

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f43k22-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

BOR Con	figuration	Status of	
BOREN1	BOREN0	SBOREN (RCON<6>)	BOR Operation
0	0	Unavailable	BOR disabled; must be enabled by reprogramming the Configuration bits.
0	1	Available	BOR enabled by software; operation controlled by SBOREN.
1	0	Unavailable	BOR enabled by hardware in Run and Idle modes, disabled during Sleep mode.
1	1	Unavailable	BOR enabled by hardware; must be disabled by reprogramming the Configuration bits.

TABLE 4-1:BOR CONFIGURATIONS

4.6 Device Reset Timers

PIC18(L)F2X/4XK22 devices incorporate three separate on-chip timers that help regulate the Poweron Reset process. Their main function is to ensure that the device clock is stable before code is executed. These timers are:

- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- PLL Lock Time-out

4.6.1 POWER-UP TIMER (PWRT)

The Power-up Timer (PWRT) of PIC18(L)F2X/4XK22 devices is an 11-bit counter which uses the LFINTOSC source as the clock input. This yields an approximate time interval of 2048 x 32 μ s = 65.6 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the LFINTOSC clock and will vary from chip-to-chip due to temperature and process variation.

The PWRT is enabled by clearing the PWRTEN Configuration bit.

4.6.2 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset, or on exit from all power-managed modes that stop the external oscillator.

4.6.3 PLL LOCK TIME-OUT

With the PLL enabled, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A separate timer is used to provide a fixed timeout that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

4.6.4 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- 1. After the POR pulse has cleared, PWRT time-out is invoked (if enabled).
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and the status of the PWRT. Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all depict time-out sequences on power-up, with the Power-up Timer enabled and the device operating in HS Oscillator mode. Figures 4-3 through 4-6 also apply to devices operating in XT or LP modes. For devices in RC mode and with the PWRT disabled, on the other hand, there will be no time-out at all.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, all time-outs will expire, after which, bringing $\overline{\text{MCLR}}$ high will allow program execution to begin immediately (Figure 4-5). This is useful for testing purposes or to synchronize more than one PIC[®] MCU device operating in parallel.

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1		
RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	_	RBIP		
bit 7	• •						bit		
Legend:									
R = Readable		W = Writable		-	mented bit, read				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown		
bit 7		TB Pull-up Ena							
		FB pull-ups are		that the nin i	s an input and th	e correspondi	na WPLIB bit i		
	set.				s an input and t	ie concoponali			
bit 6	INTEDG0: E>	kternal Interrup	t 0 Edge Sele	ct bit					
	1 = Interrupt on rising edge								
	0 = Interrupt on falling edge								
bit 5		NTEDG1: External Interrupt 1 Edge Select bit							
		on rising edge on falling edge							
bit 4	•	0 0		ot hit					
DIL 4	INTEDG2: External Interrupt 2 Edge Select bit 1 = Interrupt on rising edge								
	0 = Interrupt on falling edge								
bit 3	Unimplemen	ted: Read as '	0'						
bit 2	TMROIP: TMI	R0 Overflow In	terrupt Priority	/ bit					
	1 = High priority								
	0 = Low prior	rity							
bit 1	Unimplemen	ted: Read as '	0'						
bit 0	RBIP: RB Po	rt Change Inte	rrupt Priority b	it					
	1 = High prio	2							
	0 = Low prior	P1+1/							

REGISTER 9-2: INTCON2: INTERRUPT CONTROL 2 REGISTER

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit. User software should ensure
	the appropriate interrupt flag bits are clear
	prior to enabling an interrupt. This feature
	allows for software polling.

U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	
bit 7							bit (
1								
Legend:	1- 1-14		L.14			1 (0)		
R = Readab		W = Writable		-	mented bit, read			
-n = Value a	IT POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	lown	
bit 7	Unimpleme	nted: Read as	ʻ0'.					
bit 6	ADIF: A/D C	Converter Interre	upt Flag bit					
		conversion con						
) conversion is	-		n started			
bit 5		SART1 Receive						
		SART1 receive SART1 receive			red when RCR	EG1 is read)		
bit 4		ART1 Transmit	-	-				
					cleared when T	XREG1 is writte	en)	
		SART1 transmi						
bit 3		SSP1IF: Master Synchronous Serial Port 1 Interrupt Flag bit						
		nsmission/receptor to transmit/receptor	•	ete (must be cle	eared by softwa	re)		
bit 2	CCP1IF: CC	P1 Interrupt Fl	ag bit					
		<u>de:</u> register capture R register captu		ist be cleared b	oy software)			
	Compare me							
					cleared by softw	are)		
	<u>PWM mode</u>	R register comp	are match occ	unea				
	Unused in th							
bit 1	TMR2IF: TM	IR2 to PR2 Mat	tch Interrupt Fl	ag bit				
		o PR2 match o R2 to PR2 matc		be cleared by s	software)			
bit 0	TMR1IF: TM	IR1 Overflow Ir	terrupt Flag b	it				
		egister overflov egister did not (leared by softw	vare)			
Note 1:	Interrupt flag I	oits are set	when an					
	interrupt condition							
	the state of its of the Global Ir							
	GIEH of the INT		bit, Gi∟/					
		0						

REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

Note: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER						D # • • • •	D 4 + 1 - 2		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF		
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 7	SSP2IF: Svn	chronous Seria	l Port Interrup	ot Flag bit					
	1 = The trans		tion is comple	•	eared in softwa	re)			
bit 6	BCL2IF: MSS	SP2 Bus Collis	ion Interrupt F	lag bit					
	(must be	cleared in soft	ware)	e SSP2 modu	le configured ir	n I ² C master wa	as transmitting		
		collision occurre							
bit 5		RC2IF: EUSART2 Receive Interrupt Flag bit 1 = The EUSART2 receive buffer, RCREG2, is full (cleared by reading RCREG2)							
		SART2 receive			red by reading	RGREGZ)			
bit 4		X2IF: EUSART2 Transmit Interrupt Flag bit							
		SART2 transmit SART2 transmit		G2, is empty (cleared by writi	ng TXREG2)			
bit 3	CTMUIF: CT	MU Interrupt F	ag bit						
		terrupt occurre U interrupt occ		eared in softwa	are)				
bit 2	TMR5GIF: TMR5 Gate Interrupt Flag bits								
	0	e interrupt occ gate occurred	urred (must be	e cleared in sof	ftware)				
bit 1	TMR3GIF: T	TMR3GIF: TMR3 Gate Interrupt Flag bits							
		e interrupt occ gate occurred	urred (must be	e cleared in sof	itware)				
bit 0	TMR1GIF: T	MR1 Gate Inter	rupt Flag bits						
	1 = TMR gat 0 = No TMR		urred (must be	e cleared in sof	ftware)				

REGISTER 9-6: PIR3: PERIPHERAL INTERRUPT (FLAG) REGISTER 3

14.1 Capture Mode

The Capture mode function described in this section is identical for all CCP and ECCP modules available on this device family.

Capture mode makes use of the 16-bit Timer resources, Timer1, Timer3 and Timer5. The timer resources for each CCP capture function are independent and are selected using the CCPTMRS0 and CCPTMRS1 registers. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMRxH:TMRxL register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

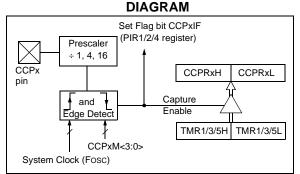

When a capture is made, the corresponding Interrupt Request Flag bit CCPxIF of the PIR1, PIR2 or PIR4 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH:CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

TABLE 14-2: CCP PIN MULTIPLEXING

Figure 14-1 shows a simplified diagram of the Capture operation.

FIGURE 14-1:

CAPTURE MODE OPERATION BLOCK

14.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Some CCPx outputs are multiplexed on a couple of pins. Table 14-2 shows the CCP output pin multiplexing. Selection of the output pin is determined by the CCPxMX bits in Configuration register 3H (CONFIG3H). Refer to Register 24-4 for more details.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

CCP OUTPUT	CONFIG 3H Control Bit	Bit Value	PIC18(L)F2XK22 I/O pin	PIC18(L)F4XK22 I/O pin
CCP2	CCP2MX	0	RB3	RB3
CCP2	CCPZIVIA	1(*)	RC1	RC1
CCP3	ССРЗМХ	0(*)	RC6	RE0
CCP3	CCP3IVIX	1	RB5	RB5

Legend: * = Default

14.1.2 TIMER1 MODE RESOURCE

The 16-bit Timer resource must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 12.0 "Timer1/3/5 Module with Gate Control" for more information on configuring the 16-bit Timers.

14.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIE1, PIE2 or PIE4 register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIR1, PIR2 or PIR4 register following any change in Operating mode.

Note: Clocking the 16-bit Timer resource from the system clock (Fosc) should not be used in Capture mode. In order for Capture mode to recognize the trigger event on the CCPx pin, the Timer resource must be clocked from the instruction clock (Fosc/4) or from an external clock source.

R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
C3TSEL<1:0>		—	C2TS	EL<1:0>	—	C1TSE	L<1:0>	
bit 7							bit C	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
u = Bit is un	changed	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is se	et	'0' = Bit is clea	ared					
bit 7-6	C3TSEL<1:0	>: CCP3 Timer	Selection bits	6				
	00 = CCP3 -	Capture/Comp	are modes us	e Timer1, PWN	1 modes use Tir	mer2		
		= CCP3 – Capture/Compare modes use Timer3, PWM modes use Timer4						
		P3 – Capture/Compare modes use Timer5, PWM modes use Timer6						
	11 = Reserve	ed						
bit 5	Unused							
bit 4-3	C2TSEL<1:0	>: CCP2 Timer	Selection bits	6				
		= CCP2 – Capture/Compare modes use Timer1, PWM modes use Timer2						
		1 = CCP2 – Capture/Compare modes use Timer3, PWM modes use Timer4						
		0 = CCP2 - Capture/Compare modes use Timer5, PWM modes use Timer6						
	11 = Reserve	ed						
bit 2	Unused							
bit 1-0	C1TSEL<1:0	>: CCP1 Timer	Selection bits	6				
				se Timer1, PWM				
				se Timer3, PWN				
	10 = CCP1 - 11 = Reserve		are modes us	se Timer5, PWM	1 modes use Tir	mer6		

REGISTER 14-3: CCPTMRS0: PWM TIMER SELECTION CONTROL REGISTER 0

REGISTER 14-4: CCPTMRS1: PWM TIMER SELECTION CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	C5TSE	L<1:0>	C4TSE	L<1:0>
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

נ'
)

bit 3-2	C5TSEL<1:0>: CCP5 Timer Selection bits 00 = CCP5 - Capture/Compare modes use Timer1, PWM modes use Timer2 01 = CCP5 - Capture/Compare modes use Timer3, PWM modes use Timer4 10 = CCP5 - Capture/Compare modes use Timer5, PWM modes use Timer6 11 = Reserved
bit 1-0	C4TSEL<1:0>: CCP4 Timer Selection bits 00 = CCP4 - Capture/Compare modes use Timer1, PWM modes use Timer2 01 = CCP4 - Capture/Compare modes use Timer3, PWM modes use Timer4 10 = CCP4 - Capture/Compare modes use Timer5, PWM modes use Timer6 11 = Reserved

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PxRSEN				PxDC<6:0>					
bit 7							bit 0		
Legend:									
R = Readable bit $W = Writable bit$			bit	U = Unimpler	nented bit, read	d as '0'			
u = Bit is unchanged x = E		x = Bit is unkr	x = Bit is unknown -n/n = Value at POR and BOR/Value at a				other Resets		
'1' = Bit is set	t	'0' = Bit is clea	'0' = Bit is cleared						
bit 7	PxRSEN: P	WM Restart Ena	able bit						
	1 = Upon auto-shutdown, the CCPxASE bit clears automatically once the shutdown event goes away the PWM restarts automatically								
	0 = Upon a	uto-shutdown, C	CPxASE mus	st be cleared in s	software to rest	tart the PWM			
bit 6-0 PxDC<6:0>: PWM Delay Count bits									
	PxDCx = N	umber of Fosc/	4 (4 * Tosc)	cycles between	the scheduled	d time when a	a PWM signal		

REGISTER 14-6: PWMxCON: ENHANCED PWM CONTROL REGISTER

REGISTER 14-7: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
—	—	—	STRxSYNC	STRxD	STRxC	STRxB	STRxA
bit 7							bit 0

should transition active and the actual time it transitions active

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	STRxSYNC: Steering Sync bit 1 = Output steering update occurs on next PWM period 0 = Output steering update occurs at the beginning of the instruction cycle boundary
bit 3	STRxD: Steering Enable bit D 1 = PxD pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxD pin is assigned to port pin
bit 2	STRxC: Steering Enable bit C 1 = PxC pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxC pin is assigned to port pin
bit 1	STRxB: Steering Enable bit B 1 = PxB pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxB pin is assigned to port pin
bit 0	STRxA: Steering Enable bit A 1 = PxA pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxA pin is assigned to port pin
Note 1.	The DWM Steering mode is evoluble only when the CCDyCON register hits CCDyM (20) 11.0

Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11 and PxM<1:0> = 00.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADD<7:0>									
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Reset							other Resets		
'1' = Bit is set		'0' = Bit is cleared	ł						

REGISTER 15-7: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I²C MODE)

Master mode:

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits SCLx pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode — Most Significant Address byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode — Least Significant Address byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_	—		WDTI	PS<3:0>		WDTE	N<1:0>
bit 7							bit
Legend:							
R = Readable	e bit	P = Programma	ble bit	U = Unimpleme	nted bit, read as '	0'	
-n = Value wh	nen device is unprogra	ammed		x = Bit is unknow	wn		
bit 7-6	Unimplemented	I: Read as '0'					
bit 5-2	WDTPS<3:0>: V	Vatchdog Timer	Postscale Selec	t bits			
	1111 = 1:32,768	•					
	1110 = 1:16,384	Ļ					
	1101 = 1:8,192						
	1100 = 1:4,096						
	1011 = 1:2,048						
	1010 = 1:1,024						
	1001 = 1:512						
	1000 = 1:256						
	0111 = 1:128						
	0110 = 1:64						
	0101 = 1:32						
	0100 = 1:16						
	0011 = 1:8						
	0010 = 1:4						
	0001 = 1:2						
	0000 = 1:1						
bit 1-0	WDTEN<1:0>: \	Vatchdog Timer	Enable bits				
	11 = WDT enabl	led in hardware;	SWDTEN bit dis	abled			
	10 = WDT control						
	01 = WDT enab	led when device	is active, disabl	ed when device is	in Sleep; SWDTE	EN bit disabled	
		led in hardware;			1,7 -		

REGISTER 24-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH

PIC18(L)F2X/4XK22

XORWF	Exclusive OR W with f							
Syntax:	XORWF	f {,d {,a}}						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	d ∈ [0,1]						
Operation:	(W) .XOR. ((f) \rightarrow dest						
Status Affected:	N, Z							
Encoding:	0001	10da fff	f ffff					
Description:	Exclusive OR the contents of W with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in the register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.							
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	Write to destination					
Example:	XORWF I	REG, 1, 0						
Before Instruct								
REG W	= AFh = B5h							
VV After Instruction								
REG	= 1Ah							

B5h

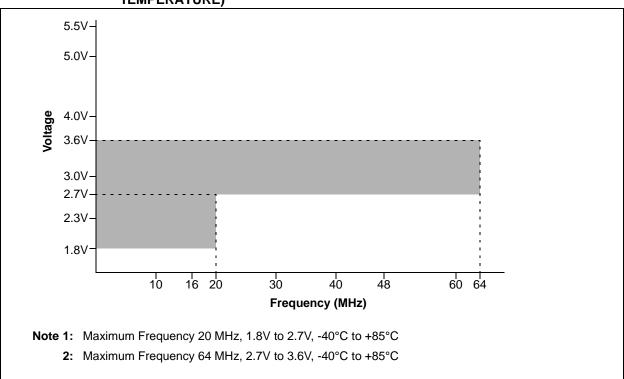
=

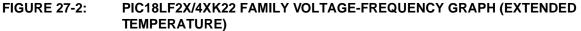
 $\ensuremath{\textcircled{}^{\odot}}$ 2010-2016 Microchip Technology Inc.

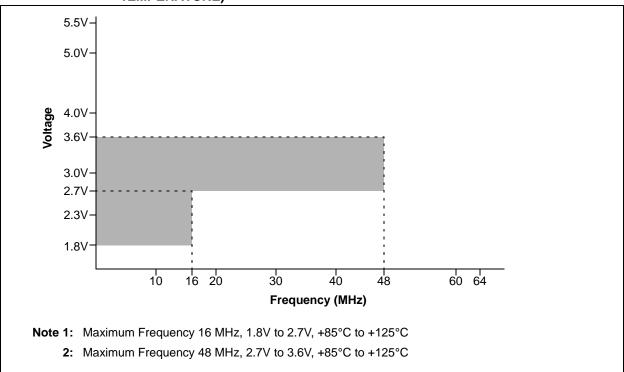
W

25.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

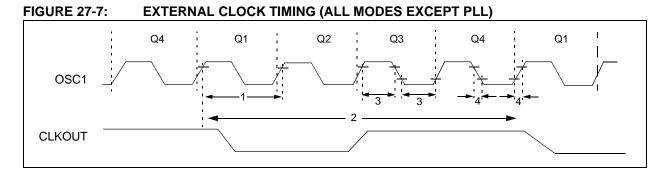
The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18(L)F2X/4XK22 family of devices. This includes the MPLAB C18 C compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).


When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.


To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:


- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- A command line option
- A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.


FIGURE 27-1: PIC18LF2X/4XK22 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL TEMPERATURE)

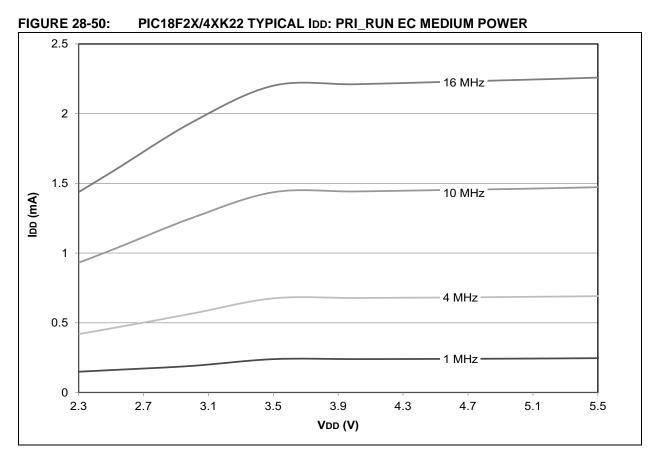
27.11.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 27-7: EXTERNAL CLOCK TIMING REQUIREMENTS

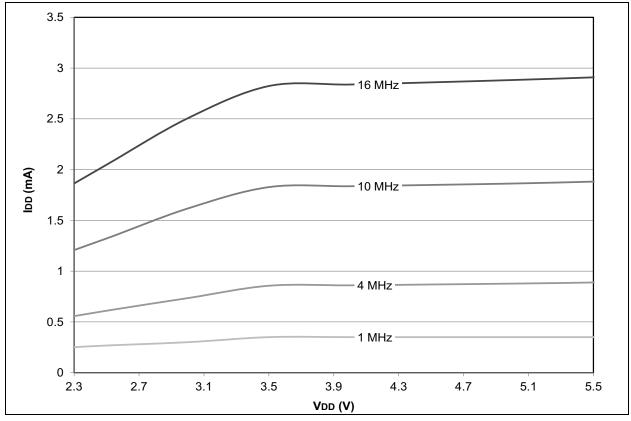
Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC DC	0.5 16	MHz MHz	EC, ECIO Oscillator mode (low power) EC, ECIO Oscillator mode (medium power) EC, ECIO Oscillator mode (high power)
			DC	64	MHz	
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC Oscillator mode
			5	200	kHz	LP Oscillator mode
			0.1	4	MHz	XT Oscillator mode
			4	4	MHz	HS Oscillator mode, VDD < 2.7V
			4	16	MHz	HS Oscillator mode, $VDD \ge 2.7V$, Medium-Power mode (HSMP)
			4	20	MHz	HS Oscillator mode, $VDD \ge 2.7V$, High-Power mode (HSHP)
1	Tosc	External CLKIN Period ⁽¹⁾	2.0 62.5		μs ns	EC, ECIO Oscillator mode (low power) EC, ECIO Oscillator mode (medium power) EC, ECIO Oscillator mode (high power)
			15.6	—	ns	,
		Oscillator Period ⁽¹⁾	250	_	ns	RC Oscillator mode
			5	200	μs	LP Oscillator mode
			0.25 250	10 250	μs ns	XT Oscillator mode HS Oscillator mode, VDD < 2.7V
			62.5	250	ns	HS Oscillator mode, $VDD \ge 2.7V$, Medium-Power mode (HSMP)
			50	250	ns	HS Oscillator mode, $VDD \ge 2.7V$, High-Power mode (HSHP)
2	Тсү	Instruction Cycle Time ⁽¹⁾	62.5	_	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1)	2.5	—	μs	LP Oscillator mode
	TosH	High or Low Time	30	—	ns	XT Oscillator mode
			10	_	ns	HS Oscillator mode
4	TosR,	External Clock in (OSC1)	_	50	ns	LP Oscillator mode
	TosF	Rise or Fall Time	—	20	ns	XT Oscillator mode
			—	7.5	ns	HS Oscillator mode

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

TABLE 27-22: A/D CONVERSION REQUIREMENTS PIC18(L)F2X/4XK22

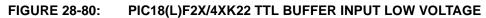

Standard Operating Conditions (unless otherwise stated) Operating temperature Tested at +25°C									
Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions		
130	TAD	A/D Clock Period	1	_	25	μS	-40°C to +85°C		
			1	_	4	μS	+85°C to +125°C		
131	TCNV	Conversion Time (not including acquisition time) (Note 1)	11	—	11	Tad			
132	TACQ	Acquisition Time (Note 2)	1.4			μS	VDD = 3V, Rs = 50Ω		
135	Tswc	Switching Time from Convert \rightarrow Sample	_	_	(Note 3)				
136	TDIS	Discharge Time	1	_	1	Тсү			

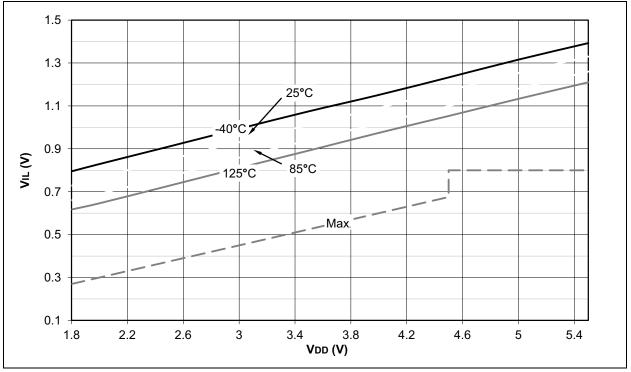
Note 1: ADRES register may be read on the following TCY cycle.

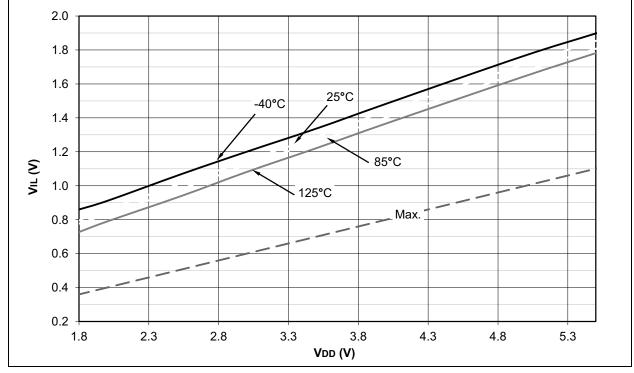

2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to VSS or VSS to VDD). The source impedance (*Rs*) on the input channels is 50 Ω .

3: On the following cycle of the device clock.

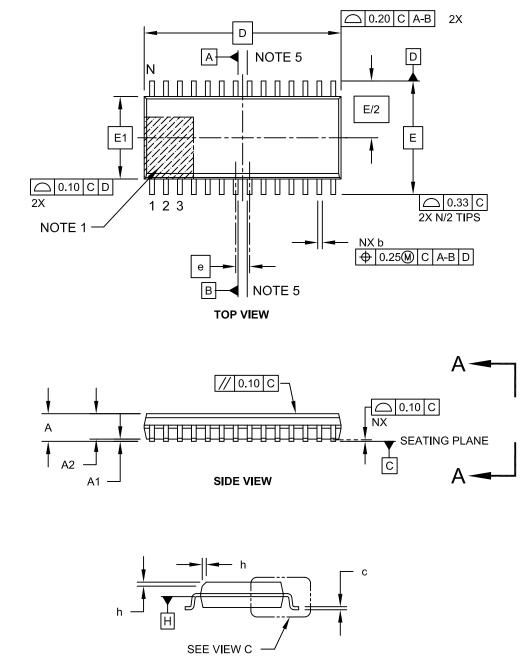
PIC18(L)F2X/4XK22



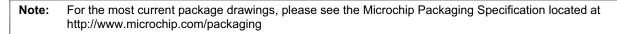


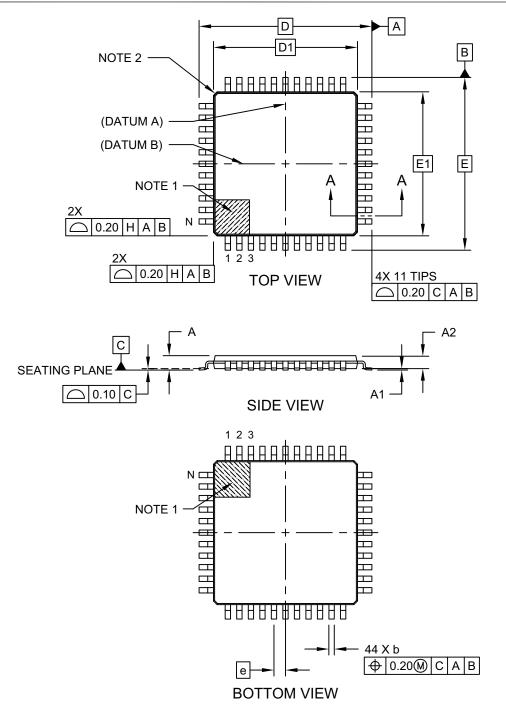

© 2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22



28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-052C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Microchip Technology Drawing C04-076C Sheet 1 of 2

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

								1
Features ⁽¹⁾	PIC18F23K22 PIC18LF23K2 2	PIC18F24K22 PIC18LF24K2 2	PIC18F25K22 PIC18LF25K22	PIC18F26K22 PIC18LF26K22	PIC18F43K22 PIC18LF43K22	PIC18F44K22 PIC18LF44K22	PIC18F45K22 PIC18LF45K22	PIC18F46K22 PIC18LF46K22
Program Memory (Bytes)	8192	16384	32768	65536	8192	16384	32768	65536
SRAM (Bytes)	512	768	1536	3896	512	768	1536	3896
EEPROM (Bytes)	256	256	256	1024	256	256	256	1024
Interrupt Sources	26	26	33	33	26	26	33	33
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E			
Capture/Compare/PWM Modules (CCP)	2	2	2	2	2	2	2	2
Enhanced CCP Modules (ECCP) Full Bridge	1	1	1	1	2	2	2	2
ECCP Module Half Bridge	2	2	2	2	1	1	1	1
10-bit Analog-to-Digital Module	17 input channels	17 input channels	17 input channels	17 input channels	28 input channels	28 input channels	28 input channels	28 input channels
Packages	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN			

TABLE B-1: DEVICE DIFFERENCES

Note 1: PIC18FXXK22: operating voltage, 2.3V-5.5V. PIC18LFXXK22: operating voltage, 1.8V-3.6V.