

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f44k22-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: F	PIC18(L)F2XK22	PIN SUMMARY
------------	----------------	--------------------

28-SSOP, SOIC 28-SPDIP	28-QFN, UQFN	0/1	Analog	Comparator	CTMU	SR Latch	Reference	(E)CCP	EUSART	MSSP	Timers	Interrupts	Pull-up	Basic
2	27	RA0	AN0	C12IN0-										
3	28	RA1	AN1	C12IN1-										
4	1	RA2	AN2	C2IN+			VREF- DACOUT							
5	2	RA3	AN3	C1IN+			VREF+							
6	3	RA4		C1OUT		SRQ		CCP5			TOCKI			
7	4	RA5	AN4	C2OUT		SRNQ	HLVDIN			SS1				
10	7	RA6												OSC2 CLKO
9	6	RA7												OSC1 CLKI
21	18	RB0	AN12			SRI		CCP4 FLT0		SS2		INT0	Y	
22	19	RB1	AN10	C12IN3-				P1C		SCK2 SCL2		INT1	Y	
23	20	RB2	AN8		CTED1			P1B		SDI2 SDA2		INT2	Y	
24	21	RB3	AN9	C12IN2-	CTED2			CCP2 P2A ⁽¹⁾		SDO2			Y	
25	22	RB4	AN11					P1D			T5G	IOC	Y	
26	23	RB5	AN13					CCP3 P3A ⁽⁴⁾ P2B ⁽³⁾			T1G T3CKI ⁽²⁾	IOC	Y	
27	24	RB6							TX2/CK2			IOC	Y	PGC
28	25	RB7							RX2/DT2			IOC	Y	PGD
11	8	RC0						P2B ⁽³⁾			SOSCO T1CKI T3CKI ⁽²⁾ T3G			
12	9	RC1						CCP2 P2A ⁽¹⁾			SOSCI			
13	10	RC2	AN14		CTPLS			CCP1 P1A			T5CKI			
14	11	RC3	AN15							SCK1 SCL1				
15	12	RC4	AN16							SDI1 SDA1				
16	13	RC5	AN17							SDO1				
17	14	RC6	AN18					CCP3 P3A ⁽⁴⁾	TX1/CK1					
18	15	RC7	AN19					P3B	RX1/DT1					
1	26	RE3												MCLR VPP
8, 19 19	5, 16 16	Vss												Vss
20	17	Vdd												Vdd

 CCP2/P2A multiplexed in fuses.
 T3CKI multiplexed in fuses.
 P2B multiplexed in fuses.
 CCP3/P3A multiplexed in fuses. Note 1:

		••								
	Pin Number			Din	Buffor					
	PDIP, Soic	QFN, UQFN	Pin Name	Туре	Туре	Description				
ľ	20	17	Vdd	Р	_	Positive supply for logic and I/O pins.				
	8, 19	5, 16	Vss	Р	-	Ground reference for logic and I/O pins.				

TABLE 1-2: PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

TABLE 1-3:	PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS
------------	--

	Pin Number		D'a Nama	Pin	Buffer	Description		
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description	
2	19	19	17	RA0/C12IN0-/AN0				
				RA0	I/O	TTL	Digital I/O.	
				C12IN0-	I	Analog	Comparators C1 and C2 inverting input.	
				AN0	Ι	Analog	Analog input 0.	
3	20	20	18	RA1/C12IN1-/AN1				
				RA1	I/O	TTL	Digital I/O.	
				C12IN1-	I	Analog	Comparators C1 and C2 inverting input.	
				AN1	Ι	Analog	Analog input 1.	
4	21	21	19	RA2/C2IN+/AN2/DACOUT	RA2/C2IN+/AN2/DACOUT/VREF-			
				RA2	I/O	TTL	Digital I/O.	
				C2IN+	I	Analog	Comparator C2 non-inverting input.	
				AN2	I	Analog	Analog input 2.	
				DACOUT	0	Analog	DAC Reference output.	
				VREF-	Ι	Analog	A/D reference voltage (low) input.	
5	22	22	20	RA3/C1IN+/AN3/VREF+				
				RA3	I/O	TTL	Digital I/O.	
				C1IN+	I	Analog	Comparator C1 non-inverting input.	
				AN3	I	Analog	Analog input 3.	
				VREF+	Ι	Analog	A/D reference voltage (high) input.	
6	23	23	21	RA4/C1OUT/SRQ/T0CKI	RA4/C1OUT/SRQ/T0CKI			
				RA4	I/O	ST	Digital I/O.	
				C1OUT	0	CMOS	Comparator C1 output.	
				SRQ	0	TTL	SR latch Q output.	
				TOCKI	I	ST	Timer0 external clock input.	

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

	Pin M	lumber		Din Nome	Pin	Buffer	Description
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description
10	27	27	25	RE2/CCP5/AN7			
				RE2	I/O	ST	Digital I/O.
				CCP5	I/O	ST	Capture 5 input/Compare 5 output/PWM 5 output
				AN7	Ι	Analog	Analog input 7.
1	18	18	16	RE3/VPP/MCLR			
				RE3	Ι	ST	Digital input.
				Vpp	Р		Programming voltage input.
				MCLR	I	ST	Active-low Master Clear (device Reset) input.
11,32	7, 28	7, 8, 28, 29	7, 26	Vdd	Р	—	Positive supply for logic and I/O pins.
12,31	6, 29	6,30, 31	6, 27	Vss	Р	_	Ground reference for logic and I/O pins.
	12,13, 33,34	13		NC			

TABLE 1-3: PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

FIGURE 5-9: USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)

	-		-		· / -	-	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	SSP2IF: Mas	ter Synchrono	us Serial Port	2 Interrupt Ena	able bit		
2	1 = Enables	the MSSP2 int	errupt	op:			
	0 = Disables	the MSSP2 in	terrupt				
bit 6	BCL2IE: Bus	Collision Inter	rupt Enable b	it			
	1 = Enabled						
	0 = Disabled						
bit 5	RC2IE: EUSA	ART2 Receive	Interrupt Enal	ole bit			
	1 = Enabled						
h:+ 4			latera vet En el	hla hit			
DIT 4	1 AZIE: EUSA	ARIZ Transmit	Interrupt Ena	DIE DIT			
	1 = Disabled 0 = Disabled						
bit 3	CTMUIE: CT	MU Interrupt E	nable bit				
	1 = Enabled	•					
	0 = Disabled						
bit 2	TMR5GIE: T	MR5 Gate Inter	rupt Enable b	bit			
1 = Enabled							
	0 = Disabled						
bit 1 TMR3GIE: TMR3 Gate Interrupt Enable bit							
	1 = Enabled						
hit 0		MP1 Cate Inter	runt Enable h	t			
	1 = Fnabled			//1			
	0 = Disabled						

REGISTER 9-11: PIE3: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 3

14.4.6 PWM STEERING MODE

In Single Output mode, PWM steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

Once the Single Output mode is selected (CCPxM<3:2> = 11 and PxM<1:0> = 00 of the CCPxCON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate Steering Enable bits (STRxA, STRxB, STRxC and/or STRxD) of the PSTRxCON register, as shown in Table 14-13.

Note:	The associated TRIS bits must be set to
	output ('0') to enable the pin output driver
	in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCPxM<1:0> bits of the CCPxCON register select the PWM output polarity for the PxD, PxC, PxB and PxA pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 14.4.3 "Enhanced PWM Auto-shutdown Mode"**. An autoshutdown event will only affect pins that have PWM outputs enabled.

FIGURE 14-18: SIMPLIFIED STEERING BLOCK DIAGRAM

14.4.6.1 Steering Synchronization

The STRxSYNC bit of the PSTRxCON register gives the user two selections of when the steering event will happen. When the STRxSYNC bit is '0', the steering event will happen at the end of the instruction that writes to the PSTRxCON register. In this case, the output signal at the PxA, PxB, PxC and PxD pins may be an incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin.

When the STRxSYNC bit is '1', the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform.

Figures 14-19 and 14-20 illustrate the timing diagrams of the PWM steering depending on the STRxSYNC setting.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PxRSEN				PxDC<6:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchanged x = Bit is unk			nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is s	et	'0' = Bit is clea	ared				
bit 7	PxRSEN: P	WM Restart Ena	ıble bit				
	1 = Upon at the PW	uto-shutdown, th M restarts auton	e CCPxASE I	bit clears automa	atically once the	e shutdown eve	ent goes away;
	0 = Upon a	uto-shutdown, C	CPxASE mus	st be cleared in	software to res	tart the PWM	
bit 6-0	PxDC<6:0>	: PWM Delay Co	ount bits				
	PxDCx = Nt	umber of Fosc/	4 (4 * Tosc)	cycles between	the schedule	d time when a	a PWM signal

REGISTER 14-6: PWMxCON: ENHANCED PWM CONTROL REGISTER

REGISTER 14-7: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
—	—		STRxSYNC	STRxD	STRxC	STRxB	STRxA
bit 7							bit 0

should transition active and the actual time it transitions active

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	STRxSYNC: Steering Sync bit 1 = Output steering update occurs on next PWM period 0 = Output steering update occurs at the beginning of the instruction cycle boundary
bit 3	STRxD: Steering Enable bit D 1 = PxD pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxD pin is assigned to port pin
bit 2	STRxC: Steering Enable bit C 1 = PxC pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxC pin is assigned to port pin
bit 1	STRxB: Steering Enable bit B 1 = PxB pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxB pin is assigned to port pin
bit 0	STRxA: Steering Enable bit A 1 = PxA pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxA pin is assigned to port pin
Note 1.	The DWM Steering mode is evoluble only when the CCDyCON register hits CCDyM (20) 11 a

Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11 and PxM<1:0> = 00.

15.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSPx module configured as an I^2C slave in 10-bit Addressing mode (Figure 15-20) and is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCLx.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a <u>data</u> byte to the slave and clocks out the slaves <u>ACK</u> on the 9th SCLx pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCLx.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

15.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCLx line is held low are the same. Figure 15-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 15-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

16.3 Register Definitions: EUSART Control

REGISTER 16-1: TxSTAx: TRANSMIT STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0	
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D	
bit 7	·			·			bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimpleme	ented bit, read as	ʻ0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unknow	vn	
bit 7	CSRC: Clock Asynchronous Don't care Synchronous I 1 = Master n 0 = Slave me	Source Select bit <u>mode</u> : node (clock genera ode (clock from ex	ated internally ternal source)	from BRG)				
bit 6	TX9: 9-bit Train 1 = Selects 8 0 = Selects 8	nsmit Enable bit 9-bit transmission 3-bit transmission	····,					
bit 5	TXEN: Transn 1 = Transmit 0 = Transmit	nit Enable bit ⁽¹⁾ enabled disabled						
bit 4	SYNC: EUSA 1 = Synchror 0 = Asynchror	RT Mode Select bi nous mode nous mode	t					
bit 3	SENDB: Send Asynchronous 1 = Send Syr 0 = Sync Bre Synchronous I Don't care	Break Character mode: nc Break on next tr ak transmission co mode:	bit ransmission (c ompleted	leared by hardwa	are upon completi	ion)		
bit 2	Don't care BRGH: High Baud Rate Select bit <u>Asynchronous mode</u> : 1 = High speed 0 = Low speed <u>Synchronous mode</u> :							
bit 1	TRMT: Transn 1 = TSR emp 0 = TSR full	nit Shift Register S oty	tatus bit					
bit 0	TX9D: Ninth b Can be addres	it of Transmit Data ss/data bit or a par	ı ity bit.					
Note 1: SI	REN/CREN overri	des TXEN in Sync	mode.					

16.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

16.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for Synchronous Master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTAx register configures the device for synchronous operation. Setting the CSRC bit of the TXSTAx register configures the device as a master. Clearing the SREN and CREN bits of the RCSTAx register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTAx register enables the EUSART. If the RXx/DTx or TXx/CKx pins are shared with an analog peripheral the analog I/O functions must be disabled by clearing the corresponding ANSEL bits.

The TRIS bits corresponding to the RXx/DTx and TXx/CKx pins should be set.

16.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TXx/CKx line. The TXx/CKx pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

16.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the CKTXP bit of the BAUDCONx register. Setting the CKTXP bit sets the clock Idle state as high. When the CKTXP bit is set, the data changes on the falling edge of each clock and is sampled on the rising edge of each clock. Clearing the CKTXP bit sets the Idle state as low. When the CKTXP bit is cleared, the data changes on the rising edge of each clock and is sampled on the falling edge of each clock.

16.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RXx/DTx pin. The RXx/DTx and TXx/CKx pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXREGx register. If the TSR still contains all or part of a previous character the new character data is held in the TXREGx until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREGx is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREGx.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note: The TSR register is not mapped in data memory, so it is not available to the user.

16.5.1.4 Data Polarity

The polarity of the transmit and receive data can be controlled with the DTRXP bit of the BAUDCONx register. The default state of this bit is '0' which selects high true transmit and receive data. Setting the DTRXP bit to '1' will invert the data resulting in low true transmit and receive data.

17.1.7 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON2 register controls the output format.

Figure 17-2 shows the two output formats.

FIGURE 17-2: 10-BIT A/D CONVERSION RESULT FORMAT

17.3 Register Definitions: ADC Control

Note: Analog pin control is determined by the ANSELx registers (see Register 10-2)

REGISTER 17-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0

Longitude				
Legend:				
R = Readable bit		W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	Unimple	mented: Read as '0'		
bit 6-2	CHS<4:0	>: Analog Channel Select bits		
	00000 =	AN0		
	00001 =	AN1		
	00010 =	AN2		
	00011 =	AN3		
	00100 =	AN4		
	00101 =	AN5(')		
	00110 =	$AN6^{(\prime)}$		
	00111 =			
	01000 =			
	01001 =	AN10		
	01011 =	AN11		
	01100 =	AN12		
	01101 =	AN13		
	01110 =	AN14		
	01111 =	AN15		
	10000 =	AN16		
	10001 =	AN17		
	10010 =	AN18		
	10011 =	AN19		
	10100 =	$AN20^{(1)}$		
	10101 =	AN21 ¹¹		
	10110 =	AN22(1)		
	10111 =	AN23 /		
	11000 =	AN24		
	11001 =	AN26 ⁽¹⁾		
	11011 =	AN27 ⁽¹⁾		
	11100 =	Reserved		
	11101 =	СТМИ		
	11110 =	DAC		
	11111 =	FVR BUF2 (1.024V/2.048V/2.09	96V Volt Fixed Voltage Reference)	(2)
bit 1	GO/DON	E: A/D Conversion Status bit		
	1 = A/D c	conversion cycle in progress. Se	tting this bit starts an A/D conversi	on cycle.
	This I	pit is automatically cleared by ha	ardware when the A/D conversion	has completed.
	0 = A/D c	conversion completed/not in prog	gress	
bit 0	ADON: A	DC Enable bit		
	1 = ADC	is enabled		
	0 = ADC	is disabled and consumes no op	perating current	
Note 1:	Available on P	IC18(L)F4XK22 devices only.		

2: Allow greater than 15 μs acquisition time when measuring the Fixed Voltage Reference.

18.9 Register Definitions: Comparator Control

REGISTER 18-1: CMxCON0: COMPARATOR x CONTROL REGISTER

R/W-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	
CxON	CxOUT	CxOE	CxPOL	CxSP	CxR	CxCH	<1:0>	
bit 7							bit 0	
								
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7	CxON: Comp 1 = Compara 0 = Compara	arator Cx Enal tor Cx is enable tor Cx is disabl	ole bit ed ed					
bit 6	6 CxOUT: Comparator Cx Output bit If CxPOL = 1 (inverted polarity): CxOUT = 0 when CxVIN+ > CxVIN- CxOUT = 1 when CxVIN+ < CxVIN- If CxPOL = 0 (non-inverted polarity): CxOUT = 1 when CxVIN+ > CxVIN- CxOUT = 1 when CxVIN+ > CxVIN-							
bit 5	CxOE: Comp 1 = CxOUT is 0 = CxOUT is	arator Cx Outp present on the internal only	out Enable bit e CxOUT pin ⁽¹)				
bit 4	CxPOL: Com 1 = CxOUT lo 0 = CxOUT lo	parator Cx Ou ogic is inverted ogic is not inver	tput Polarity S ted	elect bit				
bit 3	CxSP: Comp 1 = Cx operat 0 = Cx operat	arator Cx Spee tes in Normal-F tes in Low-Pow	d/Power Sele Power, Higher ver, Low-Spee	ct bit Speed mode d mode				
bit 2	CxR: Compare 1 = CxVIN+ co 0 = CxVIN+ co	rator Cx Refere onnects to CXV onnects to C12	ence Select bit REF output IN+ pin	t (non-inverting	input)			
bit 1-0	CxCH<1:0>: 00 = C12IN0- 01 = C12IN1- 10 = C12IN2- 11 = C12IN3-	Comparator C: pin of Cx conr pin of Cx conr pin of Cx conr pin of Cx conr pin of Cx conr	Channel Sel nects to CxVIN nects to CxVIN nects to CxVIN nects to CxVIN	ect bit - - -				

Note 1: Comparator output requires the following three conditions: CxOE = 1, CxON = 1 and corresponding port TRIS bit = 0.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
EDG2POL	EDG2	SEL<1:0>	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	
bit 7						•	bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 7	bit 7 EDG2POL: Edge 2 Polarity Select bit 1 = Edge 2 programmed for a positive edge response 0 = Edge 2 programmed for a positive edge response							
bit 6-5	EDG2SEL<	1:0>: Edge 2 So	urce Select bit	S				
	11 = CTED 10 = CTED 01 = ECCP 00 = ECCP	1 pin 2 pin 1 Special Event ⊺ 2 Special Event ⊺	Frigger Frigger					
bit 4	EDG1POL:	Edge 1 Polarity	Select bit					
	1 = Edge 1 0 = Edge 1	programmed for programmed for	a positive edg a negative edg	e response ge response				
bit 3-2	EDG1SEL<	1:0>: Edge 1 So	urce Select bit	S				
	11 = CTED1 pin 10 = CTED2 pin 01 = ECCP1 Special Event Trigger 00 = ECCP2 Special Event Trigger							
bit 1	EDG2STAT:	Edge 2 Status b	it					
	1 = Edge 2 0 = Edge 2	event has occur event has not oc	red curred					
bit 0	EDG1STAT:	Edge 1 Status b	it					
	1 = Edge 1 0 = Edge 1	event has occur event has not oc	red curred					

REGISTER 19-2: CTMUCONL: CTMU CONTROL REGISTER 1

AND	DWF	AND W w	AND W with f					
Synt	ax:	ANDWF	f {,d {,a}}					
Opei	rands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]						
Oper	ration:	(W) .AND.	(f) \rightarrow dest					
Statu	is Affected:	N, Z						
Enco	oding:	0001	01da fi	ff ffff				
Desc	πριιοπ.	The contents of W are AND'ed with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
Word	ds:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process Data	Write to destination				
<u>Exar</u>	<u>nple</u> :	ANDWF	REG, 0,	0				
	Before Instruc	tion						
	W REG After Instructio	= 17h = C2h on						
	W REG	= 02h = C2h						

вс		Branch if	Branch if Carry						
Synta	ax:	BC n	BC n						
Oper	ands:	-128 ≤ n ≤ 1	27						
Oper	ation:	if CARRY b (PC) + 2 + 2	it is '1' 2n → PC						
Statu	s Affected:	None							
Enco	ding:	1110	0010 nr	inn nnnn					
Desc	ription:	If the CARR will branch. The 2's con added to the incrementer instruction, PC + 2 + 2r 2-cycle inst	If the CARRY bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.						
Word	ls:	1	1						
Cycle	es:	1(2)	1(2)						
Q C If Ju	ycle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'n'	Process Data	Write to PC					
	No	No	No	No					
	operation	operation	operation	operation					
lf No	o Jump:								
	Q1	Q2	Q3	Q4					
	Decode	Read literal	Process	No					
		'n'	Data	operation					
<u>Exan</u>	<u>nple</u> : Before Instruc	HERE	BC 5						

PC	=	address	(HERE)	
After Instruction				
If CARRY	=	1;		
PC	=	address	(HERE +	- 12)
If CARRY	=	0;		
PC	=	address	(HERE +	2)

BTF	SC	Bit Test Fi	le, Skip if Cl	ear	BTFSS	Bit Test Fil	e, Skip if Se	t
Synta	IX:	BTFSC f, b	{,a}		Syntax:	BTFSS f, b	{,a}	
Opera	ands:	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]			Operands:	0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]		
Opera	ation:	skip if (f)	= 0		Operation:	skip if (f)	= 1	
Statu	s Affected:	None			Status Affected:	None		
Enco	ding:	1011	bbba ff	ff ffff	Encoding:	1010	bbba ffi	f ffff
Desc	ription:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the ASR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details		Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for dotain			
Word	s:	1			Words:	1		
Cycle	s:	1(2) Note: 3 cy by a	cles if skip and 2-word instruc	l followed ction.	Cycles:	1(2) Note: 3 cyd by a	cles if skip and 2-word instruc	followed tion.
QC	cle Activity:				Q Cycle Activity	:		
i	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Decode	Read	Process	No	Decode	Read	Process	No
lfski	n:	register i	Dala	operation	lf skin:	register i	Dala	operation
	ρ. Ο1	02	03	04	01	02	03	04
	No	No	No	No	No	No	No	No
	operation	operation	operation	operation	operation	operation	operation	operation
lf ski	p and followed	by 2-word ins	truction:		If skip and follov	ved by 2-word in	struction:	. <u> </u>
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	No	No	No	No	No	No	No	No
	operation	operation	operation	operation	operation	operation	operation	operation
	No	No	No	No	No	No	No	No
	operation	operation	operation	operation	operation	operation	operation	operation
<u>Exam</u>	i <u>ple</u> : Before Instruct	HERE B FALSE : TRUE :	FFSC FLAG	B, 1, 0	<u>Example</u> : Before Instr	HERE F FALSE : TRUE : uction	BTFSS FLA	G, 1, 0
	PC	= add	ress (HERE)		PC	= ad	dress (HERE)
	After Instructio	n A ô			After Instruc	tion		
	If FLAG< PC If FLAG< PC	1> = 0; = add 1> = 1; = add	ress (TRUE) ress (FALSE)	If FLA(P If FLA(P	G < 1> = 0; C = ad G < 1> = 1; C = ad	dress (FALS) dress (TRUE)	Ξ)

© 2010-2016 Microchip Technology Inc.

FIGURE 28-101: PIC18LF2X/4XK22 TYPICAL LF-INTOSC FREQUENCY vs. VDD Min/Max = 31.25 kHz ± 15%, T = -40°C to +85°C

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>[X]</u> ⁽²⁾ -	¥	<u>/xx</u>	<u>xxx</u>	Exa	mple	es:
Device	Tape and Reel Option	Temperatur Range	e Package	Pattern	a) b)	PIC PDI PIC pac	18(L)F45K22-E/P 301 = Extended temp., P package, QTP pattern #301. 18F46K22-I/SO = Industrial temp., SOIC kage.
Device:	PIC18F23K22, PIC18F24K22, PIC18F25K22, PIC18F26K22, PIC18F43K22, PIC18F44K22, PIC18F45K22, PIC18F46K22,	PIC18LF23K22 PIC18LF24K22 PIC18LF25K22 PIC18LF26K22 PIC18LF43K22 PIC18LF44K22 PIC18LF46K22			c) d)	PIC pac PIC tem	18F46K22-E/P = Extended temp., PDIP kage. 18F46K22T-I/ML = Tape and reel, Industrial p., QFN package.
Tape and Reel Option:	Blank = standa T = Tape and F	urd packaging (tu Reel ^{(1),} (2)	ibe or tray)				
Temperature Range: Package:	$E = -40^{\circ}$ $I = -40^{\circ}$ $ML = QFN$ $MV = UQF$ $P = PDII$ $PT = TQF$ $SO = SOH$ $SP = Skin$ $SS = SSC$	°C to +125°C °C to +85°C °N °P (Thin Quad F C ny Plastic DIP P	(Extended) (Industrial) atpack)		Note	e 1: 2:	Tape and Reel option is available for ML, MV, PT, SO and SS packages with industrial Temperature Range only. Tape and Reel identifier only appears in catalog part number description. This identifier is used for ordering purposes and is not printed on the device package.
Pattern:	QTP, SQTP, Co (blank otherwis	ode or Special R se)	equirements				