM mode.

 Note
 1:
 These registers/bits are available on PIC18(L)F4XK22 devices.

TABLE 14-14: CONFIGURATION REGISTERS ASSOCIATED WITH ENHANCED PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	ССРЗМХ	PBADEN	CCP2MX	348

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Enhanced PWM mode.

15.4 I²C Mode Operation

All MSSPx I²C communication is byte oriented and shifted out MSb first. Six SFR registers and 2 interrupt flags interface the module with the PIC microcontroller and user software. Two pins, SDAx and SCLx, are exercised by the module to communicate with other external I²C devices.

15.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the 8th falling edge of the SCLx line, the device outputting data on the SDAx changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCLx, is provided by the master. Data is valid to change while the SCLx signal is low, and sampled on the rising edge of the clock. Changes on the SDAx line while the SCLx line is high define special conditions on the bus, explained below.

15.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Phillips I^2C specification.

15.4.3 SDAx AND SCLx PINS

Selection of any I²C mode with the SSPxEN bit set, forces the SCLx and SDAx pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

Note: Data is tied to output zero when an I²C mode is enabled.

15.4.4 SDAx HOLD TIME

The hold time of the SDAx pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDAx is held valid after the falling edge of SCLx. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 15-1: I²C BUS TERMS

TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and termi- nates a transfer.
Slave	The device addressed by the mas- ter.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDAx and SCLx lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.
Write Request	Slave receives a matching address with R/\overline{W} bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/\overline{W} bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus holds SCLx low to stall communication.
Bus Collision	Any time the SDAx line is sampled low by the module while it is out- putting and expected high state.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	271
BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	271
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SPBRG1			EUSART1	Baud Rate C	Generator, Lo	w Byte			_
SPBRGH1			EUSART1	Baud Rate (Generator, Hi	gh Byte			_
SPBRG2			EUSART2	Baud Rate C	Generator, Lo	w Byte			_
SPBRGH2			EUSART2	Baud Rate (Generator, Hi	gh Byte			_
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269

TABLE 16-4: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Legend: — = unimplemented, read as '0'. Shaded bits are not used by the BRG.

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0										
BAUD	Fosc = 64.000 MHz			Fosc = 18.432 MHz			Fos	c = 16.00	0 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRxG value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)
300	—	_	_	_	_	_	_	_	_	_	_	_
1200	_	_	_	1200	0.00	239	1202	0.16	207	1200	0.00	143
2400	_	_	_	2400	0.00	119	2404	0.16	103	2400	0.00	71
9600	9615	0.16	103	9600	0.00	29	9615	0.16	25	9600	0.00	17
10417	10417	0.00	95	10286	-1.26	27	10417	0.00	23	10165	-2.42	16
19.2k	19.23k	0.16	51	19.20k	0.00	14	19.23k	0.16	12	19.20k	0.00	8
57.6k	58.82k	2.12	16	57.60k	0.00	7	—	_	_	57.60k	0.00	2
115.2k	111.11k	-3.55	8	—	_	_	—	—	_	—	_	_

		SYNC = 0, BRGH = 0, BRG16 = 0										
BAUD	Fos	SC = 8.000) MHz	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)
300	—	_	_	300	0.16	207	300	0.00	191	300	0.16	51
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	_
9600	9615	0.16	12	—	_	_	9600	0.00	5	—	_	_
10417	10417	0.00	11	10417	0.00	5	—	_	_	_	_	_
19.2k	_	_	_	_	_	_	19.20k	0.00	2	_	_	_
57.6k	—	_	—	—	_	—	57.60k	0.00	0	—	—	—
115.2k	—	—	—	—	—	—	_	_	—	_	—	_

18.5 Operation During Sleep

The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in **Section 27.0** "**Electrical Specifications**". If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. Each comparator is turned off by clearing the CxON bit of the CMxCON0 register.

A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CxIE bit of the PIE2 register and the PEIE/GIEL bit of the INTCON register must be set. The instruction following the SLEEP instruction always executes following a wake from Sleep. If the GIE/GIEH bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine.

18.6 Effects of a Reset

A device Reset forces the CMxCON0 and CM2CON1 registers to their Reset states. This forces both comparators and the voltage references to their Off states.Comparator Control Registers.

18.7 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-5. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.

2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

22.7 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the VREFCON1 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

22.8 Effects of a Reset

A device Reset affects the following:

- DAC is disabled
- DAC output voltage is removed from the DACOUT pin
- The DACR<4:0> range select bits are cleared

22.9 Register Definitions: DAC Control

REGISTER 22-1: VREFCON1: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0
DACEN	DACLPS	DACOE	—	DACPS	SS<1:0>	—	DACNSS
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	DACEN: DAC Enable bit 1 = DAC is enabled 0 = DAC is disabled
bit 6	DACLPS: DAC Low-Power Voltage Source Select bit
	1 = DAC Positive reference source selected0 = DAC Negative reference source selected
bit 5	 DACOE: DAC Voltage Output Enable bit 1 = DAC voltage level is also an output on the DACOUT pin 0 = DAC voltage level is disconnected from the DACOUT pin
bit 4	Unimplemented: Read as '0'
bit 3-2	DACPSS<1:0>: DAC Positive Source Select bits 00 = VDD 01 = VREF+ 10 = FVR BUF1 output 11 = Reserved, do not use
bit 1	Unimplemented: Read as '0'
bit 0	DACNSS: DAC Negative Source Select bits 1 = VREF- 0 = VSS

23.6 Applications

In many applications, it is desirable to detect a drop below, or rise above, a particular voltage threshold. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 23-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and a controlled shutdown before the device voltage exits the valid operating range at TB. This would give the application a time window, represented by the difference between TA and TB, to safely exit.

SUBLW	Subtract	W from lite	ral	SUBWF	Subtract	W from f	
Syntax:	SUBLW k	(Syntax:	SUBWF	f {,d {,a}}	
Operands:	$0 \le k \le 255$	5		Operands:	$0 \le f \le 255$	5	
Operation:	$k-(W) \rightarrow$	W			d ∈ [0,1]		
Status Affected:	N, OV, C, [DC, Z		Operation:	$a \in [0, 1]$	\ doct	
Encoding:	0000	1000 kkl	k kkkk	Operation.	(1) - (VV) =		
Description	W is subtra	acted from the	8-bit	Status Allected:	N, OV, C,	11.1.	
	literal 'k'. T	he result is pl	aced in W.	Encouring.	0101 Subtract V	V from register	4° (2°
Words:	1			Description.	compleme	ent method). If	'd' is '0', the
Cycles:	1				result is st	ored in W. If 'c	l' is '1', the
Q Cycle Activity:					result is st (default)	tored back in re	egister 'f'
Q1	Q2	Q3	Q4		If 'a' is '0',	the Access Ba	ank is
Decode	Read literal 'k'	Process Data	Write to W		selected.	lf 'a' is '1', the l he GPR bank	BSR is used
Example 1:	SUBLW 0	l2h			If 'a' is '0' a	and the extend	ed instruction
Before Instruc	tion	211			set is enal	bled, this instru	iction
W	= 01h				Addressin	g mode whene	ever
After Instructio	e ? Dn				f ≤ 95 (5FI	h). See Section	n 25.2.3
W	= 01h = 1 :re	sult is positive	2		Instructio	ented and Bit- ns in Indexed	Uriented Literal Offset
Z	= 0				Mode" for	details.	
				Words:	1		
<u>Example 2</u> .	SUBLW U	211		Cycles:	1		
W	= 02h			Q Cycle Activity:			
C After Instructio	= ? on			Q1	Q2	Q3	Q4
W	= 00h	cult is zoro		Decode	Read	Process	Write to
Z	= 1	Sult is zero					uestination
N	= 0			Example 1: Before Instru	SUBWF	REG, 1, 0	
Example 3:	SUBLW 0	2h		REG	= 3		
Before Instruc W	= 03h			C VV	= 2 = ?		
C After Instructio	= ?			After Instruct	ion – 1		
W	= FFh ; (2	2's compleme	nt)	W	= 2		
Z	= 0; re = 0	esult is negativ	/e	Z	= 1 ; re = 0	esult is positive	9
Ν	= 1			N	= 0		
				Example 2:	SUBWF	REG, 0, 0	
				REG	= 2		
				W C	= 2 = ?		
				After Instruct	ion		
				REG W	= 2 = 0		
				C 7	= 1 ; re	esult is zero	
				Ň	= 0		
				Example 3:	SUBWF	REG, 1, 0	
				Before Instru REG	ction = 1		
				W	= 2		
				After Instruct	ion		
				REG	= FFh ;(2	's complement	t)
				Č	$= 0^{2}$; re	esult is negativ	e
				Z N	= 0 = 1		

27.11.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 27-7: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
1A	Fosc	External CLKIN	DC	0.5	MHz	EC, ECIO Oscillator mode (low power)
		Frequency ⁽¹⁾	DC	16	MHz	EC, ECIO Oscillator mode (medium power)
			DC	64	MHz	EC, ECIO Oscillator mode (high power)
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC Oscillator mode
			5	200	kHz	LP Oscillator mode
			0.1	4	MHz	XT Oscillator mode
			4	4	MHz	HS Oscillator mode, VDD < 2.7V
			4	16	MHz	HS Oscillator mode, $VDD \ge 2.7V$, Medium-Power mode (HSMP)
			4	20	MHz	HS Oscillator mode, $VDD \ge 2.7V$, High-Power mode (HSHP)
1	Tosc	External CLKIN Period ⁽¹⁾	2.0 62.5	_	μs ns	EC, ECIO Oscillator mode (low power)
			02.0		110	EC, ECIO Oscillator mode (high power)
			15.6	_	ns	
		Oscillator Period ⁽¹⁾	250	—	ns	RC Oscillator mode
			5	200	μs	LP Oscillator mode
			0.25 250	10 250	μs ns	XT Oscillator mode HS Oscillator mode, VDD < 2.7V
			62.5	250	ns	HS Oscillator mode, $VDD \ge 2.7V$, Medium-Power mode (HSMP)
			50	250	ns	HS Oscillator mode, $VDD \ge 2.7V$, High-Power mode (HSHP)
2	Тсү	Instruction Cycle Time ⁽¹⁾	62.5	—	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1)	2.5	_	μs	LP Oscillator mode
	TosH	High or Low Time	30	_	ns	XT Oscillator mode
			10	_	ns	HS Oscillator mode
4	TosR,	External Clock in (OSC1)	_	50	ns	LP Oscillator mode
	TosF	Rise or Fall Time	—	20	ns	XT Oscillator mode
			_	7.5	ns	HS Oscillator mode

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 28-84: PIC18(L)F2X/4XK22 PIN INPUT LEAKAGE

40-Lead UQFN (5x5x0.5 mm)

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

APPENDIX A: REVISION HISTORY

Revision A (February 2010)

Initial release of this document.

Revision B (April 2010)

Updated Figures 2-4, 12-1 and 18-2; Updated Registers 2-2, 10-4, 10-5, 10-7, 17-2, 24-1 and 24-5; Updated Sections 10.3.2, 18.8.4, Synchronizing Comparator Output to Timer1; Updated Sections 27.2, 27-3, 27-4, 27-5, 27-6, 27-7 and 27-9; Updated Tables 27-2, 27-3, 27-4 and 27-7; Other minor corrections.

Revision C (July 2010)

Added 40-pin UQFN diagram; Updated Table 2 and Table 1-3 to add 40-UQFN column; Updated Table 1-1 to add "40-pin UQFN"; Updated Figure 27-1; Added Figure 27-2; Updated Table 27-6; Added 40-Lead UQFN Package Marking Information and Details; Updated Packaging Information section; Updated Table B-1 to add "40-pin UQFN"; Updated Product Identification System section; Other minor corrections.

Revision D (November 2010)

Updated the data sheet to new format; Revised Tables 1-2, 1-3, 5-2, 10-1, 10-5, 10-6, 10-8, 10-9, 10-11, 10-14, 14-13 and Register 14-5; Updated the Electrical Characteristics section.

Revision E (January 2012)

Updated Section 2.5.2, EC Mode; Updated Table 3-2; Removed Table 3-3; Updated Section 14.4.8; Removed CM2CON Register; Updated the Electrical Characteristics section; Updated the Packaging Information section; Updated the Char. Data section; Other minor corrections.

Revision F (May 2012)

Minor corrections; release of Final data sheet.

Revision G (August 2016)

Minor corrections to Tables 1-2, 17-1, 27-11, 27-14, 27-22, Section 2.6.1, Example 7-3, Registers 9-4, 9-5, 9-11, 14-5, Figures 10-1, 17-3, 17-4, 27-23; Updated Packaging Information Section.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>[X]</u> ⁽²⁾ -	¥	<u>/xx</u>	<u>xxx</u>	Exa	mple	es:
Device	Tape and Reel Option	Temperatur Range	e Package	Pattern	a) b)	PIC PDI PIC pac	18(L)F45K22-E/P 301 = Extended temp., P package, QTP pattern #301. 18F46K22-I/SO = Industrial temp., SOIC kage.
Device:	PIC18F23K22, PIC18F24K22, PIC18F25K22, PIC18F26K22, PIC18F43K22, PIC18F44K22, PIC18F45K22, PIC18F46K22,	PIC18LF23K22 PIC18LF24K22 PIC18LF25K22 PIC18LF26K22 PIC18LF43K22 PIC18LF44K22 PIC18LF46K22			c) d)	PIC pac PIC tem	18F46K22-E/P = Extended temp., PDIP kage. 18F46K22T-I/ML = Tape and reel, Industrial p., QFN package.
Tape and Reel Option:	Blank = standa T = Tape and F	urd packaging (tu Reel ^{(1),} (2)	ibe or tray)				
Temperature Range: Package:	$E = -40^{\circ}$ $I = -40^{\circ}$ $ML = QFN$ $MV = UQF$ $P = PDII$ $PT = TQF$ $SO = SOH$ $SP = Skin$ $SS = SSC$	°C to +125°C °C to +85°C °N °P (Thin Quad F C ny Plastic DIP P	(Extended) (Industrial) atpack)		Note	e 1: 2:	Tape and Reel option is available for ML, MV, PT, SO and SS packages with industrial Temperature Range only. Tape and Reel identifier only appears in catalog part number description. This identifier is used for ordering purposes and is not printed on the device package.
Pattern:	QTP, SQTP, Co (blank otherwis	ode or Special R se)	equirements				