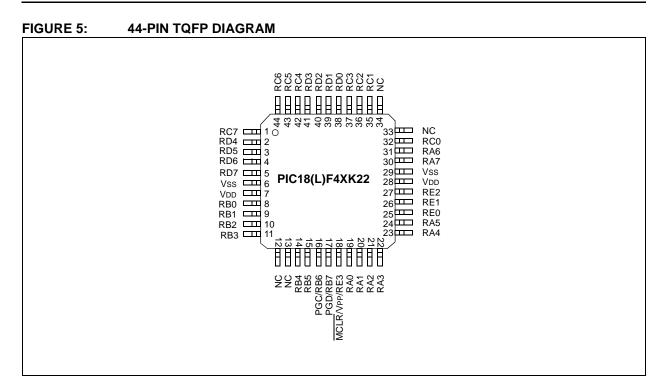


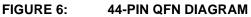
Welcome to E-XFL.COM

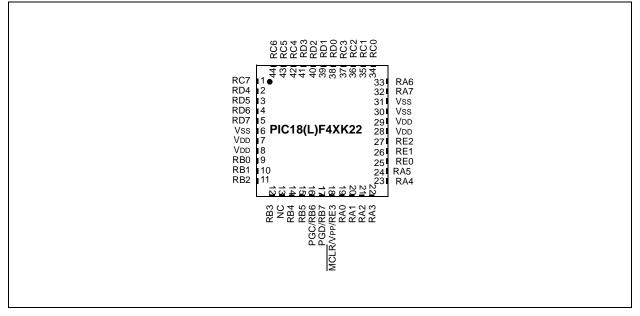
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


E·XFI


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f44k22-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R-0/0	R-0/q	U-0	R/W-0/0	R/W-0/u	R/W-1/1	R-x/u	R-0/0
PLLRDY	SOSCRUN	_	MFIOSEL	SOSCGO ⁽¹⁾	PRISD	MFIOFS	LFIOFS
bit 7			·				bit
Legend:							
R = Readable	bit W = W	/ritable bit	U = Unimple	emented bit, rea	ad as '0' d	q = depends on	condition
'1' = Bit is set	'0' = B	it is cleared	x = Bit is un	known			
-n/n = Value at	POR and BOR	Value at all c	ther Resets				
bit 7	PLLRDY: PLL	Run Status b	it				
	1 = System clo						
	•			, other than 4xF	PLL .		
bit 6	SOSCRUN: SO						
			om secondary S		80		
	-			, other than SO	30		
bit 5	Unimplemente						
bit 4	MFIOSEL: MF						
	1 = MFINTOS0 = MFINTOS			DSC frequencie	S OT 500 KHZ,	250 KHZ and 3	1.25 KHZ
bit 3			cillator Start Co	ntrol bit			
	1 = Secondary						
	0 = Secondary	oscillator is	shut off if no oth	ner sources are	requesting it.		
bit 2	PRISD: Primar	y Oscillator E	Prive Circuit Shu	utdown bit			
	1 = Oscillator						
	0 = Oscillator of						
bit 1			ency Stable bit				
	1 = MFINTOS		_				
	0 = MFINTOS						
bit 0	LFIOFS: LFINT	•	ency Stable bit				
	1 = LFINTOSC 0 = LFINTOSC		2				

REGISTER 2-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

OSC Mode	OSC1 Pin	OSC2 Pin
RC, INTOSC with CLKOUT	Floating, external resistor should pull high	At logic low (clock/4 output)
RC with IO	Floating, external resistor should pull high	Configured as PORTA, bit 6
INTOSC with IO	Configured as PORTA, bit 7	Configured as PORTA, bit 6
EC with IO	Floating, pulled by external clock	Configured as PORTA, bit 6
EC with CLKOUT	Floating, pulled by external clock	At logic low (clock/4 output)
LP, XT, HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level

TABLE 2-3:OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Note: See Table 4-2 in Section 4.0 "Reset" for time-outs due to Sleep and MCLR Reset.

2.11 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS<1:0>) bits of the OSCCON register.

PIC18(L)F2X/4XK22 devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 3.1.2 "Entering Power-Managed Modes"**.

2.11.1 SYSTEM CLOCK SELECT (SCS<1:0>) BITS

The System Clock Select (SCS<1:0>) bits of the OSCCON register select the system clock source that is used for the CPU and peripherals.

- When SCS<1:0> = 00, the system clock source is determined by configuration of the FOSC<3:0> bits in the CONFIG1H Configuration register.
- When SCS<1:0> = 10, the system clock source is chosen by the internal oscillator frequency selected by the INTSRC bit of the OSCTUNE register, the MFIOSEL bit of the OSCCON2 register and the IRCF<2:0> bits of the OSCCON register.
- When SCS<1:0> = 01, the system clock source is the 32.768 kHz secondary oscillator shared with Timer1, Timer3 and Timer5.

After a Reset, the SCS<1:0> bits of the OSCCON register are always cleared.

Note: Any automatic clock switch, which may occur from Two-Speed Start-up or Fail-Safe Clock Monitor, does not update the SCS<1:0> bits of the OSCCON register. The user can monitor the SOSCRUN, MFIOFS and LFIOFS bits of the OSCCON2 register, and the HFIOFS and OSTS bits of the OSCCON register to determine the current system clock source.

2.11.2 OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT

The Oscillator Start-up Time-out Status (OSTS) bit of the OSCCON register indicates whether the system clock is running from the external clock source, as defined by the FOSC<3:0> bits in the CONFIG1H Configuration register, or from the internal clock source. In particular, when the primary oscillator is the source of the primary clock, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes.

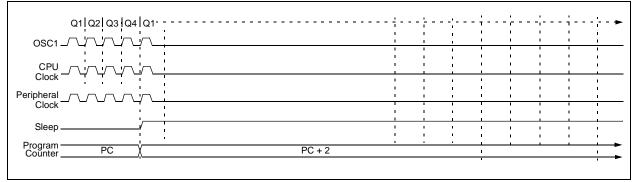
3.3 Sleep Mode

The Power-Managed Sleep mode in the PIC18(L)F2X/ 4XK22 devices is identical to the legacy Sleep mode offered in all other PIC microcontroller devices. It is entered by clearing the IDLEN bit of the OSCCON register and executing the SLEEP instruction. This shuts down the selected oscillator (Figure 3-4) and all clock source Status bits are cleared.

Entering the Sleep mode from either Run or Idle mode does not require a clock switch. This is because no clocks are needed once the controller has entered Sleep. If the WDT is selected, the LFINTOSC source will continue to operate. If the SOSC oscillator is enabled, it will also continue to run.

When a wake event occurs in Sleep mode (by interrupt, Reset or WDT time-out), the device will not be clocked until the clock source selected by the SCS<1:0> bits becomes ready (see Figure 3-5), or it will be clocked from the internal oscillator block if either the Two-Speed Start-up or the Fail-Safe Clock Monitor are enabled (see **Section 24.0 "Special Features of the CPU"**). In either case, the OSTS bit is set when the primary clock is providing the device clocks. The IDLEN and SCS bits are not affected by the wake-up.

3.4 Idle Modes


The Idle modes allow the controller's CPU to be selectively shut down while the peripherals continue to operate. Selecting a particular Idle mode allows users to further manage power consumption.

If the IDLEN bit is set to a '1' when a SLEEP instruction is executed, the peripherals will be clocked from the clock source selected by the SCS<1:0> bits; however, the CPU will not be clocked. The clock source status bits are not affected. Setting IDLEN and executing a SLEEP instruction provides a quick method of switching from a given Run mode to its corresponding Idle mode.

If the WDT is selected, the LFINTOSC source will continue to operate. If the SOSC oscillator is enabled, it will also continue to run.

Since the CPU is not executing instructions, the only exits from any of the Idle modes are by interrupt, WDT time-out, or a Reset. When a wake event occurs, CPU execution is delayed by an interval of TCSD while it becomes ready to execute code. When the CPU begins executing code, it resumes with the same clock source for the current Idle mode. For example, when waking from RC_IDLE mode, the internal oscillator block will clock the CPU and peripherals (in other words, RC_RUN mode). The IDLEN and SCS bits are not affected by the wake-up.

While in any Idle mode or the Sleep mode, a WDT time-out will result in a WDT wake-up to the Run mode currently specified by the SCS<1:0> bits.

FIGURE 3-4: TRANSITION TIMING FOR ENTRY TO SLEEP MODE

REGISTER 10	0-10: LATx:	PORTX OUT	PUT LATCH	REGISTER)
DAMAN	D/M//.	D ////.			

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATx7 | LATx6 | LATx5 | LATx4 | LATx3 | LATx2 | LATx1 | LATx0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

/4\

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 LATx<7:0>: PORTx Output Latch bit value⁽²⁾

Note 1: Register Description for LATA, LATB, LATC and LATD.

2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.

REGISTER 10-11: LATE: PORTE OUTPUT LATCH REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—	—	—	LATE2	LATE1	LATE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3 Unimplemented: Read as '0'

bit 2-0 LATE<2:0>: PORTE Output Latch bit value⁽²⁾

Note 1: Available on PIC18(L)F4XK22 devices only.

2: Writes to PORTE are written to corresponding LATE register. Reads from PORTE register is return of I/O pin values.

REGISTER 10-12: WPUB: WEAK PULL-UP PORTB REGISTER

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

WPUB<7:0>: Weak Pull-up Register bits

1 = Pull-up enabled on PORT pin

0 = Pull-up disabled on PORT pin

FIGURE 14-7:	EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)
--------------	--

(M<	1:0>	Signal	0	Vidth	-	PRx+1
			-		– Period –	
00	(Single Output)	PxA Modulated				
		PxA Modulated		elay ⁽¹⁾	 Delay ⁽¹⁾	
10	(Half-Bridge)	PxB Modulated	; ;	elay		
		PxA Active				
(Full-Bridge,	PxB Inactive	— <u> </u>			<u> </u>	
	Forward)	PxC Inactive				I
		PxD Modulated	<u> </u>			 I
		PxA Inactive			 	1 1 1
11	(Full-Bridge,	PxB Modulated				<u> </u>
R	Reverse)	PxC Active	— -		- 	
		PxD Inactive			 	<u> </u>

Period = 4 * Tosc * (PRx + 1) * (TMRx Prescale Value)
Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
Delay = 4 * Tosc * (PWMxCON<6:0>)

Note 1: Dead-band delay is programmed using the PWMxCON register (Section 14.4.5 "Programmable Dead-Band Delay Mode").

15.4 I²C Mode Operation

All MSSPx I²C communication is byte oriented and shifted out MSb first. Six SFR registers and 2 interrupt flags interface the module with the PIC microcontroller and user software. Two pins, SDAx and SCLx, are exercised by the module to communicate with other external I²C devices.

15.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the 8th falling edge of the SCLx line, the device outputting data on the SDAx changes that pin to an input and reads in an acknowledge value on the next clock pulse.

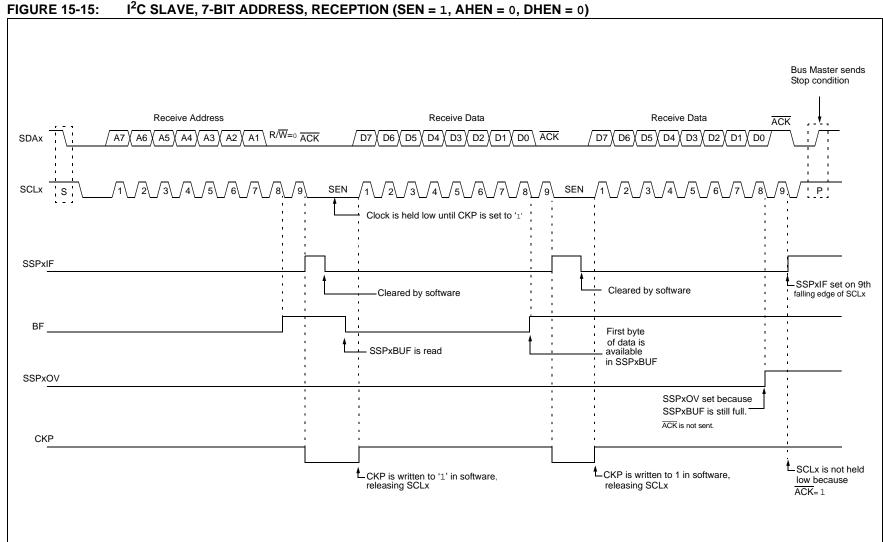
The clock signal, SCLx, is provided by the master. Data is valid to change while the SCLx signal is low, and sampled on the rising edge of the clock. Changes on the SDAx line while the SCLx line is high define special conditions on the bus, explained below.

15.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Phillips I^2C specification.

15.4.3 SDAx AND SCLx PINS

Selection of any I²C mode with the SSPxEN bit set, forces the SCLx and SDAx pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.


Note: Data is tied to output zero when an I²C mode is enabled.

15.4.4 SDAx HOLD TIME

The hold time of the SDAx pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDAx is held valid after the falling edge of SCLx. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 15-1: I²C BUS TERMS

TABLE 15-1: I ² C BUS TERMS						
TERM	Description					
Transmitter	The device which shifts data out onto the bus.					
Receiver	The device which shifts data in from the bus.					
Master	The device that initiates a transfer, generates clock signals and termi- nates a transfer.					
Slave	The device addressed by the mas- ter.					
Multi-master	A bus with more than one device that can initiate data transfers.					
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.					
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.					
Idle	No master is controlling the bus, and both SDAx and SCLx lines are high.					
Active	Any time one or more master devices are controlling the bus.					
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.					
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.					
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.					
Read Request	Master sends an address byte with the R/\overline{W} bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.					
Clock Stretching	When a device on the bus holds SCLx low to stall communication.					
Bus Collision	Any time the SDAx line is sampled low by the module while it is out- putting and expected high state.					

		SYNC = 0, BRGH = 0, BRG16 = 1										
BAUD	Fosc = 8.000 MHz			Fo	sc = 4.00	0 MHz	Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	_	_	_
115.2k	_	_	_	_	_	_	115.2k	0.00	1	_	_	_

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc = 64.000 MHz		Fosc = 18.432 MHz		Fosc = 16.000 MHz			Fosc = 11.0592 MHz				
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	300	0.00	53332	300.0	0.00	15359	300.0	0.00	13332	300.0	0.00	9215
1200	1200	0.00	13332	1200	0.00	3839	1200.1	0.01	3332	1200	0.00	2303
2400	2400	0.00	6666	2400	0.00	1919	2399.5	-0.02	1666	2400	0.00	1151
9600	9598.1	-0.02	1666	9600	0.00	479	9592	-0.08	416	9600	0.00	287
10417	10417	0.00	1535	10425	0.08	441	10417	0.00	383	10433	0.16	264
19.2k	19.21k	0.04	832	19.20k	0.00	239	19.23k	0.16	207	19.20k	0.00	143
57.6k	57.55k	-0.08	277	57.60k	0.00	79	57.97k	0.64	68	57.60k	0.00	47
115.2k	115.11k	-0.08	138	115.2k	0.00	39	114.29k	-0.79	34	115.2k	0.00	23

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc = 8.000 MHz			Fos	sc = 4.00	0 MHz	Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0.00	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	_	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7		_	—

21.0 FIXED VOLTAGE REFERENCE (FVR)

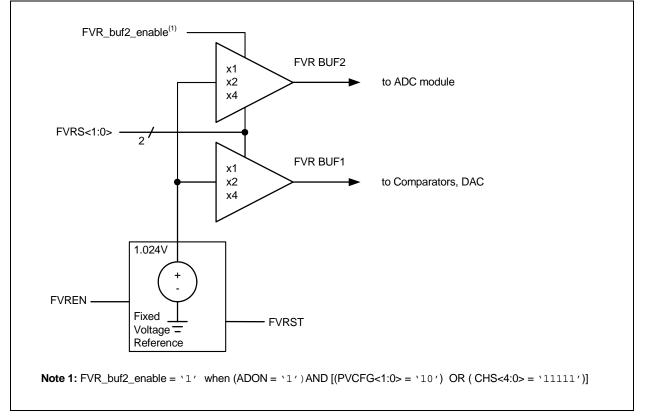
The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

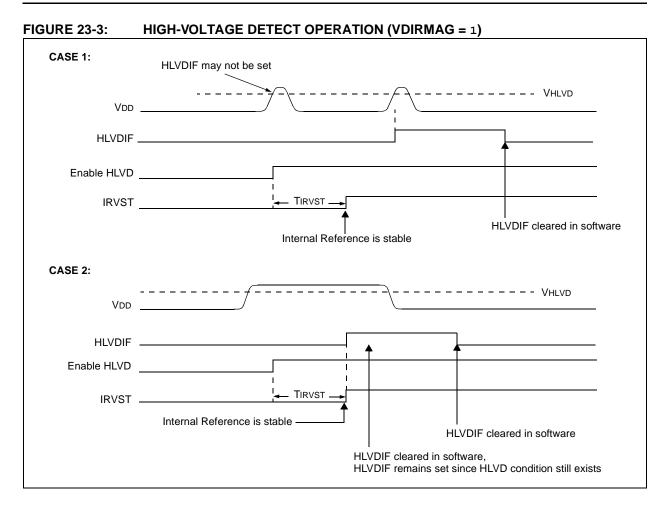
- ADC input channel
- · ADC positive reference
- · Comparator positive input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the FVREN bit of the VREFCON0 register.

21.1 Independent Gain Amplifiers

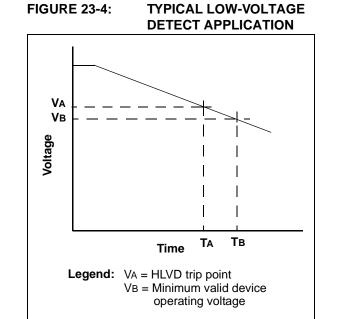
The output of the FVR supplied to the ADC, Comparators and DAC is routed through an independent programmable gain amplifier. The amplifier can be configured to amplify the 1.024V reference voltage by 1x, 2x or 4x, to produce the three possible voltage levels.


The FVRS<1:0> bits of the VREFCON0 register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and Comparator modules. When the ADC module is configured to use the FVR output, (FVR BUF2) the reference is buffered through an additional unity gain amplifier. This buffer is disabled if the ADC is not configured to use the FVR.


For specific use of the FVR, refer to the specific module sections: Section 17.0 "Analog-to-Digital Converter (ADC) Module", Section 22.0 "Digital-to-Analog Converter (DAC) Module" and Section 18.0 "Comparator Module".

21.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRST bit of the VREFCON0 register will be set. See Table 27-3 for the minimum delay requirement.



23.6 Applications

In many applications, it is desirable to detect a drop below, or rise above, a particular voltage threshold. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 23-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and a controlled shutdown before the device voltage exits the valid operating range at TB. This would give the application a time window, represented by the difference between TA and TB, to safely exit.

DEV<10:3>	DEV<2:0>	Part Number
	000	PIC18F46K22
0101 0100	001	PIC18LF46K22
0101 0100	010	PIC18F26K22
	011	PIC18LF26K22
	000	PIC18F45K22
0101 0101	001	PIC18LF45K22
	010	PIC18F25K22
	011	PIC18LF25K22
	000	PIC18F44K22
0101 0110	001	PIC18LF44K22
0101 0110	010	PIC18F24K22
	011	PIC18LF24K22
	000	PIC18F43K22
0101 0111	001	PIC18LF43K22
0101 0111	010	PIC18F23K22
	011	PIC18LF23K22

TABLE 24-2: DEVICE ID TABLE FOR THE PIC18(L)F2X/4XK22 FAMILY

NEGF	Negate f
Syntax:	NEGF f {,a}
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$
Operation:	$(\overline{f}) + 1 \rightarrow f$
Status Affected:	N, OV, C, DC, Z
Encoding:	0110 110a ffff ffff
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.
Words:	1
Cycles:	1

NOF	•	No Operation						
Synta	ax:	NOP						
Oper	ands:	None						
Oper	ation:	No operati	on					
Statu	s Affected:	None						
Encoding:		0000	0000	000	0	0000		
		1111	xxxx	XXX	х	xxxx		
Desc	ription:	No operati	on.					
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	No	No No No					
		operation	opera	tion	op	peration		

Example:

None.

Cycles:

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example: NEGF REG, 1

Before Instruction REG = 0011 1010 [3Ah] After Instruction

After Instructi	on			
REG	=	1100	0110	[C6h]

POP	Pop Top of Return Stack	PUSH	Push Top of Return Stack
Syntax:	POP	Syntax:	PUSH
Operands:	None	Operands:	None
Operation:	$(TOS) \rightarrow bit bucket$	Operation:	$(PC + 2) \rightarrow TOS$
Status Affected:	None	Status Affected:	None
Encoding:	0000 0000 0000 0110	Encoding:	0000 0000 0000 0101
Description:	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.	Description: Words:	The PC + 2 is pushed onto the top of the return stack. The previous TOS value is pushed down on the stack. This instruction allows implementing a software stack by modifying TOS and then pushing it onto the return stack.
Words:	1	Cycles:	1
Cycles:	1	Q Cycle Activity:	
Q Cycle Activity:		Q1	Q2 Q3 Q4
Q1 Decode	Q2Q3Q4NoPOP TOSNooperationvalueoperation	Decode	PUSHNoNoPC + 2 ontooperationoperationreturn stack
Example:	POP Goto New	Example: Before Instruc	PUSH
Before Instruct TOS Stack (1 I	ion = 0031A2h evel down) = 014332h	TOS PC	= 345Ah = 0124h
After Instructio TOS PC	n = 014332h = NEW	After Instructio PC TOS Stack (1	on = 0126h = 0126h level down) = 345Ah

Param. No.	Symbol	Charact	eristic	Min	Max	Units	Conditions
100	Thigh	Clock High Time	100 kHz mode	4.0		μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μS	Must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY			
101	TLOW	Clock Low Time	100 kHz mode	4.7	_	μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY	_		
102	TR	SDA and SCL Rise	100 kHz mode	—	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition	100 kHz mode	4.7	_	μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	_	μS	Start condition
91	THD:STA	Start Condition	100 kHz mode	4.0	_	μS	After this period, the first
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated
106	THD:DA	Data Input Hold	100 kHz mode	0	_	ns	
	Т	Time	400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input Setup	100 kHz mode	250	_	ns	(Note 2)
		Time	400 kHz mode	100	_	ns	
92	TSU:STO	Stop Condition	100 kHz mode	4.7		μS	
		Setup Time	400 kHz mode	0.6		μS	
109	ΤΑΑ	Output Valid from	100 kHz mode		3500	ns	(Note 1)
		Clock	400 kHz mode			ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission can start
D102	Св	Bus Capacitive Load	ding	—	400	pF	

TABLE 27-16:	I ² C BUS DATA	REQUIREMENTS	(SLAVE MODE)
--------------	---------------------------	--------------	--------------

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A fast mode I²C bus device can be used in a standard mode I²C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification), before the SCL line is released.

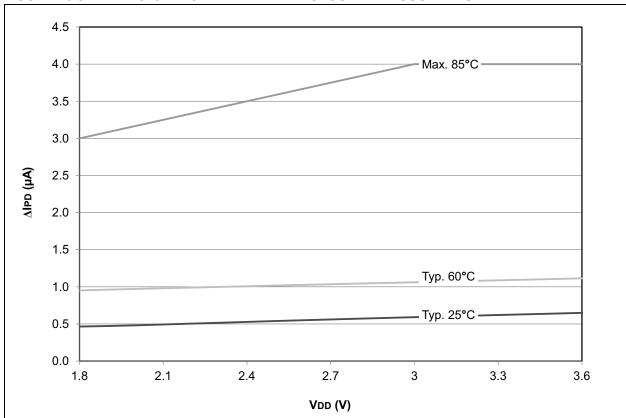
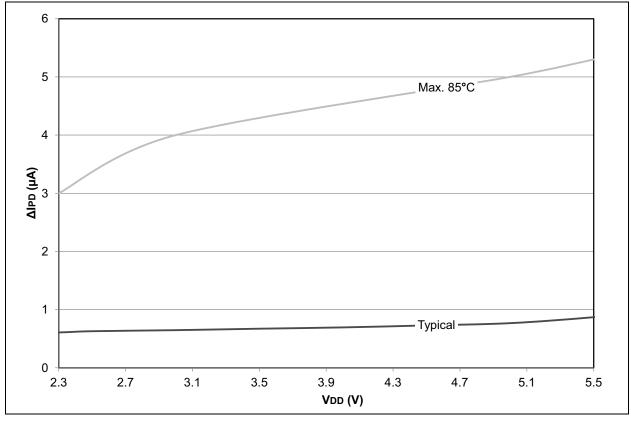
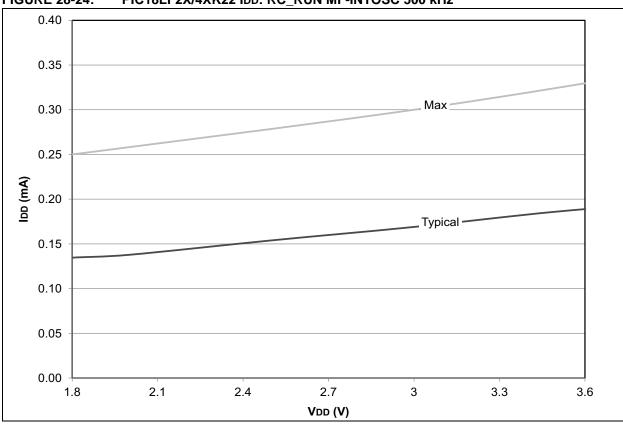




FIGURE 28-9: PIC18LF2X/4XK22 DELTA IPD SECONDARY OSCILLATOR

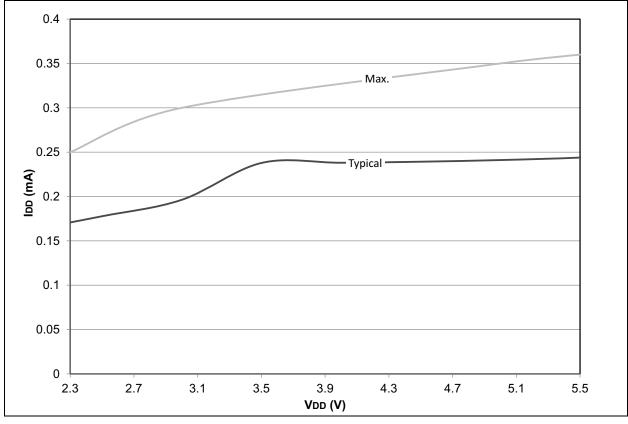
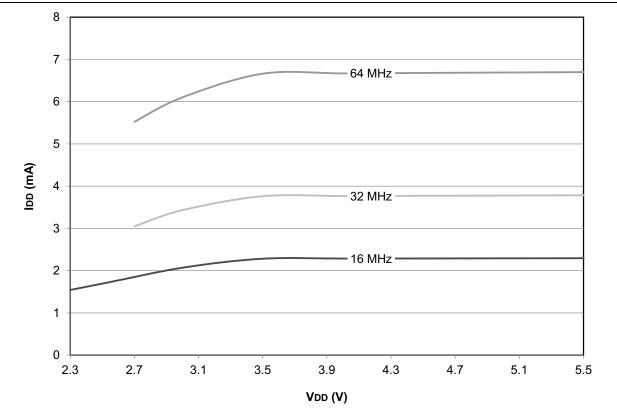
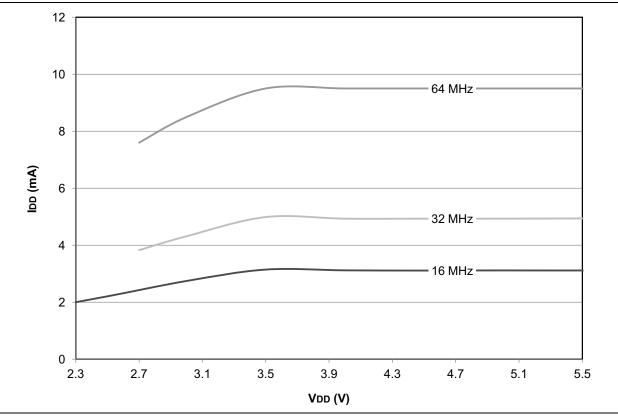
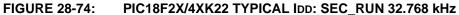
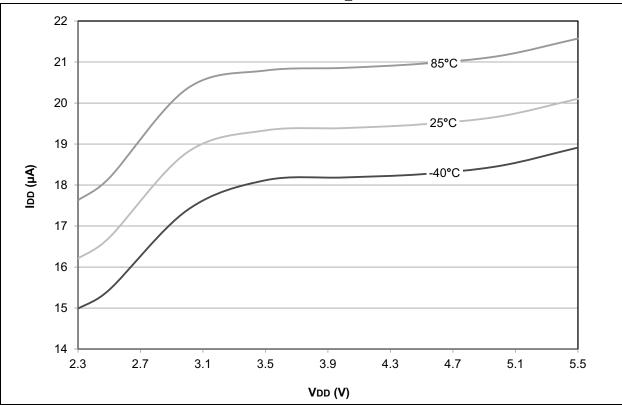
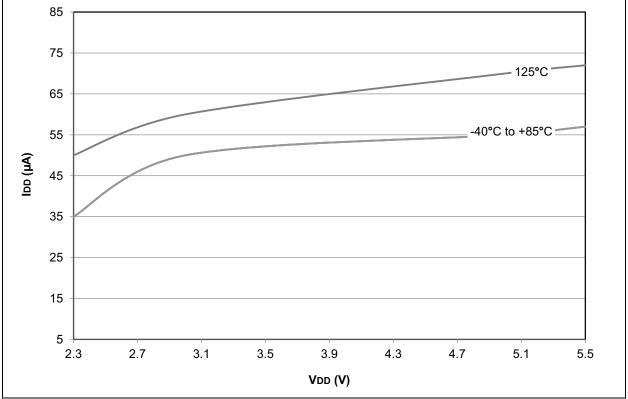
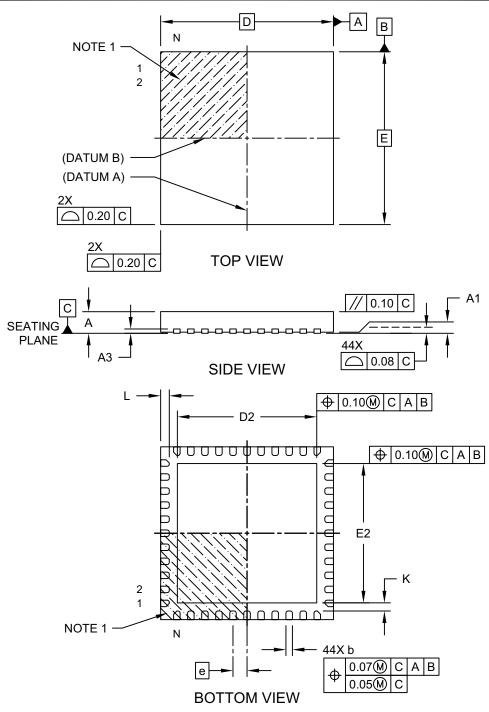


FIGURE 28-24: PIC18LF2X/4XK22 IDD: RC_RUN MF-INTOSC 500 kHz


FIGURE 28-33: PIC18F2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC with PLL



44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103D Sheet 1 of 2