

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k22-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2-4: REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	109
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
OSCCON	IDLEN		IRCF<2:0>		OSTS	HFIOFS	SCS<1:0>		30
OSCCON2	PLLRDY	SOSCRUN	—	MFIOSEL	SOSCGO	PRISD	MFIOFS	LFIOFS	31
OSCTUNE	INTSRC	PLLEN		TUN<5:0>					
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by clock sources.

TABLE 2-5: CONFIGURATION REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CONFIG1H	IESO	FCMEN	PRICLKEN	PLLCFG		FOSC<3:0>				
CONFIG2L	—	—	—	BORV<1:0>		BOREN<1:0>		PWRTEN	346	
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348	

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for clock sources.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP				
bit 7							bit 0				
Legend:	1.12										
R = Readable	e bit	W = Writable	bit	U = Unimplei	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7	SSP2IP: Svn	chronous Seria	l Port 2 Interr	upt Priority bit							
	1 = High price	pritv		apt :							
	0 = Low prio	rity									
bit 6	BCL2IP: Bus	Collision 2 Inte	errupt Priority	bit							
	1 = High pric	ority									
	0 = Low prio	ority									
bit 5	RC2IP: EUS	ART2 Receive	Interrupt Prior	ity bit							
	1 = High price	ority									
	0 = Low prio	ority									
bit 4	TX2IP: EUSA	ART2 Transmit	Interrupt Prio	rity bit							
	1 = High pric	ority									
h it 0		ority									
DIT 3		NU Interrupt P	lority dit								
	$\perp = Hign pric$	$\perp = Hign priority$									
hit 2		MR5 Gate Inter	runt Priority h	.it							
5112	1 = High price	ority	rupt i nonty c								
	0 = Low prio	ority									
bit 1	TMR3GIP: T	MR3 Gate Inter	rupt Priority b	oit							
	1 = High pric	ority									
	0 = Low prio	ority									
bit 0	TMR1GIP: T	MR1 Gate Inter	rupt Priority b	oit							
	1 = High pric	ority									
	0 = Low prio	rity									

REGISTER 9-16: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

A mismatch condition will continue to set the RBIF flag bit. Reading or writing PORTB will end the mismatch condition and allow the RBIF bit to be cleared. The latch holding the last read value is not affected by a MCLR nor Brown-out Reset. After either one of these Resets, the RBIF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set. Furthermore, since a read or write on a port affects all bits of that port, care must be taken when using multiple pins in Interrupt-on-change mode. Changes on one pin may not be seen while servicing changes on another pin.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

10.3.3 ALTERNATE FUNCTIONS

PORTB is multiplexed with several peripheral functions (Table 10-5). The pins have TTL input buffers. Some of these pin functions can be relocated to alternate pins using the Control fuse bits in CONFIG3H. RB5 is the default pin for P2B (28-pin devices). Clearing the P2BMX bit moves the pin function to RC0. RB5 is also the default pin for the CCP3/P3A peripheral pin. Clearing the CCP3MX bit moves the pin function to the RC6 pin (28-pin devices) or RE0 (40/44-pin devices).

Two other pin functions, T3CKI and CCP2/P2A, can be relocated from their default pins to PORTB pins by clearing the control fuses in CONFIG3H. Clearing T3CMX and CCP2MX moves the pin functions to RB5 and RB3, respectively.

Pin	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RB0/INT0/CCP4/	RB0	0	0	0	DIG	LATB<0> data output; not affected by analog input.
FLT0/SRI/SS2/ AN12		1	0	I	TTL	PORTB<0> data input; disabled when analog input enabled.
	INT0	1	0	I	ST	External interrupt 0.
	CCP4 ⁽³⁾	0	0	0	DIG	Compare 4 output/PWM 4 output.
		1	0	I	ST	Capture 4 input.
	FLT0	1	0	I	ST	PWM Fault input for ECCP auto-shutdown.
	SRI	1	0	I	ST	SR latch input.
	SS2 ⁽³⁾	1	0	I	TTL	SPI slave select input (MSSP2).
	AN12	1	1	I	AN	Analog input 12.
RB1/INT1/P1C/	RB1	0	0	0	DIG	LATB<1> data output; not affected by analog input.
SCK2/SCL2/ C12IN3-/AN10		1	0	Ι	TTL	PORTB<1> data input; disabled when analog input enabled.
	INT1	1	0	I	ST	External Interrupt 1.
	P1C ⁽³⁾	0	0	0	DIG	Enhanced CCP1 PWM output 3.
	SCK2 ⁽³⁾	0	0	0	DIG	MSSP2 SPI Clock output.
		1	0	I	ST	MSSP2 SPI Clock input.
	SCL2 ⁽³⁾	0	0	0	DIG	MSSP2 I ² C Clock output.
		1	0	I	l ² C	MSSP2 I ² C Clock input.
	C12IN3-	1	1	Ι	AN	Comparators C1 and C2 inverting input.
	AN10	1	1	Ι	AN	Analog input 10.

TABLE 10-5	PORTB I/O SUMMARY

Legend: AN = Analog input or output; TTL = TTL compatible input; $HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; <math>I^2C = Schmitt Trigger input with I^2C$.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

3: Function on PORTD and PORTE for PIC18(L)F4XK22 devices.

10.7 Port Analog Control

Most port pins are multiplexed with analog functions such as the Analog-to-Digital Converter and comparators. When these I/O pins are to be used as analog inputs it is necessary to disable the digital input buffer to avoid excessive current caused by improper biasing of the digital input. Individual control of the digital input buffers on pins which share analog functions is provided by the ANSELA, ANSELB, ANSELC, ANSELD and ANSELE registers. Setting an ANSx bit high will disable the associated digital input buffer and cause all reads of that pin to return '0' while allowing analog functions of that pin to operate correctly.

The state of the ANSx bits has no affect on digital output functions. A pin with the associated TRISx bit clear and ANSx bit set will still operate as a digital output but the input mode will be analog. This can cause unexpected behavior when performing readmodify-write operations on the affected port.

All ANSEL register bits default to '1' upon POR and BOR, disabling digital inputs for their associated port pins. All TRIS register bits default to '1' upon POR or BOR, disabling digital outputs for their associated port pins. As a result, all port pins that have an ANSEL register will default to analog inputs upon POR or BOR.

10.8 Port Slew Rate Control

The output slew rate of each port is programmable to select either the standard transition rate or a reduced transition rate of approximately 0.1 times the standard to minimize EMI. The reduced transition time is the default slew rate for all ports.

10.9	Register	Definitions –	Port Control
------	----------	----------------------	--------------

REGISTER 10-1: PORTX⁽¹⁾: PORTX REGISTER

R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x
Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0
bit 7							bit 0
l egend:							

Logonal		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
-n/n = Value at POR an	d BOR/Value at all other Resets	

bit 7-0 Rx<7:0>: PORTx I/O bit values⁽²⁾

Note 1: Register Description for PORTA, PORTB, PORTC and PORTD.

2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.

	-2. I OKI		LOISTEN					
U-0	U-0	U-0	U-0	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x	
	—	—	—	RE3 ⁽¹⁾	RE2 ^{(2), (3)}	RE1 ^{(2), (3)}	RE0 ^{(2), (3)}	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared		x = Bit is unknown					
-n/n = Value at	POR and BOF	R/Value at all o	ther Resets					

REGISTER 10-2: PORTE: PORTE REGISTER

bit 7-4	Unimplemented: Read as '0'
---------	----------------------------

bit 3 **RE3:** PORTE Input bit value⁽¹⁾

bit 2-0 **RE<2:0>:** PORTE I/O bit values^{(2), (3)}

Note 1: Port is available as input only when MCLRE = 0.

- 2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.
- 3: Available on PIC18(L)F4XK22 devices.

REGISTER 10-3: ANSELA – PORTA ANALOG SELECT REGISTER

U-0	U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-6	Unimplemented: Read as '0'
bit 5	ANSA5: RA5 Analog Select bit
	 1 = Digital input buffer disabled 0 = Digital input buffer enabled
bit 4	Unimplemented: Read as '0'
bit 3-0	ANSA<3:0>: RA<3:0> Analog Select bit
	1 = Digital input buffer disabled

0 = Digital input buffer enabled

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	
—	—	—	—	—	ANSE2 ⁽¹⁾	ANSE1 ⁽¹⁾	ANSE0 ⁽¹⁾	
bit 7 bit 0								
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	

REGISTER 10-7: ANSELE – PORTE ANALOG SELECT REGISTER

bit 7-3 Unimplemented: Read as '0'

bit 2-0 ANSE<2:0>: RE<2:0> Analog Select bit⁽¹⁾

1 = Digital input buffer disabled

0 = Digital input buffer enabled

Note 1: Available on PIC18(L)F4XK22 devices only.

REGISTER 10-8: TRISx: PORTx TRI-STATE REGISTER⁽¹⁾

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISx7 | TRISx6 | TRISx5 | TRISx4 | TRISx3 | TRISx2 | TRISx1 | TRISx0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRISx<7:0>: PORTx Tri-State Control bit

1 = PORTx pin configured as an input (tri-stated)

0 = PORTx pin configured as an output

Note 1: Register description for TRISA, TRISB, TRISC and TRISD.

REGISTER 10-9: TRISE: PORTE TRI-STATE REGISTER

R/W-1	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
WPUE3	—	—	—	—	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾
bit 7							bit 0

Legend:					
R = Readable bit -n = Value at POR		W = Writable bit	U = Unimplemented bit	, read as '0'	
		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
hit 7	WDUE2	Week Dull up Degister hite			
DIT /	WPUE3	vveak Pull-up Register bits			
	1 = Pull-	up enabled on PORT pin			
	0 = Pull-	up disabled on PORT pin			

bit 6-3 Unimplemented: Read as '0'

bit 2-0 TRISE<7:0>: PORTE Tri-State Control bit⁽¹⁾

1 = PORTE pin configured as an input (tri-stated)

0 = PORTE pin configured as an output

Note 1: Available on PIC18(L)F4XK22 devices only.

© 2010-2016 Microchip Technology Inc.

2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

FIGURE 12-4: TIMER1/3/5 GATE ENABLE MODE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PxRSEN				PxDC<6:0>					
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
u = Bit is un	u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is s	et	'0' = Bit is clea	ared						
bit 7	PxRSEN: P	WM Restart Ena	ıble bit						
	1 = Upon at the PW	uto-shutdown, th M restarts auton	e CCPxASE I	bit clears automa	atically once the	e shutdown eve	ent goes away;		
	0 = Upon a	uto-shutdown, C	CPxASE mus	st be cleared in	software to res	tart the PWM			
bit 6-0	PxDC<6:0>	: PWM Delay Co	ount bits						
	PxDCx = Nt	umber of Fosc/	4 (4 * Tosc)	cycles between	the schedule	d time when a	a PWM signal		

REGISTER 14-6: PWMxCON: ENHANCED PWM CONTROL REGISTER

REGISTER 14-7: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
—	—		STRxSYNC	STRxD	STRxC	STRxB	STRxA
bit 7							bit 0

should transition active and the actual time it transitions active

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	STRxSYNC: Steering Sync bit 1 = Output steering update occurs on next PWM period 0 = Output steering update occurs at the beginning of the instruction cycle boundary
bit 3	STRxD: Steering Enable bit D 1 = PxD pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxD pin is assigned to port pin
bit 2	STRxC: Steering Enable bit C 1 = PxC pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxC pin is assigned to port pin
bit 1	STRxB: Steering Enable bit B 1 = PxB pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxB pin is assigned to port pin
bit 0	STRxA: Steering Enable bit A 1 = PxA pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxA pin is assigned to port pin
Note 1.	The DWM Steering mode is evoluble only when the CCDyCON register hits CCDyM (20) 11 a

Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11 and PxM<1:0> = 00.

FIGURE 15-17: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)

PIC18(L)F2X/4XK22

REGISTER 24-11: CONFIG7H: CONFIGURATION REGISTER 7 HIGH

U-0	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0	
—	EBTRB	—	—	—	—	—	—	
bit 7								
L a man al.								

Legend:	
R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

ead as '0'

bit 6	EBTRB: Boot Block Table Read Protection bit
	1 = Boot Block not protected from table reads executed in other blocks
	0 = Boot Block protected from table reads executed in other blocks
bit 5-0	Unimplemented: Read as '0'

REGISTER 24-12: DEVID1: DEVICE ID REGISTER 1

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:	
R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

bit 7-5	DEV<2:0>: Device ID bits
	These bits, together with DEV<10:3> in DEVID2, determine the device ID.
	See Table 24-2 for complete Device ID list.
bit 4-0	REV<4:0>: Revision ID bits
	These bits indicate the device revision.

REGISTER 24-13: DEVID2: DEVICE ID REGISTER 2

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

Legend:	
R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

bit 7-0 **DEV<10:3>:** Device ID bits

These bits, together with DEV<2:0> in DEVID1, determine the device ID. See Table 24-2 for complete Device ID list.

25.0 INSTRUCTION SET SUMMARY

PIC18(L)F2X/4XK22 devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of eight new instructions, for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

25.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC^{\circledast} MCU instruction sets, while maintaining an easy migration from these PIC^{\circledast} MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18 instruction set summary in Table 25-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 25-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction. The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the four MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 25-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 25-2, lists the standard instructions recognized by the Microchip Assembler (MPASM[™]).

Section 25.1.1 "Standard Instruction Set" provides a description of each instruction.

BCF		Bit Clear f		BN		Branch if	Negative			
Synta	ax:	BCF f, b	{,a}		Synta	ax:	BN n			
Oper	ands:	$0 \leq f \leq 255$			Oper	ands:	-128 ≤ n ≤ 1	27		
		0 ≤ b ≤ 7 a ∈ [0,1]	$0 \le b \le 7$ a \equiv [0,1]		Oper	Operation:		if NEGATIVE bit is '1' (PC) + 2 + 2n \rightarrow PC		
Oper	ation:	$0 \rightarrow f < b >$ None		Statu	Status Affected: Encoding:		None			
Statu	is Affected:			Enco			0110 nn:	nn nnnn		
Enco	oding:	1001	bbba ff:	ff ffff	Desc	ription:	If the NEGA	TIVE bit is '1'	, then the	
	приоп. Io:	Bit 'b' in register 'f' is cleared. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.		Word Cycle Q C If. Iu	Words: Cycles: Q Cycle Activity:		The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. 1 1(2)			
	15.	1				Q1	Q2	Q3	Q4	
Q C	es: ycle Activity:	1				Decode	Read literal 'n'	Process Data	Write to PC	
	Q1	Q2	Q3	Q4		No	No	No	No	
	Decode	Read	Process	Write		operation	operation	operation	operation	
		register i	Dala	register i	lf No	o Jump:	0.0	•••	<u>.</u>	
Exan	nnle:	BCF F	T.AC REC	7 0		Q1 Decede	Q2 Dead literal	Q3	Q4	
	Before Instruc FLAG_R	tion EG = C7	'n	,, 0		Decode	read literal 'n'	Data	NO operation	
After Instruction FLAG_REG = 47h		<u>Exan</u>	Example: HERE BN Jump Before Instruction							
						PC After Instruction If NEGA PC If NEGA PC	= ade on TIVE = 1; = ade TIVE = 0; = ade	dress (HERE) dress (Jump) dress (HERE	+ 2)	

ΒZ	Branch if Zero							
Synta	ax:	BZ n	BZ n					
Oper	ands:	-128 ≤ n ≤ ′	$-128 \le n \le 127$					
Oper	ation:	if ZERO bit (PC) + 2 + 2	if ZERO bit is '1' (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None	None					
Enco	ding:	1110	0000 nni	nn nnnn				
Desc	ription:	ption: If the ZERO bit is '1', then the progra will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then 2-cycle instruction.						
Word	ls:	1						
Cycle	es:	1(2)						
Q C If Ju	ycle Activity: mp:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No operation	No operation	No operation	No operation				
lf No	o Jump:							
i	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	No operation				
Exam	nple:	HERE	BZ Jump					
Before Instruction PC After Instruction If ZERO PC If ZERO PC		tion = ad on = 1; = ad = 0; = ad	dress (HERE dress (Jump dress (HERE)) + 2)				

	Subroutil				
Syntax:	CALL k {,s}				
Operands:	$0 \le k \le 1048575$ s \in [0,1]				
Operation:	$(PC) + 4 \rightarrow TOS,$ $k \rightarrow PC<20:1>,$ if s = 1 $(W) \rightarrow WS,$ $(Status) \rightarrow STATUSS,$ $(BSR) \rightarrow BSRS$				
Status Affected:	None				
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ kkk kkkk	kkkk ₍ kkkk	
	(PC + 4) is stack. If 's' BSR register respective STATUSS a update occ 20-bit value CALL is a	pushed of = 1, the ¹ ers are al shadow r and BSR urs (defa e 'k' is loa 2-cycle ir	onto the W, STAT so pushe egisters, S. If 's' = ult). The ded into astruction	return US and ed into the WS, 0, no n, the PC<20:1	
	•				
Words:	2				
Words: Cycles:	2				
Words: Cycles: Q Cycle Activity:	2				
Words: Cycles: Q Cycle Activity: Q1	2 2 Q2	Q3	i	Q4	
Words: Cycles: Q Cycle Activity: Q1 Decode	2 2 Q2 Read literal 'k'<7:0>,	Q3 PUSH F stac	PC to R k '	Q4 ead litera k'<19:8>, /rite to P0	
Words: Cycles: Q Cycle Activity: Q1 Decode No	2 2 Q2 Read literal 'k'<7:0>, No	Q3 PUSH F stac	PC to R k 4	Q4 ead litera k'<19:8>, /rite to P0 No	
Words: Cycles: Q Cycle Activity: Q1 Decode No operation	2 2 Q2 Read literal 'k'<7:0>, No operation	Q3 PUSH F stac No opera	PC to R k W	Q4 tead litera k'<19:8>, /rite to P0 No operation	
Words: Cycles: Q Cycle Activity: Q1 Decode No operation Example:	2 2 Q2 Read literal 'k'<7:0>, No operation HERE	Q3 PUSH F stac No opera	PC to R k / tion (Q4 lead litera k'<19:8>, <u>/rite to P0</u> No operation , 1	
Words: Cycles: Q Cycle Activity: Q1 Decode No operation Example: Before Instruct	2 2 Read literal 'k'<7:0>, No operation HERE	Q3 PUSH F stac No opera	PC to R k W tion d	Q4 lead litera k'<19:8> /rite to PO No opperation , 1	

After Instruction

PC = TOS = WS = BSRS = STATUSS = address (THERE) address (HERE + 4) W BSR Status

SUB	SUBFSR Subtract Literal from FSR							
Synta	ax:	SUBFSR	SUBFSR f, k					
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$					
		f ∈ [0, 1, 2]						
Operation: $FSR(f) - k \rightarrow FSRf$								
Statu	is Affected:	None						
Encoding: 1110 1001 ffkk kkk					kkkk			
Desc	ription:	The 6-bit I the conter 'f'.	iteral 'k' is its of the	s subtrac FSR spe	ted from cified by			
Word	ls:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read	Proce	SS	Write to			
		register 'f'	Data	a d	estination			

Example: SUBFSR 2, 23

Before Instruction

FSR2	=	03FFh
After Instructi	on	

FSR2 = 03DCh

SUBULNK Subtract Literal from FSR2 and Return

Curata		CI		Ŀ				
Synta	ax.	SUBULINK K						
Oper	ands:	0 ≤	$0 \le k \le 63$					
Oper	ation:	FS	SR2 – k –	→ FSF	R2			
		(T	$OS) \rightarrow P$	С				
Status	s Affected:	No	one					
Enco	ding:		1110	100)1	11kk		kkkk
Desc	ription:	The 6-bit literal 'k' is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the SUBFSR instruction, where $f = 3$ (binary '11'): it operates only on FSR2.						
Word	s:	1						
Cycles: 2								
QC	ycle Activity	/ :						
-	Q1		Q2			Q3		Q4
	Decode		Rea	d	Pro	ocess		Write to

Decode	Read Process register 'f' Data		Write to destination		
No	No	No	No		
Operation	Operation	Operation	Operation		

Example: SUBULNK 23h

<u></u> .	-						
Before Instruction							
FSR2	=	03FFh					
PC	=	0100h					
After Instructi	on						
FSR2	=	03DCh					
PC	=	(TOS)					

25.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note: Enabling the PIC18 instruction set extension may cause legacy applications to behave erratically or fail entirely.

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing mode (Section 5.7.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank ('a' = 0), or in a GPR bank designated by the BSR ('a' = 1). When the extended instruction set is enabled and 'a' = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bitoriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 25.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset Addressing mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset Addressing mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

25.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within brackets, will generate an error in the MPASM assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled) when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASMTM assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_Y$, or the PE directive in the source listing.

25.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18(L)F2X/ 4XK22, it is very important to consider the type of code. A large, re-entrant application that is written in 'C' and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

27.4 DC Characteristics: RC Idle Supply Current, PIC18(L)F2X/4XK22

PIC18LF	2X/4XK22	Stand Opera	ard Op ting ter	erating nperatu	re -40°C ≤ TA ≤	ss otherwise s +125°C	tated)		
PIC18F2	X/4XK22	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Device Characteristics	Тур	Max	Units	Conditions				
D045	Supply Current (IDD)(1),(2)	0.5	18	μA	-40°C	VDD = 1.8V	Fosc = 31 kHz		
		0.6	18	μΑ	+25°C		(RC_IDLE mode,		
		0.7	_	μA	+60°C				
		0.75	20	μΑ	+85°C				
		2.3	22	μΑ	+125°C				
D046		1.1	20	μΑ	-40°C	VDD = 3.0V			
		1.2	20	μA	+25°C				
		1.3	—	μA	+60°C				
		1.4	22	μΑ	+85°C				
		3.2	25	μΑ	+125°C				
D047		17	30	μΑ	-40°C	VDD = 2.3V	Fosc = 31 kHz (RC_IDLE mode, LEINTOSC source)		
		13	30	μΑ	+25°C				
		14	30	μΑ	+85°C				
		15	45	μΑ	+125°C				
D048		19	35	μΑ	-40°C	VDD = 3.0V	VDD = 3.0V		
		15	35	μΑ	+25°C				
		16	35	μΑ	+85°C				
		17	50	μΑ	+125°C				
D049		21	40	μΑ	-40°C	VDD = 5.0V			
		15	40	μA	+25°C				
		16	40	μA	+85°C				
		18	60	μA	+125°C				
D050		0.11	0.20	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 500 kHz		
D051		0.12	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MFINTOSC source)		
D052		0.14	0.21	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 500 kHz		
D053		0.15	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MEINTOSC source)		
D054		0.20	0.31	mA	-40°C to +125°C	VDD = 5.0V			

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

 $\overline{MCLR} = VDD;$

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

27.10 Analog Characteristics

TABLE 27-1:	COMPARATOR SPECIFICATIONS

Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)									
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments		
CM01	VIOFF	Input Offset Voltage	_	3	40	mV	High-Power mode VREF = VDD/2		
			—	4	60	mV	Low-Power mode VREF = VDD/2		
CM02	VICM	Input Common-mode Voltage	Vss	_	Vdd	V			
CM04*	TRESP	Response Time ⁽¹⁾	—	200	400	ns	High-Power mode		
			—	600	3500	ns	Low-Power mode		
CM05*	TMC20V	Comparator Mode Change to Output Valid	_	_	10	μS			

These parameters are characterized but not tested. *

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

TABLE 27-2: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Operating Conditions: 2.0V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)								
Sym	Characteristics	Min	Тур	Мах	Units	Comments		
CLSB	Step Size ⁽²⁾	_	Vdd/32	_	V			
CACC	Absolute Accuracy	—	—	± 1/2	LSb	$\Delta V \text{SRC} \ge 2.0 V$		
CR	Unit Resistor Value (R)		5k	_	Ω			
CST	Settling Time ⁽¹⁾	_	_	10	μS			
VSRC+	DAC Positive Reference	VSRC-+2		Vdd	V			
VSRC-	DAC Negative Reference	Vss		VSRC+ -2	V			
$\Delta V SRC$	DAC Reference Range (VSRC+ - VSRC-)	2	_	Vdd	V			
	Sym CLSB CACC CR CST VSRC+ VSRC- AVSRC	Sym Characteristics CLSB Step Size ⁽²⁾ CACC Absolute Accuracy CR Unit Resistor Value (R) CST Settling Time ⁽¹⁾ VSRC+ DAC Positive Reference VSRC- DAC Negative Reference ΔVSRC DAC Reference Range (VSRC+ - VSRC-)	SymCharacteristicsMinCLSBStep Size ⁽²⁾ —CACCAbsolute Accuracy—CRUnit Resistor Value (R)—CSTSettling Time ⁽¹⁾ —VSRC+DAC Positive ReferenceVSRC- +2VSRC-DAC Negative ReferenceVSS△VSRCDAC Reference Range (VSRC+ - VSRC-)2	SymCharacteristicsMinTypCLSBStep Size ⁽²⁾ —VDD/32CACCAbsolute Accuracy——CRUnit Resistor Value (R)—5kCSTSettling Time ⁽¹⁾ ——VSRC+DAC Positive ReferenceVSRC-+2—VSRC-DAC Negative ReferenceVSS—△VSRCDAC Reference Range2—Open parameters are characterized but not testedParameters are characterized but not tested	SymCharacteristicsMinTypMaxCLSBStep Size ⁽²⁾ —VDD/32—CACCAbsolute Accuracy——± 1/2CRUnit Resistor Value (R)—5k—CSTSettling Time ⁽¹⁾ ——10VSRC+DAC Positive ReferenceVSRC-+2—VDDVSRC-DAC Negative ReferenceVSS—VSRC+-2 Δ VSRCDAC Reference Range2—VDD	SymCharacteristicsMinTypMaxUnitsCLSBStep Size ⁽²⁾ — V DD/32— V CACCAbsolute Accuracy—— \pm 1/2LSbCRUnit Resistor Value (R)— $5k$ — Ω CSTSettling Time ⁽¹⁾ ——10 μ sVSRC+DAC Positive ReferenceVSRC-+2—VDDV Δ VSRCDAC Reference Range2—VDDV		

These parameters are characterized but not tested.

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from '0000' to '1111'.

2: See Section 22.0 "Digital-to-Analog Converter (DAC) Module" for more information.

FIGURE 28-84: PIC18(L)F2X/4XK22 PIN INPUT LEAKAGE

