

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f44k22t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Nu	ımber				
PDIP, SOIC	QFN, UQFN	Pin Name	Pin Type	Buffer Type	Description
9	6	RA7/CLKI/OSC1			
		RA7	I/O	TTL	Digital I/O.
		CLKI	Ι	CMOS	External clock source input. Always associated with pin function OSC1.
		OSC1	Ι	ST	Oscillator crystal input or external clock source input ST buffer when configured in RC mode; CMOS otherwise.
21	18	RB0/INT0/CCP4/FLT0/SRI/SS2/AN12	2		
		RB0	I/O	TTL	Digital I/O.
		ΙΝΤΟ	I	ST	External interrupt 0.
		CCP4	I/O	ST	Capture 4 input/Compare 4 output/PWM 4 output.
		FLTO	I	ST	PWM Fault input for ECCP Auto-Shutdown.
		SRI	I	ST	SR latch input.
		SS2	1	TTL	SPI slave select input (MSSP).
		AN12	I	Analog	Analog input 12.
22	19	RB1/INT1/P1C/SCK2/SCL2/C12IN3-/	'AN10		
		RB1	I/O	TTL	Digital I/O.
		INT1	Ι	ST	External interrupt 1.
		P1C	0	CMOS	Enhanced CCP1 PWM output.
		SCK2	I/O	ST	Synchronous serial clock input/output for SPI mode (MSSP).
		SCL2	I/O	ST	Synchronous serial clock input/output for I ² C mode (MSSP).
		C12IN3-	Ι	Analog	Comparators C1 and C2 inverting input.
		AN10	Ι	Analog	Analog input 10.
23	20	RB2/INT2/CTED1/P1B/SDI2/SDA2/A	N8		
		RB2	I/O	TTL	Digital I/O.
		INT2	Ι	ST	External interrupt 2.
		CTED1	Ι	ST	CTMU Edge 1 input.
		P1B	0	CMOS	Enhanced CCP1 PWM output.
		SDI2	Ι	ST	SPI data in (MSSP).
		SDA2	I/O	ST	I ² C data I/O (MSSP).
		AN8	I	Analog	Analog input 8.
24	21	RB3/CTED2/P2A/CCP2/SDO2/C12IN	2-/AN9)	
		RB3	I/O	TTL	Digital I/O.
		CTED2	Т	ST	CTMU Edge 2 input.
		P2A	0	CMOS	Enhanced CCP2 PWM output.
		CCP2 ⁽²⁾	I/O	ST	Capture 2 input/Compare 2 output/PWM 2 output.
		SDO2	0	—	SPI data out (MSSP).
		C12IN2-	I	Analog	Comparators C1 and C2 inverting input.
		AN9	I	Analog	Analog input 9.
l edend.					t or output: ST - Schmitt Trigger input with CMOS levels:

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

2.4 Clock Source Modes

Clock Source modes can be classified as external or internal.

- External Clock modes rely on external circuitry for the clock source. Examples are: Clock modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC mode) circuits.
- Internal clock sources are contained internally within the Oscillator block. The Oscillator block has three internal oscillators: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC), 500 kHz Medium-Frequency Internal Oscillator (MFINTOSC) and the 31.25 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS<1:0>) bits of the OSCCON register. See **Section 2.11 "Clock Switching"** for additional information.

2.5 External Clock Modes

2.5.1 OSCILLATOR START-UP TIMER (OST)

When the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module. When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 2-2.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see **Section 2.12 "Two-Speed Clock Start-up Mode"**).

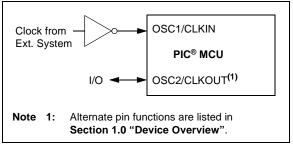
TABLE 2-2. USCILLA	TOR DELAT LAA		
Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR/BOR	LFINTOSC MFINTOSC HFINTOSC	31.25 kHz 31.25 kHz to 500 kHz 31.25 kHz to 16 MHz	Oscillator Start-up Delay (Tiosc_st)
Sleep/POR/BOR	EC, RC	DC – 64 MHz	2 instruction cycles
LFINTOSC (31.25 kHz)	EC, RC	DC – 64 MHz	1 cycle of each
Sleep/POR/BOR	LP, XT, HS	32 kHz to 40 MHz	1024 Clock Cycles (OST)
Sleep/POR/BOR	4xPLL	32 MHz to 64 MHz	1024 Clock Cycles (OST) + 2 ms
LFINTOSC (31.25 kHz)	LFINTOSC HFINTOSC	31.25 kHz to 16 MHz	1 μs (approx.)

TABLE 2-2: OSCILLATOR DELAY EXAMPLES

2.5.2 EC MODE

The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 2-5 shows the pin connections for EC mode.

The External Clock (EC) offers different power modes, Low Power (ECLP), Medium Power (ECMP) and High Power (ECHP), selectable by the FOSC<3:0> bits. Each mode is best suited for a certain range of frequencies. The ranges are:


- ECLP below 500 kHz
- ECMP between 500 kHz and 16 MHz
- ECHP above 16 MHz

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep.

Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

EXTERNAL CLOCK (EC) MODE OPERATION

2.7.1 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a 31.25 kHz internal clock source. The LFINTOSC is not tunable, but is designed to be stable across temperature and voltage. See **Section 27.0 "Electrical Specifications"** for the LFINTOSC accuracy specifications.

The output of the LFINTOSC can be a clock source to the primary clock or the INTOSC clock (see Figure 2-1). The LFINTOSC is also the clock source for the Powerup Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

2.7.2 FREQUENCY SELECT BITS (IRCF)

The HFINTOSC (16 MHz) and MFINTOSC (500 MHz) outputs connect to a divide circuit that provides frequencies of 16 MHz to 31.25 kHz. These divide circuit frequencies, along with the 31.25 kHz LFINTOSC output, are multiplexed to provide a single INTOSC clock output (see Figure 2-1). The IRCF<2:0> bits of the OSCCON register, the MFIOSEL bit of the OSCCON2 register and the INTSRC bit of the OSCTUNE register, select the output frequency of the internal oscillators. One of eight frequencies can be selected via software:

- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz (default after Reset)
- 500 kHz (MFINTOSC or HFINTOSC)
- 250 kHz (MFINTOSC or HFINTOSC)
- 31 kHz (LFINTOSC, MFINTOSC or HFINTOSC)

2.7.3 INTOSC FREQUENCY DRIFT

The factory calibrates the internal oscillator block outputs (HFINTOSC/MFINTOSC) for 16 MHz/500 kHz. However, this frequency may drift as VDD or temperature changes. It is possible to adjust the HFINTOSC/MFINTOSC frequency by modifying the value of the TUN<5:0> bits in the OSCTUNE register. This has no effect on the LFINTOSC clock source frequency.

Tuning the HFINTOSC/MFINTOSC source requires knowing when to make the adjustment, in which direction it should be made and, in some cases, how large a change is needed. Three possible compensation techniques are discussed in the following sections. However, other techniques may be used.

2.7.3.1 Compensating with the EUSART

An adjustment may be required when the EUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high; to adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low; to compensate, increment OSCTUNE to increase the clock frequency.

2.7.3.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

2.7.3.3 Compensating with the CCP Module in Capture Mode

A CCP module can use free running Timer1, Timer3 or Timer5 clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast; to compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow; to compensate, increment the OSCTUNE register.

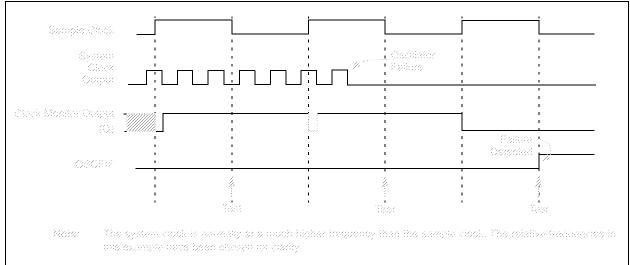


TABLE 2-4: REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	109
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
OSCCON	IDLEN		IRCF<2:0>		OSTS	HFIOFS	SCS	30	
OSCCON2	PLLRDY	SOSCRUN	—	MFIOSEL	SOSCGO	PRISD	MFIOFS	LFIOFS	31
OSCTUNE	INTSRC	PLLEN			TUN<5:()>			35
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by clock sources.

TABLE 2-5: CONFIGURATION REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3		Bit 1	Bit 0	Register on Page
CONFIG1H	IESO	FCMEN	PRICLKEN	PLLCFG		FOSC	345		
CONFIG2L	—	—	_	BOR∖	/<1:0>	BOREI	N<1:0>	PWRTEN	346
CONFIG3H	MCLRE	_	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

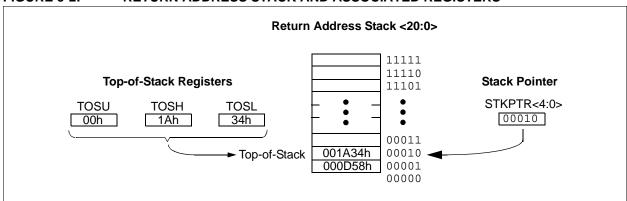
Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for clock sources.

	00111								
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG2L				BORV	<1:0>	BOREN<1:0>		PWRTEN	346
CONFIG2H	_	_		WDPS	6<3:0>		WDTE	347	
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348
CONFIG4L	DEBUG	XINST				LVP		STRVEN	349

TABLE 4-5: CONFIGURATION REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for Resets.

The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the Top-of-Stack (TOS) Special File Registers. Data can also be pushed to, or popped from the stack, using these registers.


A CALL type instruction causes a push onto the stack; the Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack; the contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.

The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits indicate if the stack is full or has overflowed or has underflowed.

5.1.2.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, hold the contents of the stack location pointed to by the STKPTR register (Figure 5-2). This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

The user must disable the Global Interrupt Enable (GIE) bits while accessing the stack to prevent inadvertent stack corruption.

FIGURE 5-2: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

5.1.2.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 5-1) contains the Stack Pointer value, the STKFUL (stack full) Status bit and the STKUNF (Stack Underflow) Status bits. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR.

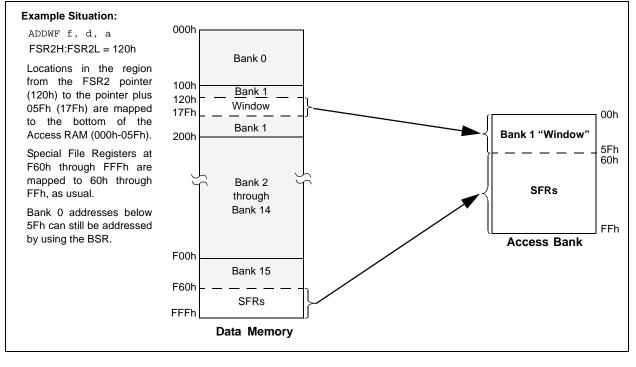
The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to **Section 24.1 "Configuration Bits"** for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31.

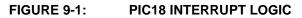
When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs.

Note: Returning a value of zero to the PC on an underflow has the effect of vectoring the program to the Reset vector, where the stack conditions can be verified and appropriate actions can be taken. This is not the same as a Reset, as the contents of the SFRs are not affected.

5.7.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE


The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of Access RAM (00h to 5Fh) are mapped. Rather than containing just the contents of the bottom section of Bank 0, this mode maps the contents from a user defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see Section 5.4.2 "Access Bank"). An example of Access Bank remapping in this addressing mode is shown in Figure 5-12.

Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use direct addressing as before.


5.8 PIC18 Instruction Execution and the Extended Instruction Set

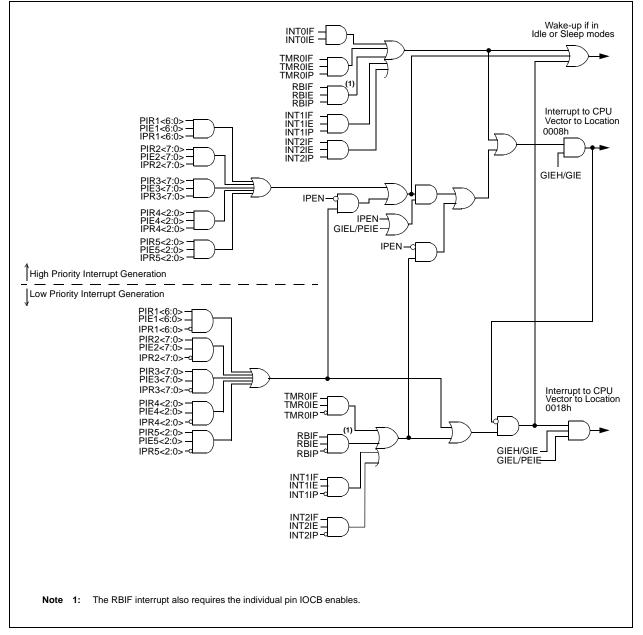

Enabling the extended instruction set adds eight additional commands to the existing PIC18 instruction set. These instructions are executed as described in **Section 25.2 "Extended Instruction Set"**.

FIGURE 5-12: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

Note: Do not use the MOVFF instruction to modify any of the interrupt control registers while **any** interrupt is enabled. Doing so may cause erratic microcontroller behavior.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—		150
ECCP1AS	CCP1ASE		CCP1AS<2:0>		PSS1A0	C<1:0>	PSS1B	D<1:0>	202
CCP1CON	P1M<	1:0>	DC1B<	1:0>		CCP1M<3:0)>		198
ECCP2AS	CCP2ASE		CCP2AS<2:0>		PSS2A0	C<1:0>	PSS2B	D<1:0>	202
CCP2CON	P2M<	1:0>	DC2B<	1:0>		CCP2M<3:0)>		198
CTMUCONH	CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	323
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	152
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	148
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SLRCON	_		_	SLRE ⁽¹⁾	SLRD ⁽¹⁾	SLRC	SLRB	SLRA	153
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM<3:0	253		
T1CON	TMR1CS	5<1:0>	T1CKPS	<1:0>	T1SOSCEN	T1SYNC	T1RD16	TMR10N	166
T3CON	TMR3CS	5<1:0>	T3CKPS-	<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	166
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GS	S<1:0>	167
T5CON	TMR5CS	5<1:0>	T5CKPS	T5CKPS<1:0>		T5SYNC	T5RD16	TMR5ON	166
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269

TABLE 10-9: REGISTERS ASSOCIATED WITH PORTC

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTC.

Note 1: Available on PIC18(L)F4XK22 devices.

TABLE 10-10: CONFIGURATION REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTC.

TABLE 10-11: PORTD I/O SUMMARY

Pin Name	Function	TRIS Setting	ANSEL setting	Pin Type	Buffer Type	Description
RD0/SCK2/SCL2/AN20	RD0	0	0	0	DIG	LATD<0> data output; not affected by analog input.
		1	0	I	ST	PORTD<0> data input; disabled when analog input enabled.
	SCK2	0	0	0	DIG	MSSP2 SPI Clock output.
		1	0	I	ST	MSSP2 SPI Clock input.
	SCL2	0	0	0	DIG	MSSP2 I ² C Clock output.
		1	0	I	l ² C	MSSP2 I ² C Clock input.
	AN20	1	1	I	AN	Analog input 20.
RD1/CCP4/SDI2/SDA2/	RD1	0	0	0	DIG	LATD<1> data output; not affected by analog input.
AN21		1	0	I	ST	PORTD<1> data input; disabled when analog input enabled.
	CCP4	0	0	0	DIG	Compare 4 output/PWM 4 output.
		1	0	I	ST	Capture 4 input.
	SDI2	1	0	I	ST	MSSP2 SPI data input.
	SDA2	0	0	0	DIG	MSSP2 I ² C data output.
		1	0	I	l ² C	MSSP2 I ² C data input.
	AN21	1	1	I	AN	Analog input 21.
RD2/P2B/AN22	RD2	0	0	0	DIG	LATD<2> data output; not affected by analog input.
		1	0	I	ST	PORTD<2> data input; disabled when analog input enabled.
	P2B ⁽¹⁾	0	0	0	DIG	Enhanced CCP2 PWM output 2.
	AN22	1	1	I	AN	Analog input 22.
RD3/P2C/SS2/AN23	RD3	0	0	0	DIG	LATD<3> data output; not affected by analog input.
		1	0	I	ST	PORTD<3> data input; disabled when analog input enabled.
	P2C	0	0	0	DIG	Enhanced CCP2 PWM output 4.
	SS2	1	0	I	TTL	MSSP2 SPI slave select input.
	AN23	1	1	I	AN	Analog input 23.
RD4/P2D/SDO2/AN24	RD4	0	0	0	DIG	LATD<4> data output; not affected by analog input.
		1	0	I	ST	PORTD<4> data input; disabled when analog input enabled.
	P2D	0	0	0	DIG	Enhanced CCP2 PWM output 3.
	SDO2	0	0	0	DIG	MSSP2 SPI data output.
	AN24	1	1	I	AN	Analog input 24.
RD5/P1B/AN25	RD5	0	0	0	DIG	LATD<5> data output; not affected by analog input.
		1	0	I	ST	PORTD<5> data input; disabled when analog input enabled.
	P1B	0	0	0	DIG	Enhanced CCP1 PWM output 2.
	AN25	1	1	I	AN	Analog input 25.

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I^2C = Schmitt Trigger input with I^2C .

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

FIGURE 15-9:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
	\ \										
	2 2 2 2						- 				· · · ·
- 50%x - (CKF = 0, - CKF = 0)	·										3
980908-00 SURPARATE VIREA	•		2 2 2 2 4	2 5 5 5 7	4 6 5 6 	· · · · · · · · · · · · · · · · · · · ·	2 2 2 2 2 2 2	· · · · · · · · · · · · · · · · · · · ·	<pre><</pre>		• • • • •
- \$5X0x - \$50%		1. 232. 7 			1933 4. 	× 88.3	7. 394. 2.	/		68 0 Ma	· · · · · · · · · · · · · · · · · · ·
incuá Secoles		- 1997 - 1995 - 7 - 1996 - 1997 - 1996 - 1997				, "////// . 4, .				//// -3	· ·
- SSPXH			2		(·	2		5		
inierrup: Pieg SSPXSR to SSPXSR)F	•	· · ·	2 2 2 2	 2 2 2	\$ 5 5 5 • • • • • • • • • • • • • • • • •	· · · ·	2		6 6 5 6 5 5 5	: //p.	
Varias Codiscon detection activa									. ,		~~

FIGURE 15-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

								/			
SSx Nex Optional										/	
SCKx (CKP = <u>0</u> CKE = 1)	, , , , ,										
SCKx (CKP = 1 CKE = 1)	; ; ; ;										
Write to SSPxBUF	 	1 1 1 1 1	1 1 1 1	 	 	 	1 1 1 1	 			
SDOx	<u> </u>	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
SDIx ———		bit 7	\bigcirc		\sim		\rightarrow	\sim	bit 0	, , , , ,	
Input Sample	1 1 1 1	1	1	1	1	1	1	1	1		
SSPxIF Interrupt Flag	1 1 1 1 1			, , , , ,	 	, , , , ,	1 1 1 1 1	 			
SSPxSR to SSPxBUF	1 1 1 1 1	1 1 1 1 1		 	1 1 1 1	 	, , , ,	1 1 1 1		×	
Wille Collesion detection police	1	•			•		•				

20.0 SR LATCH

The module consists of a single SR latch with multiple Set and Reset inputs as well as separate latch outputs. The SR latch module includes the following features:

- Programmable input selection
- SR latch output is available internally/externally
- Selectable Q and \overline{Q} output
- Firmware Set and Reset

The SR latch can be used in a variety of analog applications, including oscillator circuits, one-shot circuit, hysteretic controllers, and analog timing applications.

20.1 Latch Operation

The latch is a Set-Reset latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. The latch can be set or reset by:

- Software control (SRPS and SRPR bits)
- Comparator C1 output (sync_C1OUT)
- Comparator C2 output (sync_C2OUT)
- SRI Pin
- Programmable clock (DIVSRCLK)

The SRPS and the SRPR bits of the SRCON0 register may be used to set or reset the SR latch, respectively. The latch is Reset-dominant. Therefore, if both Set and Reset inputs are high, the latch will go to the Reset state. Both the SRPS and SRPR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch Set or Reset operation.

The output from Comparator C1 or C2 can be used as the Set or Reset inputs of the SR latch. The output of either Comparator can be synchronized to the Timer1 clock source. See Section 18.0 "Comparator Module" and Section 12.0 "Timer1/3/5 Module with Gate Control" for more information.

An external source on the SRI pin can be used as the Set or Reset inputs of the SR latch.

An internal clock source, DIVSRCLK, is available and it can periodically set or reset the SR latch. The SRCLK<2:0> bits in the SRCON0 register are used to select the clock source period. The SRSCKE and SRRCKE bits of the SRCON1 register enable the clock source to set or reset the SR latch, respectively.

20.2 Latch Output

The SRQEN and SRNQEN bits of the SRCON0 register control the Q and \overline{Q} latch outputs. Both of the SR latch outputs may be directly output to I/O pins at the same time. Control is determined by the state of bits SRQEN and SRNQEN in the SRCON0 register.

The applicable TRIS bit of the corresponding port must be cleared to enable the port pin output driver.

20.3 DIVSRCLK Clock Generation

The DIVSRCLK clock signal is generated from the peripheral clock which is pre-scaled by a value determined by the SRCLK<2:0> bits. See Figure 20-2 and Table 20-1 for additional detail.

20.4 Effects of a Reset

Upon any device Reset, the SR latch is not initialized, and the SRQ and SRNQ outputs are unknown. The user's firmware is responsible to initialize the latch output before enabling it to the output pins.

23.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

The PIC18(L)F2X/4XK22 devices have a High/Low-Voltage Detect module (HLVD). This is a programmable circuit that sets both a device voltage trip point and the direction of change from that point. If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution branches to the interrupt vector address and the software responds to the interrupt. The High/Low-Voltage Detect Control register (Register 23-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

The module's block diagram is shown in Figure 23-1.

23.1 Register - HLVD Control

REGISTER 23-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

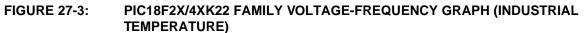
R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
VDIRMAG	BGVST	IRVST	HLVDEN		HLVDI	_<3:0>	
bit 7							bit 0

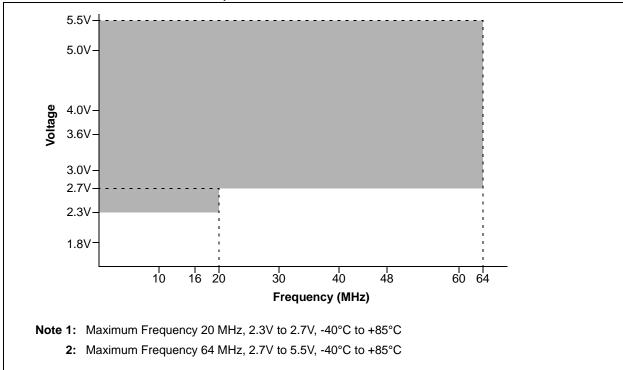
Legend:				
R = Readable bitW = Writable bit-n = Value at POR'1' = Bit is set		U = Unimplemented bit,	read as '0'	
		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	VDIRMA	G: Voltage Direction Magnit	ude Select bit	
		U	ls or exceeds trip point (HLVD Is or falls below trip point (HLV	
bit 6	BGVST:	Band Gap Reference Voltag	es Stable Status Flag bit	
		nal band gap voltage referer nal band gap voltage referer		
bit 5	IRVST:	nternal Reference Voltage S	table Flag bit	
	0 = Indi	•	logic will not generate the inte	flag at the specified voltage rang errupt flag at the specified voltag
bit 4	HLVDEN	I: High/Low-Voltage Detect F	Power Enable bit	
	1 = HLV	′D enabled ′D disabled		
bit 3-0	HLVDL<	3:0>: Voltage Detection Lev	el bits ⁽¹⁾	
	1111 = 	-	l (input comes from the HLVDI	N pin)
	0000 =	Vinimum setting		
Note 1.		-5 for specifications		

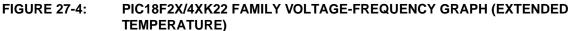
Note 1: See Table 27-5 for specifications.

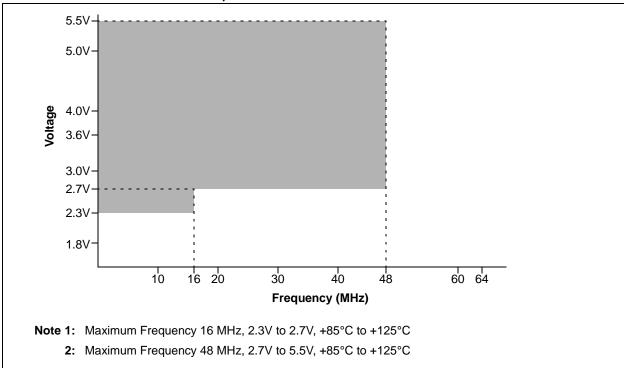
R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
MCLRE		P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX
bit 7				·			bit (
Legend:							
R = Reada	able bit	P = Program	nable bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value	when device is un	programmed		x = Bit is unki	nown		
bit 7		R Pin Enable					
		enabled; RE3					
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	P2BMX: P2B 1 = P2B is on P2B is on 0 = P2B is on	RD2 ⁽²⁾					
bit 4	T3CMX: Time 1 = T3CKI is 0 0 = T3CKI is 0		MUX bit				
bit 3	1 = HFINTOS		ng the CPU wi	thout waiting fo		to stabilize	
bit 2	0 = CCP3 inp	CP3 MUX bit ut/output is mu ut/output is mu ut/output is mu	ltiplexed with	RC6 ⁽¹⁾			
bit 1	1 = ANSELB<		1, PORTB<5:	0> pins are cor 0> pins are cor			
bit 0		P2 MUX bit ut/output is mu ut/output is mu					
Note 1:	PIC18(L)F2XK22	devices only.					
2:	PIC18(L)F4XK22	devices only.					

REGISTER 24-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH

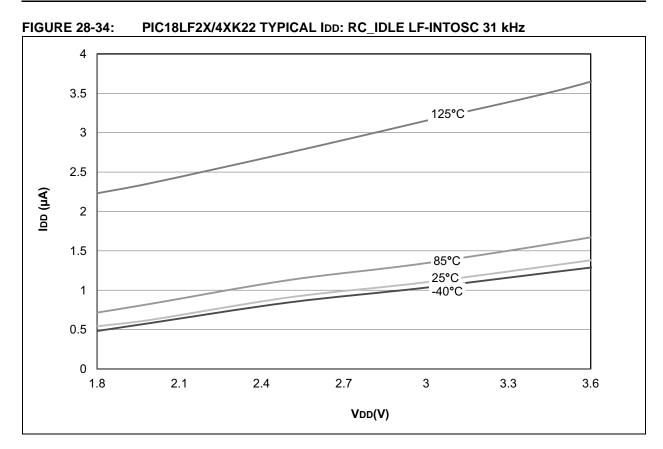

POP	Pop Top of Return Stack	PUSH	Push Top of Return Stack
Syntax:	POP	Syntax:	PUSH
Operands:	None	Operands:	None
Operation:	$(TOS) \rightarrow bit bucket$	Operation:	$(PC + 2) \rightarrow TOS$
Status Affected:	None	Status Affected:	None
Encoding:	0000 0000 0000 0110	Encoding:	0000 0000 0000 0101
Description:	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.	Description: Words:	The PC + 2 is pushed onto the top of the return stack. The previous TOS value is pushed down on the stack. This instruction allows implementing a software stack by modifying TOS and then pushing it onto the return stack.
Words:	1	Cycles:	1
Cycles:	1	Q Cycle Activity:	
Q Cycle Activity:		Q1	Q2 Q3 Q4
Q1 Decode	Q2Q3Q4NoPOP TOSNooperationvalueoperation	Decode	PUSH No No PC + 2 onto operation operation return stack
Example:	POP Goto new	Example: Before Instruc	PUSH
Before Instruct TOS Stack (1 I	ion = 0031A2h evel down) = 014332h	TOS PC	= 345Ah = 0124h
After Instructio TOS PC	n = 014332h = NEW	After Instructio PC TOS Stack (1	on = 0126h = 0126h level down) = 345Ah


RET	RETURN Return from Subroutine						
Synta	ax:	RETURN	{S}				
Oper	ands:	s ∈ [0,1]					
Oper	theration: $(TOS) \rightarrow PC,$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow Status,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged						
Statu	is Affected:	None					
Enco	oding:	0000	0000	0001	001s		
		popped and is loaded in 's'= 1, the c registers, W are loaded registers, W 's' = 0, no c occurs (def	to the pr contents /S, STAT into their /, STATL ipdate of	ogram co of the sha USS and correspo IS and BS	unter. If adow I BSRS, onding SR. If		
Word	ls:	1	1				
Cycle	es:	2					
QC	ycle Activity:						
	Q1	Q2	Q	3	Q4		
	Decode	No operation	Proce Dat		POP PC om stack		
	No	No	No)	No		
	operation	operation	opera	tion c	peration		

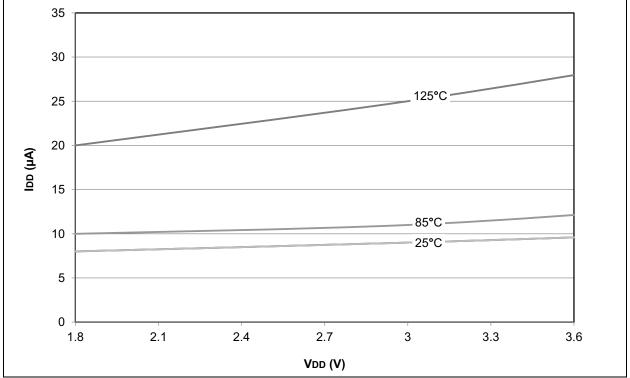

Example:	RETURN


After Instruction: PC = TOS

RLCF	Rotate L	eft f through		
Syntax:	RLCF f	{,d {,a}}		
Operands:	$0 \le f \le 255$			
	d ∈ [0,1]			
	a ∈ [0,1]			
Operation:		lest <n +="" 1="">,</n>		
	$(f < 7 >) \rightarrow 0$	С,		
	$(C) \rightarrow des$	t<0>		
Status Affected:	C, N, Z			
Encoding:	0011	01da fff	ff ffff	
in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset				
	set is enab operates in Addressin f ≤ 95 (5Fr "Byte-Oric Instruction	oled, this instru Indexed Liter g mode whene I). See Sectior ented and Bit- Ins in Indexed I	ction al Offset ver 1 25.2.3 Oriented	
	set is enat operates in Addressin f ≤ 95 (5Fr "Byte-Ori e	bled, this instru n Indexed Liter g mode whene n). See Section ented and Bit- ns in Indexed I details.	ction al Offset ver 1 25.2.3 Oriented Literal Offse	
	set is enab operates in Addressin f ≤ 95 (5Fr "Byte-Oric Instruction	oled, this instru Indexed Liter g mode whene I). See Sectior ented and Bit- Ins in Indexed I	ction al Offset ver 1 25.2.3 Oriented Literal Offse	
Words:	set is enab operates in Addressin f ≤ 95 (5FF "Byte-Oria Instruction Mode" for	bled, this instru n Indexed Liter g mode whene n). See Section ented and Bit- ns in Indexed I details.	ction al Offset ver 1 25.2.3 Oriented Literal Offse	
Words: Cycles:	set is enab operates in Addressing f ≤ 95 (5FH "Byte-Oric Instruction Mode" for	bled, this instru n Indexed Liter g mode whene n). See Section ented and Bit- ns in Indexed I details.	ction al Offset ver 1 25.2.3 Oriented Literal Offse	
Cycles:	set is enable operates in Addressing $f \le 95$ (5FF "Byte-Orie Instruction Mode" for C	bled, this instru n Indexed Liter g mode whene n). See Section ented and Bit- ns in Indexed I details.	ction al Offset ver 1 25.2.3 Oriented Literal Offse	
	set is enab operates in Addressing f ≤ 95 (5FH "Byte-Oric Instruction Mode " for C 1	oled, this instru n Indexed Liter g mode whene a). See Sectior ented and Bit- ns in Indexed I details.	ction al Offset ver 1 25.2.3 Oriented Literal Offse	
Cycles: Q Cycle Activity:	set is enable operates in Addressing $f \le 95$ (5FF "Byte-Orie Instruction Mode" for C	oled, this instru n Indexed Liter g mode whene n). See Sectior ented and Bit- ns in Indexed I details.	ction al Offset ver 25.2.3 Oriented Literal Offse	
Cycles: Q Cycle Activity: Q1	set is enab operates in Addressing f ≤ 95 (5FF "Byte-Oric Instruction Mode" for C 1 1 2	oled, this instru n Indexed Liter g mode whene a). See Sectior ented and Bit- ns in Indexed I details.	ction al Offset ver 25.2.3 Oriented Literal Offse	
Cycles: Q Cycle Activity: Q1 Decode	set is enab operates in Addressin, f ≤ 95 (5FF "Byte-Orie Instructio Mode " for C 1 1 1 Q2 Read register 'f'	oled, this instru n Indexed Liter g mode whene i). See Sectior ented and Bit- ns in Indexed I details. ← registe Q3 Process Data	ction al Offset ver 25.2.3 Oriented Literal Offse r f Q4 Write to destination	
Cycles: Q Cycle Activity: Q1 Decode <u>Example</u> :	set is enab operates in Addressing f ≤ 95 (5FF "Byte-Orie Instruction Mode" for C 1 1 1 Q2 Read register 'f' RLCF	oled, this instru n Indexed Liter g mode whene b). See Sectior ented and Bit- ns in Indexed I details. Tegiste Q3 Process	ction al Offset ver 25.2.3 Oriented Literal Offse r f Q4 Write to destination	
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct	set is enab operates in Addressing f ≤ 95 (5FF "Byte-Orie Instruction Mode" for C 1 1 1 Q2 Read register 'f' RLCF	oled, this instru n Indexed Liter g mode whene b). See Sectior ented and Bit- ns in Indexed I details.	ction al Offset ver a 25.2.3 Oriented Literal Offset r f Q4 Write to destination	
Cycles: Q Cycle Activity: Q1 Decode <u>Example</u> : Before Instruct REG	set is enab operates in Addressing f ≤ 95 (5FF "Byte-Orie Instruction Mode" for C 1 1 1 Q2 Read register 'f' RLCF ttion = 1110	oled, this instru n Indexed Liter g mode whene b). See Sectior ented and Bit- ns in Indexed I details.	ction al Offset ver a 25.2.3 Oriented Literal Offset r f Q4 Write to destination	
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C	set is enab operates in Addressing $f \le 95$ (5FF "Byte-Orie Instruction Mode" for C 1 1 1 Q2 Read register 'f' RLCF ttion = 1110 = 0	oled, this instru n Indexed Liter g mode whene b). See Sectior ented and Bit- ns in Indexed I details.	ction al Offset ver a 25.2.3 Oriented Literal Offset r f Q4 Write to destination	
Cycles: Q Cycle Activity: Q1 Decode <u>Example</u> : Before Instruct REG	set is enab operates in Addressing $f \le 95$ (5FF "Byte-Orie Instruction Mode" for C 1 1 1 Q2 Read register 'f' RLCF etion = 1110 = 0	oled, this instru n Indexed Liter g mode whene a). See Sectior ented and Bit- ns in Indexed I details.	ction al Offset ver a 25.2.3 Oriented Literal Offset r f Q4 Write to destination	
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction	set is enab operates in Addressing $f \le 95$ (5FF "Byte-Orie Instruction Mode" for C 1 1 1 Q2 Read register 'f' RLCF ttion = 1110 = 0	oled, this instru n Indexed Liter g mode whene b). See Sectior ented and Bit- ns in Indexed I details.	ction al Offset ver 25.2.3 Oriented Literal Offse r f Q4 Write to destination	

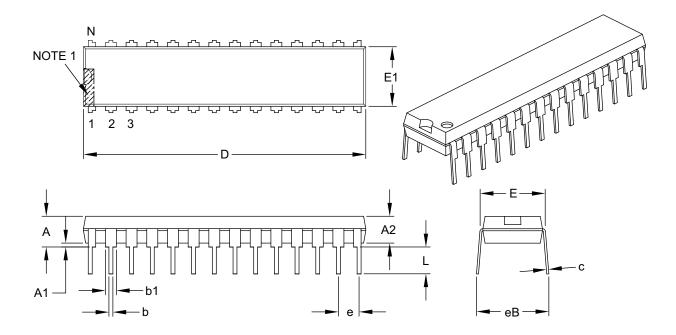


Param. No.	Symbol	Charact	eristic	Min	Max	Units	Conditions
100	Thigh	Clock High Time	100 kHz mode	4.0	—	μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY	—		
101	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	Must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY	—		
102	TR	SDA and SCL Rise	100 kHz mode	—	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition	100 kHz mode	4.7	_	μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	_	μS	Start condition
91	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated
106	THD:DA	Data Input Hold	100 kHz mode	0	—	ns	
	Т	Time	400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input Setup	100 kHz mode	250	—	ns	(Note 2)
		Time	400 kHz mode	100	—	ns	
92	TSU:STO	Stop Condition	100 kHz mode	4.7	_	μS	
		Setup Time	400 kHz mode	0.6	—	μS	
109	ΤΑΑ	Output Valid from	100 kHz mode	—	3500	ns	(Note 1)
		Clock	400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
D102	Св	Bus Capacitive Load	ding	—	400	pF	


TABLE 27-16:	I ² C BUS DATA	REQUIREMENTS	(SLAVE MODE)
--------------	---------------------------	--------------	--------------

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A fast mode I²C bus device can be used in a standard mode I²C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification), before the SCL line is released.


© 2010-2016 Microchip Technology Inc.

29.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
	Dimension Limits		NOM	MAX	
Number of Pins	N	28			
Pitch	e	.100 BSC			
Top to Seating Plane	A	_	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	_	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	-	.430	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B