

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f43k22t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	11
2.0	Oscillator Module (With Fail-Safe Clock Monitor))	. 25
3.0	Power-Managed Modes	. 44
4.0	Reset	. 55
5.0	Memory Organization	. 64
6.0	Flash Program Memory	. 90
7.0	Data EEPROM Memory	. 99
8.0	8 x 8 Hardware Multiplier	104
9.0	Interrupts	106
10.0	I/O Ports	127
11.0	Timer0 Module	154
12.0	Timer1/3/5 Module with Gate Control	157
13.0	Timer2/4/6 Module	169
14.0	Capture/Compare/PWM Modules	173
15.0	Master Synchronous Serial Port (MSSP1 and MSSP2) Module	204
16.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	259
17.0	Analog-to-Digital Converter (ADC) Module	288
18.0	Comparator Module	302
19.0	Charge Time Measurement Unit (CTMU)	311
20.0	SR LATCH	326
21.0	Fixed Voltage Reference (FVR)	331
22.0	Digital-to-Analog Converter (DAC) Module	333
23.0	High/Low-Voltage Detect (HLVD)	337
24.0	Special Features of the CPU	343
25.0	nstruction Set Summary	360
26.0	Development Support.	410
27.0	Electrical Specifications	414
28.0	DC and AC Characteristics Graphs and Tables	453
29.0	Packaging Information	509
Appe	ndix A: Revision History	534
Appe	ndix B: Device Differences	535
The N	Aicrochip Web Site	536
Custo	omer Change Notification Service	536
Custo	omer Support	536
Produ	uct Identification System	537

4.2 Register Definitions: Reset Control

REGISTER 4-1: RCON: RESET CONTROL REGISTER

R/W-0/	0 R/W-q/u	U-0	R/W-1/a	R-1/q	R-1/q	R/W-q/u	R/W-0/a
IPEN	SBOREN ⁽¹⁾	_	RI	то	PD	POR ⁽²⁾	BOR
bit 7	I						bit 0
							,
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
'1' = Bit is	set	'0' = Bit is cle	ared	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
x = Bit is	unknown	u = unchang	ed	q = depends	on condition		
bit 7	IPEN: Interrup 1 = Enable pr 0 = Disable pr	ot Priority Enat iority levels on riority levels on	ble bit interrupts i interrupts (P	IC16CXXX Co	mpatibility mode	•)	
bit 6	SBOREN: BOR Software Enable bit ⁽¹⁾ If BOREN<1:0> = 01: 1 = BOR is enabled 0 = BOR is disabled If BOREN<1:0> = 00, 10 or 11: Dit is disabled and read as (2)						
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	RI: RESET INS	struction Flag b	oit				
	1 = The RESE 0 = The RESE code-exe	ET instruction v ET instruction cuted Reset of	vas not execu was executec ccurs)	ited (set by firm d causing a de	ware or Power- vice Reset (mu	on Reset) st be set in fin	mware after a
bit 3	TO: Watchdog	g Time-out Flag	g bit				
	1 = Set by po 0 = A WDT ti	wer-up, CLRW	DT instruction ed	or SLEEP instr	uction		
bit 2	PD: Power-do	own Detection	Flag bit				
	1 = Set by po	ower-up or by t	he CLRWDT in	struction			
L :L 4	0 = Set by ex	ecution of the	SLEEP INStruc	Ction			
DIT	bit 1 POR: Power-on Reset Status bit ¹²						
	I = NO POWER-ON Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)						s)
bit 0	BOR: Brown-	out Reset State	us bit ⁽³⁾				- /
	1 = A Brown- 0 = A Brown-	out Reset has out Reset occi	not occurred urred (must be	(set by firmwai e set by firmwa	e only) re after a POR o	or Brown-out R	eset occurs)
Note 1:	When CONFIG2L[2:1] = 01, then	the SBOREN	Reset state is	; '1'; otherwise.	it is '0'.	
2:	The actual Reset v	alue of POR is	determined b	by the type of c	levice Reset. Se	e the notes fol	lowing this

register and Section 4.7 "Reset State of Registers" for additional information.

3: See Table 4-1.

Note 1: Brown-out Reset is indicated when BOR is '0' and POR is '1' (assuming that both POR and BOR were set to '1' by firmware immediately after POR).

2: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent Power-on Resets may be detected.

6.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

6.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 6-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The EEPGD control bit determines if the access will be a program or data EEPROM memory access. When EEPGD is clear, any subsequent operations will operate on the data EEPROM memory. When EEPGD is set, any subsequent operations will operate on the program memory.

The CFGS control bit determines if the access will be to the Configuration/Calibration registers or to program memory/data EEPROM memory. When CFGS is set, subsequent operations will operate on Configuration registers regardless of EEPGD (see **Section 24.0 "Special Features of the CPU"**). When CFGS is clear, memory selection access is determined by EEPGD. The FREE bit allows the program memory erase operation. When FREE is set, an erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. The WREN bit is clear on power-up.

The WRERR bit is set by hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note: During normal operation, the WRERR is read as '1'. This can indicate that a write operation was prematurely terminated by a Reset, or a write operation was attempted improperly.

The WR control bit initiates write operations. The WR bit cannot be cleared, only set, by firmware. Then WR bit is cleared by hardware at the completion of the write operation.

Note: The EEIF interrupt flag bit of the PIR2 register is set when the write is complete. The EEIF flag stays set until cleared by firmware.

6.4 Reading the Flash Program Memory

The TBLRD instruction retrieves data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the word
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVFW	TABLAT, W	;	get data
	MOVF	WORD_ODD		

7.0 DATA EEPROM MEMORY

The data EEPROM is a nonvolatile memory array, separate from the data RAM and program memory, which is used for long-term storage of program data. It is not directly mapped in either the register file or program memory space but is indirectly addressed through the Special Function Registers (SFRs). The EEPROM is readable and writable during normal operation over the entire VDD range.

Four SFRs are used to read and write to the data EEPROM as well as the program memory. They are:

- EECON1
- EECON2
- EEDATA
- EEADR
- EEADRH

The data EEPROM allows byte read and write. When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and the EEADR:EEADRH register pair hold the address of the EEPROM location being accessed.

The EEPROM data memory is rated for high erase/write cycle endurance. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an on-chip timer; it will vary with voltage and temperature as well as from chip-to-chip. Please refer to the Data EEPROM Memory parameters in **Section 27.0** "Electrical Specifications" for limits.

7.1 EEADR and EEADRH Registers

The EEADR register is used to address the data EEPROM for read and write operations. The 8-bit range of the register can address a memory range of 256 bytes (00h to FFh). The EEADRH register expands the range to 1024 bytes by adding an additional two address bits.

7.2 EECON1 and EECON2 Registers

Access to the data EEPROM is controlled by two registers: EECON1 and EECON2. These are the same registers which control access to the program memory and are used in a similar manner for the data EEPROM.

The EECON1 register (Register 7-1) is the control register for data and program memory access. Control bit EEPGD determines if the access will be to program or data EEPROM memory. When the EEPGD bit is clear, operations will access the data EEPROM memory. When the EEPGD bit is set, program memory is accessed.

Control bit, CFGS, determines if the access will be to the Configuration registers or to program memory/data EEPROM memory. When the CFGS bit is set, subsequent operations access Configuration registers. When the CFGS bit is clear, the EEPGD bit selects either program Flash or data EEPROM memory.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear.

The WRERR bit is set by hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR
	may read as '1'. This can indicate that a
	write operation was prematurely termi-
	nated by a Reset, or a write operation was
	attempted improperly.

The WR control bit initiates write operations. The bit can be set but not cleared by software. It is cleared only by hardware at the completion of the write operation.

Note: The EEIF interrupt flag bit of the PIR2 register is set when the write is complete. It must be cleared by software.

Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation.

The RD bit cannot be set when accessing program memory (EEPGD = 1). Program memory is read using table read instructions. See **Section 6.1 "Table Reads and Table Writes"** regarding table reads.

The EECON2 register is not a physical register. It is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—	—	—	TMR6IF	TMR5IF	TMR4IF
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2	TMR6IF: TMF	R6 to PR6 Mate	ch Interrupt Fla	ag bit			
	1 = TMR6 to	PR6 match oc	curred (must b	be cleared in s	oftware)		
	0 = No TMR6	6 to PR6 match	occurred				
bit 1	TMR5IF: TMF	R5 Overflow Int	errupt Flag bi	t			
1 = TMR5 register overflowed (must be cleared in software)							
	0 = TMR5 register did not overflow						
bit 0	bit 0 TMR4IF: TMR4 to PR4 Match Interrupt Flag bit						
	1 = TMR4 to	PR4 match oc	curred (must b	be cleared in s	oftware)		
0 = No TMR4 to PR4 match occurred							

REGISTER 9-8: PIR5: PERIPHERAL INTERRUPT (FLAG) REGISTER 5

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	U-0	U-0
IOCB7	IOCB6	IOCB5	IOCB4	—	—	_	—
bit 7	-						bit 0

REGISTER 10-13: IOCB: INTERRUPT-ON-CHANGE PORTB CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 **IOCB<7:4>:** Interrupt-on-Change PORTB control bits

1 = Interrupt-on-change enabled⁽¹⁾

0 = Interrupt-on-change disabled

Note 1: Interrupt-on-change requires that the RBIE bit (INTCON<3>) is set.

REGISTER 10-14: SLRCON: SLEW RATE CONTROL REGISTER

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SLRE ⁽¹⁾	SLRD ⁽¹⁾	SLRC	SLRB	SLRA
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	Unimplemented: Read as '0'	
bit 4	SLRE: PORTE Slew Rate Control bit ⁽¹⁾	
	 1 = All outputs on PORTE slew at a limited rate 0 = All outputs on PORTE slew at the standard rate 	
bit 3	SLRD: PORTD Slew Rate Control bit ⁽¹⁾	
	 1 = All outputs on PORTD slew at a limited rate 0 = All outputs on PORTD slew at the standard rate 	
bit 2	SLRC: PORTC Slew Rate Control bit	
	 1 = All outputs on PORTC slew at a limited rate 0 = All outputs on PORTC slew at the standard rate 	
bit 1	SLRB: PORTB Slew Rate Control bit	
	 1 = All outputs on PORTB slew at a limited rate 0 = All outputs on PORTB slew at the standard rate 	
bit 0	SLRA: PORTA Slew Rate Control bit	
	 1 = All outputs on PORTA slew at a limited rate⁽²⁾ 0 = All outputs on PORTA slew at the standard rate 	
Note 1	These hits are sucilable on DIC19/L\E4VK22 devices	

Note 1: These bits are available on PIC18(L)F4XK22 devices.

2: The slew rate of RA6 defaults to standard rate when the pin is used as CLKOUT.

FIGURE 12-7:	TIMER1/3/5 GATE SING	LE-PULSE AND TOGGLE COMBINED MODE
TMRxGE		
TxGPOL		
TxGSPM		
TxGTM		
TxGG <u>O/</u> DONE	 Set by software Counting enabled of the set of the	Cleared by hardware on falling edge of TxGVAL
TxG_IN	rising edge of TxG	
ТхСКІ		
TxGVAL		
TIMER1/3/5	Ν	<u>N + 1</u> <u>N + 2</u> <u>N + 3</u> <u>N + 4</u>
TMRxGIF	Cleared by software	Set by hardware on falling edge of TxGVAL

12.12 Peripheral Module Disable

When a peripheral module is not used or inactive, the module can be disabled by setting the Module Disable bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the PMD bits holds the module in Reset and disconnects the module's clock source. The Module Disable bits for Timer1 (TMR1MD), Timer3 (TMR3MD) and Timer5 (TMR5MD) are in the PMD0 Register. See Section 3.0 "Power-Managed Modes" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	P1M-	<1:0>	DC1B	<1:0>		CCP1M<	3:0>		198
CCP2CON	P2M-	<1:0>	DC2B	<1:0>		CCP2M<	3:0>		198
CCP3CON	P3M-	<1:0>	DC3B	<1:0>		CCP3M<	3:0>		198
CCP4CON	_		DC4B	<1:0>		CCP4M<	3:0>		198
CCP5CON	_		DC5B	<1:0>		198			
CCPTMRS0	C3TSE	L<1:0>	_	C2TS	SEL<1:0>	_<1:0>	201		
CCPTMRS1	—	_	_	—	C5TSEL	<1:0>	C4TSE	_<1:0>	201
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	109
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
IPR4	_	-	-	—	_	CCP5IP	CCP4IP	CCP3IP	124
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIE4	—	—	—	—	—	CCP5IE	CCP4IE	CCP3IE	120
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIR4	_			—	_	CCP5IF	CCP4IF	CCP3IF	115
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
PMD1	MSSP2MD	MSSP1MD		CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	53
PR2				Timer2 Pe	riod Register				—
PR4				Timer4 Pe	riod Register				_
PR6				Timer6 Pe	riod Register				—
T2CON	_		T2OU	TPS<3:0>		TMR2ON	T2CKP	S<1:0>	166
T4CON	_		T4OU	TPS<3:0>		TMR4ON	T4CKP	S<1:0>	166
T6CON	_		T6OU	TPS<3:0>		TMR6ON	T6CKP	S<1:0>	166
TMR2				Timer2	Register				—
TMR4				Timer4	Register				_
TMR6		Timer6 Register							_
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
TRISE	WPUE3	—	_	—	—	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	151

TABLE 14-10: REGISTERS ASSOCIATED WITH STANDARD PWM

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Standard PWM mode.

TABLE 14-11: CONFIGURATION REGISTERS ASSOCIATED WITH STANDARD PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	_	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Standard PWM mode.

REGISTE	K 15-5. 001 XC	0143. 331 /			5							
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
ACKTIN	A PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN					
bit 7							bit 0					
·												
Legend:												
R = Reada	able bit	W = Writab	le bit	U = Unimplem	ented bit, read	as '0'						
u = Bit is u	inchanged	x = Bit is ur	nknown	-n/n = Value at	t POR and BOR	/Value at all ot	her Resets					
'1' = Bit is set '0' = Bit is cleared												
bit 7	ACKTIM: Ack	nowledge Tin	ne Status bit	(I ² C mode only) ⁽³⁾							
	1 = Indicates t	he I ² C bus is	in an Ackno	wledge sequen	ce, set on 8 th fa	lling edge of S	CLx clock					
1.11.0	0 = Not an Acl	knowledge se	equence, cle	ared on 9"' risin	g edge of SCLx	CIOCK						
DIT 6	PCIE: Stop Co	ndition Interr	upt Enable t	bit (IFC mode on	iy)							
	1 = Enable Internet 0 = Stop detection	tion interrupt	s are disable	p condition ed(2)								
bit 5	SCIE: Start Co	0 = Stop detection interrupts are disabled ¹² SCIE: Start Condition Interrupt Enable bit (1^2 C mode only)										
	1 = Enable inte	1 = Enable interrupt on detection of Start or Restart conditions										
	0 = Start detec	0 = Start detection interrupts are disabled ⁽²⁾										
bit 4	BOEN: Buffer	Overwrite Er	nable bit									
	In SPI Slave m	<u>node:</u> (1)										
	1 = SSPx	BUF updates	s every time t	that a new data	byte is shifted in	n ignoring the I	BF bit					
	SSPx	CON1 reaiste	er is set. and	the buffer is no	t updated	alleauy sei, se						
	In I ² C Master	mode:	,									
	This bit is	ignored.										
	<u>In I=C Slave m</u> 1 – SSPx	<u>i00e:</u> BLIE is unda	ted and \overline{ACI}	k is generated f	or a received a	ddress/data by	te ignoring the					
	state of	of the SSPxC	V bit only if	the BF bit = 0 .			rie, ignoring the					
	0 = SSPx	BUF is only ι	updated whe	n SSPxOV is cl	ear							
bit 3	SDAHT: SDAX	Hold Time S	Selection bit	(I ² C mode only)								
	1 = Minimum o	of 300 ns hold	d time on SD	Ax after the fall	ing edge of SCL	X						
	0 = Minimum c	of 100 ns hold	d time on SD	Ax after the fall	ing edge of SCL	_X						
bit 2	SBCDE: Slave	e Mode Bus (Collision Det	ect Enable bit (I	² C Slave mode	only)						
	If on the rising BCLxIF bit of t	edge of SC he PIR2 regi	Lx, SDAx is ster is set, a	sampled low wind bus goes idle	hen the module e	is outputting a	a high state, the					
	1 = Enable sla 0 = Slave bus	ve bus collisi collisi	ion interrupts rrupts are dis	s sabled								
bit 1	AHEN: Addres	ss Hold Enab	le bit (I ² C SI	ave mode only)								
	1 = Following t	he 8th falling	edge of SC	Lx for a matchin	g received addr	ess byte; CKP	bit of the SSPx-					
	CON1 reg	ister will be o	cleared and t	the SCLx will be	held low.							
Note 4	U = Address h	Diding is disa		upor to image -	II but the left	actived but a						
note 1:	set when a new by	te is received	I and $BF = 1$. but hardware o	continues to writ	e the most rec	ent byte to					
	SSPxBUF.			,								
2:	SSPxBUF. This bit has no effect in Slave modes for which Start and Stop condition detection is explicitly listed as enabled.											

REGISTER 15-5: SSPxCON3: SSPx CONTROL REGISTER 3

3: The ACKTIM Status bit is active only when the AHEN bit or DHEN bit is set.

16.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VOL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 16-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

16.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 16-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREGx register.

16.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTAx register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTAx register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTAx register enables the EUSART and automatically configures the TXx/CKx I/O pin as an output. If the TXx/CKx pin is shared with an analog peripheral the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXxIF transmitter interrupt flag is set when the TXEN enable bit is set.

16.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREGx register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREGx is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREGx until the Stop bit of the previous character has been transmitted. The pending character in the TXREGx is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREGx.

16.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the CKTXP bit of the BAUDCONx register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the CKTXP bit to '1' will invert the transmit data resulting in low true idle and data bits. The CKTXP bit controls transmit data polarity only in Asynchronous mode. In Synchronous mode the CKTXP bit has a different function.

16.1.1.4 Transmit Interrupt Flag

The TXxIF interrupt flag bit of the PIR1/PIR3 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREGx. In other words, the TXxIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREGx. The TXxIF flag bit is not cleared immediately upon writing TXREGx. TXxIF becomes valid in the second instruction cycle following the write execution. Polling TXxIF immediately following the TXREGx write will return invalid results. The TXxIF bit is read-only, it cannot be set or cleared by software.

The TXxIF interrupt can be enabled by setting the TXxIE interrupt enable bit of the PIE1/PIE3 register. However, the TXxIF flag bit will be set whenever the TXREGx is empty, regardless of the state of TXxIE enable bit.

To use interrupts when transmitting data, set the TXxIE bit only when there is more data to send. Clear the TXxIE interrupt enable bit upon writing the last character of the transmission to the TXREGx.

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fo	sc = 8.00	0 MHz	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207	
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_	
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_	
115.2k	_	_	_	_	_	_	115.2k	0.00	1	_	_	_	

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fos	c = 64.00	00 MHz	Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	
300	300	0.00	53332	300.0	0.00	15359	300.0	0.00	13332	300.0	0.00	9215	
1200	1200	0.00	13332	1200	0.00	3839	1200.1	0.01	3332	1200	0.00	2303	
2400	2400	0.00	6666	2400	0.00	1919	2399.5	-0.02	1666	2400	0.00	1151	
9600	9598.1	-0.02	1666	9600	0.00	479	9592	-0.08	416	9600	0.00	287	
10417	10417	0.00	1535	10425	0.08	441	10417	0.00	383	10433	0.16	264	
19.2k	19.21k	0.04	832	19.20k	0.00	239	19.23k	0.16	207	19.20k	0.00	143	
57.6k	57.55k	-0.08	277	57.60k	0.00	79	57.97k	0.64	68	57.60k	0.00	47	
115.2k	115.11k	-0.08	138	115.2k	0.00	39	114.29k	-0.79	34	115.2k	0.00	23	

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc = 8.000 MHz		Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0.00	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_

FIGURE 22-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

25.1.1 STANDARD INSTRUCTION SET

ADI	DLW	ADD liter	al to W		ADDWF	ADD W to	o f			
Synt	ax:	ADDLW	k		Syntax:	ADDWF	f {,d {,a}}			
Ope	rands:	$0 \le k \le 255$			Operands:	$0 \leq f \leq 255$				
Ope	ration:	$(W) + k \rightarrow V$	W			d ∈ [0,1]				
State	us Affected:	N, OV, C, E	DC, Z		Oneretien	$a \in [0,1]$				
Enco	oding:	0000	1111 kk	kk kkkk	Operation:	$(VV) + (f) \rightarrow$				
Des	cription:	The conten 8-bit literal W.	ts of W are ac 'k' and the res	dded to the sult is placed in	Encoding: Description:	Encoding:001001daffffDescription:Add W to register 'f'. If 'd' is '0', th				
Wor	ds:	1				result is sto	pred in W. If 'd'	' is '1', the		
Cycl	es:	1				(default).	tored back in register T			
QC	Cycle Activity:					lf 'a' is '0', t	the Access Ba	nk is selected.		
	Q1	Q2	Q3	Q4		lf 'a' is '1', t GPR bank	the BSR is use	ed to select the		
	Decode	Read literal 'k'	Process Data	Write to W		If 'a' is '0' a set is enab	and the extend led, this instru	ed instruction ction operates		
<u>Exa</u>	<u>mple</u> : Before Instruc	ADDLW 1	L5h			mode wher Section 25 Bit-Oriente Literal Offe	The ver f \leq 95 (5 5.2.3 "Byte-Or ed Instruction set Mode" for	Fh). See fiented and fis in Indexed details.		
	After Instructio	n			Words:	1				
	W =	25h			Cycles:	1				
					Q Cycle Activity: Q1	Q2	Q3	Q4		
					Decode	Read register 'f'	Process Data	Write to destination		
					Example:	ADDWF	REG, 0, 0			
			Before Instruction							
					W REG After Instructi	= 17h = 0C2h on				

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

W

REG

0D9h

0C2h

=

=

DAV	V	D	Decimal Adjust W Register						
Synta	ax:	DA	٩W						
Oper	ands:	No	one						
Oper	ration:	lf (V) els (V	[W<3:0> : /<3:0>) + se V<3:0>) -	> 9] or [[6 → W< → W<3:0	0C = 1 :3:0>; >;] the	n		
		lf (V els (W	If $[W<7:4> + DC > 9]$ or $[C = 1]$ then $(W<7:4>) + 6 + DC \rightarrow W<7:4>$; else $(W<7:4>) + DC \rightarrow W<7:4>$						
Statu	is Affected:	С							
Enco	oding:		0000	0000	000	00	0111		
Description:			DAW adjusts the 8-bit value in W, result- ing from the earlier addition of two vari- ables (each in packed BCD format) and produces a correct packed BCD result.						
Words:									
Cycles:		1							
Q Cycle Activity:									
	Q1		Q2	Q3			Q4		
	Decode	l reg	Read jister W	Proce Dat	ess a		Write W		
Exan	nple1:								
		DA	W						
	Before Instruc	tion							
	W C DC	= = =	A5h 0 0						
	After Instruction	n							
Exan	W C DC nple 2:	= = =	05h 1 0						
	Before Instruc	tion							
	W C DC After Instructio	= = = n	CEh 0 0						
	W	=	34h						
	C DC	= =	1 0						

DEC	F	Decreme	Decrement f						
Synta	ax:	DECF f{,c	d {,a}}						
Opera	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$							
Opera	ation:	$(f) - 1 \rightarrow de$	est						
Statu	s Affected:	C, DC, N, C	DV, Z						
Enco	ding:	0000	01da	fff	f	ffff			
Desc	ipion.	Decrement register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selecte If 'a' is '1', the BSR is used to select th GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed							
Word	s:	1							
Cycle	es:	1							
QC	cle Activity:								
r	Q1	Q2	Q3	3	(Q4			
	Decode	Read register 'f'	Proce Dat	ess a	Wr dest	ite to ination			
<u>Exam</u>	<u>nple</u> :	DECF (CNT,	1, 0					
I	Before Instruc	tion							
	CNT Z	= 01h = 0							
	After Instructic CNT Z	on = 00h = 1							

ADD)WF	ADD W t (Indexed	ADD W to Indexed (Indexed Literal Offset mode)								
Synta	ax:	ADDWF	[k] {,d}								
Oper	ands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$									
Oper	ation:	(W) + ((FS	SR2) + k) -	\rightarrow dest							
Statu	is Affected:	N, OV, C,	DC, Z								
Enco	oding:	0010	01d0	kkkk	kkkk						
Desc	ription:	The conter contents of FSR2, offs If 'd' is '0', is '1', the r register 'f'	The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).								
Word	ls:	1									
Cycle	es:	1									
QC	ycle Activity:										
	Q1	Q2	Q3	}	Q4						
	Decode	Read 'k'	Proce Dat	a o	Write to destination						
<u>Exan</u>	nple:	ADDWF	[OFST]	, 0							
	Before Instructi	on									
	W OFST FSR2 Contents	= = =	17h 2Ch 0A00ł	ı							
	of 0A2Ch After Instructior	= 1	20h								
	W Contents	=	37h								
	of 0A2Ch	=	20h								

BSF	Bit Set In (Indexed	Bit Set Indexed (Indexed Literal Offset mode)							
Syntax:	BSF [k], b)							
Operands:	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$								
Operation:	$1 \rightarrow ((FSR)$	2) + k) <b< td=""><td>></td><td></td></b<>	>						
Status Affected:	None								
Encoding:	1000	bbb0	kkkk	kkkk					
Description:	Bit 'b' of the offset by th	Bit 'b' of the register indicated by FSR2, offset by the value 'k', is set.							
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Proce Data	ss V a de	Vrite to stination					
Example:	BSF	[FLAG_O	FST], 7						
Before Instruc	tion								
FLAG_O FSR2 Contents	FST =	0Ah 0A00h							
of 0A0Ał After Instructio	, ה = סח	55h							
Contents of 0A0A	; 1 =	D5h							

SET	F	Set Indexed (Indexed Literal Offset mode)								
Synta	ax:	SETF	[k]							
Oper	ands:	$0 \le k \le$	95							
Oper	ation:	$FFh \to$	((F	SR2) + k)	1					
Statu	is Affected:	None								
Enco	oding:	0110	0110 1000 kkkk							
Desc	cription:	The co FSR2,	The contents of the register indicated by FSR2, offset by 'k', are set to FFh.							
Word	ds:	1								
Cycles:		1								
QC	Q Cycle Activity:									
	Q1	Q2		Q3	3		Q4			
	Decode	Read '	k'	Proce Dat	ess a	Write registe				
<u>Exar</u>	nple:	SETF		[OFST]						
	Before Instruction	on								
	OFST FSR2 Contents of 0A2Ch	= = =	20 07 00	Ch A00h)h						
	After Instruction Contents of 0A2Ch	=	FF	-						

FIGURE 28-23: PIC18F2X/4XK22 MAXIMUM IDD: RC_RUN LF-INTOSC 31 kHz

FIGURE 28-60: PIC18LF2X/4XK22 TYPICAL IDD: PRI_IDLE EC MEDIUM POWER

Package Marking Information (Continued)

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	