

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k22-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the following devices:

- PIC18F23K22 PIC18LF23K22
- PIC18F24K22 PIC18LF24K22
- PIC18F25K22
 PIC18LF25K22
- PIC18F26K22 PIC18LF26K22
- PIC18F43K22 PIC18LF43K22
- PIC18F44K22 PIC18LF44K22
- PIC18F45K22 PIC18LF45K22
- PIC18F46K22 PIC18LF46K22

This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Flash program memory. On top of these features, the PIC18(L)F2X/4XK22 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications.

1.1 New Core Features

1.1.1 XLP TECHNOLOGY

All of the devices in the PIC18(L)F2X/4XK22 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the Timer1 source or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%.
- Multiple Idle Modes: The controller can also run with its CPU core disabled but the peripherals still active. In these states, power consumption can be reduced even further, to as little as 4% of normal operation requirements.
- **On-the-fly Mode Switching:** The powermanaged modes are invoked by user code during operation, allowing the user to incorporate powersaving ideas into their application's software design.
- Low Consumption in Key Modules: The power requirements for both Timer1 and the Watchdog Timer are minimized. See Section 27.0 "Electrical Specifications" for values.

1.1.2 MULTIPLE OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC18(L)F2X/4XK22 family offer ten different oscillator options, allowing users a wide range of choices in developing application hardware. These include:

- Four Crystal modes, using crystals or ceramic resonators
- Two External Clock modes, offering the option of using two pins (oscillator input and a divide-by-4 clock output) or one pin (oscillator input, with the second pin reassigned as general I/O)
- Two External RC Oscillator modes with the same pin options as the External Clock modes
- An internal oscillator block which contains a 16 MHz HFINTOSC oscillator and a 31 kHz LFINTOSC oscillator, which together provide eight user selectable clock frequencies, from 31 kHz to 16 MHz. This option frees the two oscillator pins for use as additional general purpose I/O.
- A Phase Lock Loop (PLL) frequency multiplier, available to both external and internal oscillator modes, which allows clock speeds of up to 64 MHz. Used with the internal oscillator, the PLL gives users a complete selection of clock speeds, from 31 kHz to 64 MHz – all without using an external crystal or clock circuit.

Besides its availability as a clock source, the internal oscillator block provides a stable reference source that gives the family additional features for robust operation:

- Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the LFINTOSC. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued operation or a safe application shutdown.
- **Two-Speed Start-up:** This option allows the internal oscillator to serve as the clock source from Power-on Reset, or Wake-up from Sleep mode, until the primary clock source is available.

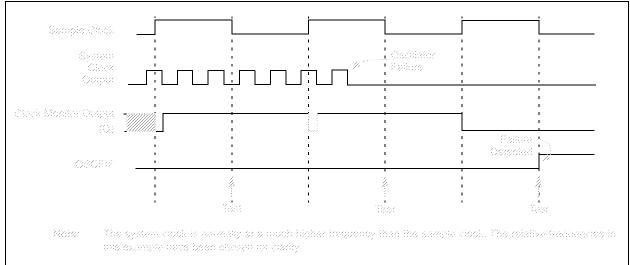


TABLE 2-4: REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	109
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
OSCCON	IDLEN		IRCF<2:0>			HFIOFS	SCS	30	
OSCCON2	PLLRDY	SOSCRUN	—	MFIOSEL	SOSCGO	PRISD	MFIOFS	LFIOFS	31
OSCTUNE	INTSRC	PLLEN			TUN<5:()>			35
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by clock sources.

TABLE 2-5: CONFIGURATION REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG1H	IESO	FCMEN	PRICLKEN	PLLCFG		FOSC	2<3:0>		345
CONFIG2L	—	—	_	BORV	/<1:0>	1:0> BOREN<1:0>		PWRTEN	346
CONFIG3H	MCLRE	_	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for clock sources.

4.3 Master Clear (MCLR)

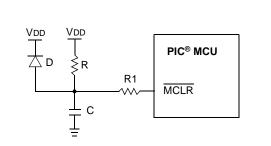
The $\overline{\text{MCLR}}$ pin provides a method for triggering an external Reset of the device. A Reset is generated by holding the pin low. These devices have a noise filter in the $\overline{\text{MCLR}}$ Reset path which detects and ignores small pulses. An internal weak <u>pull-up</u> is enabled when the pin is configured as the $\overline{\text{MCLR}}$ input.

The $\overline{\text{MCLR}}$ pin is not driven low by any internal Resets, including the WDT.

In PIC18(L)F2X/4XK22 devices, the MCLR input can be disabled with the MCLRE Configuration bit. When MCLR is disabled, the pin becomes a digital input. See **Section 10.6 "PORTE Registers"** for more information.

4.4 **Power-on Reset (POR)**

A Power-on Reset pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.


To take advantage of the POR circuitry either leave the pin floating, or tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified. For a slow rise time, see Figure 4-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure proper operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the POR bit of the RCON register. The state of the bit is set to '0' whenever a POR occurs; it does not change for any other Reset event. POR is not reset to '1' by any hardware event. To capture multiple events, the user must manually set the bit to '1' by software following any POR.

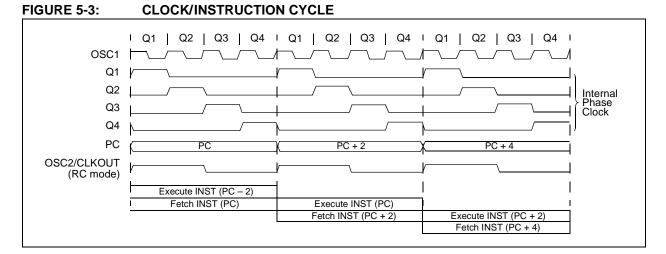
FIGURE 4-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $15 \text{ k}\Omega < R < 40 \text{ k}\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.

5.3 PIC18 Instruction Cycle

5.3.1 CLOCKING SCHEME


The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the program counter is incremented on every Q1; the instruction is fetched from the program memory and latched into the instruction register during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 5-3.

5.3.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles: Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 5-3).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 5-3: INSTRUCTION PIPELINE FLOW

	Тсү0	TCY1	Tcy2	Tcy3	TCY4	TCY5
1. MOVLW 55h	Fetch 1	Execute 1			•	
2. MOVWF PORTB		Fetch 2	Execute 2			
3. BRA SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3	(Forced N	OP)		Fetch 4	Flush (NOP)	
5. Instruction @ addr	ress SUB_1			Fetch SUB_1	Execute SUB_1	
Note: All instructions						vo cycles since the

Note: All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

TABLE 10-1: PORTA I/O SUMMARY

Pin Name	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RA0/C12IN0-/AN0	RA0	0	0	0	DIG	LATA<0> data output; not affected by analog input.
		1	0	Ι	TTL	PORTA<0> data input; disabled when analog input enabled.
	C12IN0-	1	1	Ι	AN	Comparators C1 and C2 inverting input.
	AN0	1	1	I	AN	Analog input 0.
RA1/C12IN1-/AN1	RA1	0	0	0	DIG	LATA<1> data output; not affected by analog input.
		1	0	I	TTL	PORTA<1> data input; disabled when analog input enabled.
	C12IN1-	1	1	I	AN	Comparators C1 and C2 inverting input.
	AN1	1	1	I	AN	Analog input 1.
RA2/C2IN+/AN2/ DACOUT/VREF-	RA2	0	0	0	DIG	LATA<2> data output; not affected by analog input; disabled when DACOUT enabled.
		1 0		Ι	TTL	PORTA<2> data input; disabled when analog input enabled; disabled when DACOUT enabled.
	C2IN+	1	1	Ι	AN	Comparator C2 non-inverting input.
	AN2	1	1	Ι	AN	Analog output 2.
	DACOUT	x	1	0	AN	DAC Reference output.
	VREF-	1	1	Ι	AN	A/D reference voltage (low) input.
RA3/C1IN+/AN3/	RA3	0		0	DIG	LATA<3> data output; not affected by analog input.
VREF+		1	0	I	TTL	PORTA<3> data input; disabled when analog input enabled.
	C1IN+	1	1	I	AN	Comparator C1 non-inverting input.
	AN3	1	1	I	AN	Analog input 3.
	VREF+	1	1	I	AN	A/D reference voltage (high) input.
RA4/CCP5/C1OUT/	RA4	0	—	0	DIG	LATA<4> data output.
SRQ/T0CKI -		1	_	I	ST	PORTA<4> data input; default configuration on POR.
	CCP5	0	_	0	DIG	CCP5 Compare output/PWM output, takes priority over RA4 output
		1	—	I	ST	Capture 5 input/Compare 5 output/ PWM 5 output.
	C1OUT	0	_	0	DIG	Comparator C1 output.
	SRQ	0	_	0	DIG	SR latch Q output; take priority over CCP 5 output.
	TOCKI	1	_	I	ST	Timer0 external clock input.
RA5/C2OUT/SRNQ/	RA5	0	0	0	DIG	LATA<5> data output; not affected by analog input.
SS1/ HLVDIN/AN4		1	0	I	TTL	PORTA<5> data input; disabled when analog input enabled.
HLVDIN/AN4	C2OUT	0	0	0	DIG	Comparator C2 output.
	SRNQ	0	0	0	DIG	SR latch \overline{Q} output.
	SS1	1	0	I	TTL	SPI slave select input (MSSP1).
	HLVDIN	1	1	I	AN	High/Low-Voltage Detect input.
	AN4	1	1	1	AN	A/D input 4.
RA6/CLKO/OSC2	RA6	0	_	0	DIG	LATA<6> data output; enabled in INTOSC modes when CLKO is no enabled.
		1	—	Ι	TTL	PORTA<6> data input; enabled in INTOSC modes when CLKO is not enabled.
	CLKO	x	—	0	DIG	In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the fre- quency of OSC1 and denotes the instruction cycle rate.
	OSC2	x	_	0	XTAL	Oscillator crystal output; connects to crystal or resonator in Crystal Oscillator mode.
RA7/CLKI/OSC1	RA7	0	_	0	DIG	LATA<7> data output; disabled in external oscillator modes.
		1	—	Ι	TTL	PORTA<7> data input; disabled in external oscillator modes.
	CLKI	x	—	I	AN	External clock source input; always associated with pin function OSC1.
	OSC1	x		Ι	XTAL	Oscillator crystal input or external clock source input ST buffer wher configured in RC mode; CMOS otherwise.

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I²C = Schmitt Trigger input with I²C.

TABLE 10-15: REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
ANSELE ⁽¹⁾		—		—		ANSE2	ANSE1	ANSE0	151
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2		TMR0IP		RBIP	110
LATE ⁽¹⁾	_	—	_	—	_	LATE2	LATE1	LATE0	152
PORTE	_	—	_	—	RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	149
SLRCON	—	—	—	SLRE ⁽¹⁾	SLRD ⁽¹⁾	SLRC	SLRB	SLRA	153
TRISE	WPUE3	_	_	_	_	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	151

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTE.

Note 1: Available on PIC18(L)F4XK22 devices.

TABLE 10-16: CONFIGURATION REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CONFIG3H	MCLRE		P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348
CONFIG4L	DEBUG	XINST	_	_	_	LVP ⁽¹⁾	_	STRVEN	349

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for Interrupts.

Note 1: Can only be changed when in high voltage programming mode.

.egend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Reservers it 7-6 PxM '0' = Bit is cleared it 7-6 PxM CPxM<3:2> = 00, 01, 10: (Capture/Compare modes) xx = PxA assigned as Capture/Compare input; PxB, PxC, PxD assigned as port pins Half-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 0x = Single output; PxA, modulated; PxB assigned as port pin 1x = Half-Bridge output; PxA, PxB modulated with dead-band control Full-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 0x = Single output; PxA, nodulated; PxB assigned as port pin 1x = Half-Bridge output; PxA, PxB modulated with dead-band control Full-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 00 = Single output; PxA, modulated; PxB, PxC, PxD assigned as port pins 01 = Full-Bridge output forward; PxD modulated; PxA active; PxB, PxC inactive 10 = Half-Bridge output; PxA, PxB modulated with dead-band control; PxC, PxD assigned as port pins 11 = Full-Bridge output; reverse; PxB modulated; PxC active; PxA, PxD inactive	R/x-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Aregend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' I = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Rese I' = Bit is set '0' = Bit is cleared it 7-6 PxM<1:0 >: Enhanced PWM Output Configuration bits If CCPxM<3:2> = 00, 01, 10: (Capture/Compare modes) xx = PxA assigned as Capture/Compare input; PxB, PxC, PxD assigned as port pins Half-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 0x = Single output; PxA modulated; PxB assigned as port pin 1x = Half-Bridge output; PxA, modulated; PxB, PxC, PxD assigned as port pin 1x = Half-Bridge output; PxA, modulated; PxB, PxC, PxD assigned as port pin 1x = Half-Bridge output; PxA, modulated; PxB, PxC, PxD assigned as port pins 01 = Full-Bridge output forward; PxD modulated; PxA active; PxB, PxC inactive 10 = Half-Bridge output; PxA, PxB modulated with dead-band control; PxC, PxD assigned as port pins 11 = Full-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive 10 = Half-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive 11 = Full-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive 11 = Full-Bridge output coverse; PxB modulated; PxC active; PxA, PxD inactive 11 = Full-Bridge output; PxA, PxB modulat	PxM	/<1:0>	DCx	3<1:0>		CCPx	V<3:0>	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' i = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Reserverse i' = Bit is set '0' = Bit is cleared wit 7-6 PxM<1:0>: Enhanced PWM Output Configuration bits If CCPxM<3:2> = 00, 01, 10: (Capture/Compare modes) xx = PxA assigned as Capture/Compare input; PxB, PxC, PxD assigned as port pins Half-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 0x = Single output; PxA modulated; PxB assigned as port pin 1x = Half-Bridge output; PxA, PxB modulated with dead-band control Full-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 00 = Single output; PxA modulated; PxB, PxC, PxD assigned as port pin 1x = Half-Bridge output; PxA, PxB modulated; PxA active; PxB, PxC inactive 10 = Single output; PxA, modulated; PxB pxC, PxD assigned as port pins 01 = Full-Bridge output; PxA, PxB modulated with dead-band control; PxC, PxD assigned as port pins 11 = Full-Bridge output; PxA, PxB modulated; with dead-band control; PxC, PxD assigned as port pins 11 = Full-Bridge output; PxA, PxB modulated; PxC active; PxA, PxD inactive 10 = Half-Bridge output; PxA, PxB modulated; PxC active; PxA, PxD inactive 11 = Full-Bridge output cycle Least Significant bits	bit 7							bit (
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' i = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Reserverse i' = Bit is set '0' = Bit is cleared wit 7-6 PxM<1:0>: Enhanced PWM Output Configuration bits If CCPxM<3:2> = 00, 01, 10: (Capture/Compare modes) xx = PxA assigned as Capture/Compare input; PxB, PxC, PxD assigned as port pins Half-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 0x = Single output; PxA modulated; PxB assigned as port pin 1x = Half-Bridge output; PxA, PxB modulated with dead-band control Full-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 00 = Single output; PxA modulated; PxB, PxC, PxD assigned as port pin 1x = Half-Bridge output; PxA, PxB modulated; PxA active; PxB, PxC inactive 10 = Single output; PxA, modulated; PxB pxC, PxD assigned as port pins 01 = Full-Bridge output; PxA, PxB modulated with dead-band control; PxC, PxD assigned as port pins 11 = Full-Bridge output; PxA, PxB modulated; with dead-band control; PxC, PxD assigned as port pins 11 = Full-Bridge output; PxA, PxB modulated; PxC active; PxA, PxD inactive 10 = Half-Bridge output; PxA, PxB modulated; PxC active; PxA, PxD inactive 11 = Full-Bridge output cycle Least Significant bits								
a = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Reservers it 7-6 PxM<1:0>: Enhanced PWM Output Configuration bits If CCPxM<3:2> = 00, 01, 10: (Capture/Compare modes) xx = PxA assigned as Capture/Compare input; PxB, PxC, PxD assigned as port pins Half-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 0x = Single output; PxA modulated; PxB assigned as port pin 1x = Half-Bridge cutput; PxA, PxB modulated with dead-band control Full-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 00 = Single output; PxA modulated; PxB, PxC, PxD assigned as port pins 00 = Single output; PxA modulated; PxB, PxC, PxD assigned as port pins If CCPxM<3:2> = 11: (PWM modes) 00 = Single output; PxA modulated; PxB, PxC, PxD assigned as port pins 01 = Full-Bridge output forward; PxD modulated; PxA active; PxB, PxC inactive 10 = Half-Bridge output; PxA, PxB modulated; PxC active; PxA, PxD assigned as port pins 11 = Full-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive 11 = Full-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive 11 = Full-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive Capture mode: Unused Compare mode: Unused Compare mode: Unused Compare mode: Unused PWM mode: These bits are the two LSbs of the PWM duty cycle. The eight MSb	Legend:							
 i' = Bit is set '0' = Bit is cleared it 7-6 PxM<1:0>: Enhanced PWM Output Configuration bits If CCPxM<3:2> = 00, 01, 10: (Capture/Compare modes) xx = PxA assigned as Capture/Compare input; PxB, PxC, PxD assigned as port pins Half-Bridge ECCP Modules⁽¹⁾: If CCPxM<3:2> = 11: (PWM modes) 0x = Single output; PxA modulated; PxB assigned as port pin 1x = Half-Bridge output; PxA, PxB modulated with dead-band control Full-Bridge ECCP Modules⁽¹⁾: If CCPxM<3:2> = 11: (PWM modes) 00 = Single output; PxA modulated; PxB, PxC, PxD assigned as port pins 01 = Full-Bridge output; PxA modulated; PxB, PxC, PxD assigned as port pins 01 = Full-Bridge output; PxA modulated; PxB modulated; PxA active; PxB, PxC inactive 10 = Half-Bridge output; PxA, PxB modulated; PxC active; PxA, PxD assigned as port pins 11 = Full-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive it 5-4 DCxB<1:0>: PWM Duty Cycle Least Significant bits Capture mode: Unused Compare mode: Unused PWM mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL. 	R = Readable	e bit	W = Writable b	bit	U = Unimple	mented bit, rea	ad as '0'	
 PxM<1:0>: Enhanced PWM Output Configuration bits If CCPxM<3:2> = 00, 01, 10: (Capture/Compare modes) xx = PxA assigned as Capture/Compare input; PxB, PxC, PxD assigned as port pins Half-Bridge ECCP Modules⁽¹⁾: If CCPxM<3:2> = 11: (PWM modes) 0x = Single output; PxA modulated; PxB assigned as port pin 1x = Half-Bridge output; PxA, PxB modulated with dead-band control Full-Bridge ECCP Modules⁽¹⁾: If CCPxM<3:2> = 11: (PWM modes) 00 = Single output; PxA, modulated; PxB, PxC, PxD assigned as port pins 01 = Full-Bridge output; PxA modulated; PxB, PxC, PxD assigned as port pins 01 = Full-Bridge output; PxA, PxB modulated; PxA active; PxB, PxC inactive 10 = Half-Bridge output; PxA, PxB modulated; PxC active; PxA, PxD inactive 11 = Full-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive 12 = Full-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive 13 = Full-Bridge output; PxA, PxB modulated; PxC active; PxA, PxD inactive 14 = Full-Bridge output; PxB modulated; PxC active; PxA, PxD inactive 15 = Unused Compare mode: Unused <u>PWM mode:</u> These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL. 	u = Bit is unchanged		x = Bit is unkn	own	-n/n = Value	at POR and B	OR/Value at al	I other Reset
If CCPxM<3:2> = 00, 01, 10: (Capture/Compare modes) xx = PxA assigned as Capture/Compare input; PxB, PxC, PxD assigned as port pins Half-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 0x = Single output; PxA modulated; PxB assigned as port pin 1x = Half-Bridge output; PxA, PxB modulated with dead-band control Full-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 00 = Single output; PxA modulated; PxB, PxC, PxD assigned as port pins 01 = Full-Bridge output forward; PxD modulated; PxA active; PxB, PxC inactive 10 = Half-Bridge output forward; PxD modulated with dead-band control; PxC, PxD assigned as port pins 11 = Full-Bridge output; PxA, PxB modulated; PxC active; PxA, PxD inactive 11 = Full-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive 11 = Full-Bridge output cycle Least Significant bits Capture mode: Unused Compare mode: Unused PWM mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.	'1' = Bit is set	t	'0' = Bit is clea	red				
If CCPxM<3:2> = 11: (PWM modes) 0x = Single output; PxA modulated; PxB assigned as port pin 1x = Half-Bridge output; PxA, PxB modulated with dead-band control Full-Bridge ECCP Modules ⁽¹⁾ : If CCPxM<3:2> = 11: (PWM modes) 00 = Single output; PxA modulated; PxB, PxC, PxD assigned as port pins 01 = Full-Bridge output forward; PxD modulated; PxA active; PxB, PxC inactive 10 = Half-Bridge output; PxA, PxB modulated with dead-band control; PxC, PxD assigned as por pins 11 = Full-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive it 5-4 DCxB<1:0>: PWM Duty Cycle Least Significant bits Capture mode: Unused Unused PWM mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.	bit 7-6	ľ	f CCPxM<3:2> =	00, 01, 10:	(Capture/Comp	,	l as port pins	
 If CCPxM<3:2> = 11: (PWM modes) 00 = Single output; PxA modulated; PxB, PxC, PxD assigned as port pins 01 = Full-Bridge output forward; PxD modulated; PxA active; PxB, PxC inactive 10 = Half-Bridge output; PxA, PxB modulated with dead-band control; PxC, PxD assigned as por pins 11 = Full-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive bit 5-4 bit 5-4 bit 5-4 bit 5-4 capture mode: Unused Unused compare mode: Unused PWM mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL. 		ار 0x = Singl	CCPxM<3:2> = e output; PxA mo	11: (PWM mo dulated; PxB a	assigned as port			
Capture mode: Unused Compare mode: Unused <u>PWM mode:</u> These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.		ا 00 = Singl 01 = Full-E 10 = Half- pins	CCPxM<3:2> = e output; PxA mo Bridge output forw Bridge output; Px	11: (PWM mod dulated; PxB, vard; PxD mod A, PxB modul	PxC, PxD assig ulated; PxA acti ated with dead-	ve; PxB, PxC i band control; I	nactive PxC, PxD ass	igned as por
Unused <u>Compare mode:</u> Unused <u>PWM mode:</u> These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.	bit 5-4	DCxB<1:0:	-: PWM Duty Cyc	le Least Signi	ficant bits			
Unused <u>PWM mode:</u> These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.			ode:					
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.		•	node:					
lote 1: See Table 14-1 to determine full-bridge and half-bridge ECCPs for the device being used.				of the PWM d	uty cycle. The e	ight MSbs are t	found in CCPF	RxL.
	Note 1: Se	ee Table 14-1 t	o determine full-b	oridge and half	-bridge ECCPs	for the device b	being used.	

REGISTER 14-2: CCPxCON: ENHANCED CCPx CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PxRSEN				PxDC<6:0>							
bit 7							bit 0				
Legend:											
R = Readable bit		W = Writable	bit	U = Unimpler	nimplemented bit, read as '0'						
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set	'1' = Bit is set		ared								
bit 7	PxRSEN: P	WM Restart Ena	able bit								
1 = Upon auto-shutdown, the CCPxASE bit clears automatically once the shutdown event goes away the PWM restarts automatically							ent goes away;				
	0 = Upon a	uto-shutdown, C	CPxASE mus	st be cleared in s	software to rest	tart the PWM					
bit 6-0	PxDC<6:0>	: PWM Delay Co	ount bits								
	PxDCx = N	PxDCx = Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal									

REGISTER 14-6: PWMxCON: ENHANCED PWM CONTROL REGISTER

REGISTER 14-7: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
—	—	—	STRxSYNC	STRxD	STRxC	STRxB	STRxA
bit 7							bit 0

should transition active and the actual time it transitions active

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

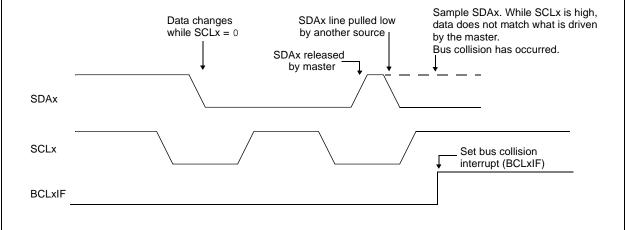
bit 7-5	Unimplemented: Read as '0'
bit 4	STRxSYNC: Steering Sync bit 1 = Output steering update occurs on next PWM period 0 = Output steering update occurs at the beginning of the instruction cycle boundary
bit 3	STRxD: Steering Enable bit D 1 = PxD pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxD pin is assigned to port pin
bit 2	STRxC: Steering Enable bit C 1 = PxC pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxC pin is assigned to port pin
bit 1	STRxB: Steering Enable bit B 1 = PxB pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxB pin is assigned to port pin
bit 0	STRxA: Steering Enable bit A 1 = PxA pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxA pin is assigned to port pin
Note 1.	The DWM Steering mode is evoluble only when the CCDyCON register hits CCDyM (20) 11.0

Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11 and PxM<1:0> = 00.

15.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF, and reset the I²C port to its Idle state (Figure 15-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

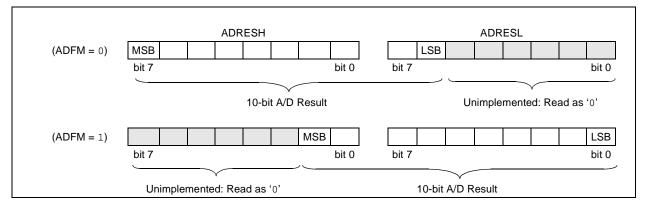

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the l^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	e bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	ʻ0' = Bit is cl	eared	x = Bit is unkr	nown
bit 7		al Port Enable b					
		port enabled (co port disabled (he		DTx and TXx/	CKx pins as ser	ial port pins)	
bit 6	RX9: 9-bit F	Receive Enable	bit				
		9-bit reception8-bit reception					
bit 5	SREN: Sing	gle Receive Ena	ble bit				
	Asynchrono	ous mode:					
	Don't care						
		<u>is mode – Maste</u>					
		s single receive es single receive					
		leared after rece		ete.			
	<u>Synchronou</u>	<u>ıs mode – Slave</u>	<u>.</u>				
	Don't care						
bit 4	CREN: Con	tinuous Receive	e Enable bit				
	<u>Asynchronc</u>						
	1 = Enable						
	0 = Disable Synchronou						
			ceive until enal	hle hit CREN	is cleared (CRF	N overrides SR	EN)
		es continuous re					
bit 3	ADDEN: Ad	dress Detect E	nable bit				
	Asynchronc	ous mode 9-bit (<u>RX9 = 1)</u> :				
	0 = Disable		ction, all bytes			ouffer when RSF n be used as pa	
	Don't care						
bit 2	FERR: Frar	ning Error bit					
	1 = Framin 0 = No fran		updated by rea	ading RCREG	x register and re	eceive next valio	d byte)
bit 1	OERR: Ove	errun Error bit					
	1 = Overru 0 = No ove	n error (can be o rrun error	cleared by clea	aring bit CREN	1)		
bit 0	RX9D: Nint	h bit of Receive	d Data				
			abata				


REGISTER 16-2: RCSTAX: RECEIVE STATUS AND CONTROL REGISTER

17.1.7 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON2 register controls the output format.

Figure 17-2 shows the two output formats.

FIGURE 17-2: 10-BIT A/D CONVERSION RESULT FORMAT

			-							
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
MC1OUT	MC2OUT	C1RSEL	C2RSEL	C1HYS	C2HYS	C1SYNC	C2SYNC			
bit 7							bit 0			
Legend:										
R = Readable		W = Writable		•	mented bit, rea					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown			
bit 7	MC1OUT: Mi	rror Copy of C1	OUT bit							
bit 6		rror Copy of C2								
bit 5	C1RSEL: Co	mparator C1 R	eference Sele	ct bit						
	1 = FVR BUF	1 routed to C1	VREF input							
	0 = DAC rout	ed to C1VREF i	nput							
bit 4	C2RSEL: Co	RSEL: Comparator C2 Reference Select bit								
	1 = FVR BUF	1 routed to C2	VREF input							
	0 = DAC rout	ed to C2VREF i	nput							
bit 3	C1HYS: Corr	nparator C1 Hy	steresis Enable	e bit						
	1 = Comparator C1 hysteresis enabled									
	0 = Compar	ator C1 hystere	esis disabled							
bit 2		nparator C2 Hy		e bit						
		rator C2 hyster ator C2 hystere								
bit 1	•	Output Synch		oit						
	1 = C1 outp	out is synchroni out is asynchror	zed to rising e		lock (T1CLK)					
bit 0	C2SYNC: C2 Output Synchronous Mode bit 1 = C2 output is synchronized to rising edge of TMR1 clock (T1CLK) 0 = C2 output is asynchronous									

REGISTER 18-2: CM2CON1: COMPARATOR 1 AND 2 CONTROL REGISTER

19.3.2 CAPACITANCE CALIBRATION

There is a small amount of capacitance from the internal A/D Converter sample capacitor as well as stray capacitance from the circuit board traces and pads that affect the precision of capacitance measurements. A measurement of the stray capacitance can be taken by making sure the desired capacitance to be measured has been removed. The measurement is then performed using the following steps:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT (= 1).
- 3. Wait for a fixed delay of time *t*.
- 4. Clear EDG1STAT.
- 5. Perform an A/D conversion.
- 6. Calculate the stray and A/D sample capacitances:

$$C_{\text{OFFSET}} = C_{\text{STRAY}} + C_{\text{AD}} = (I \cdot t) / V$$

where *I* is known from the current source measurement step, *t* is a fixed delay and *V* is measured by performing an A/D conversion.

This measured value is then stored and used for calculations of time measurement or subtracted for capacitance measurement. For calibration, it is expected that the capacitance of CSTRAY + CAD is approximately known. CAD is approximately 4 pF.

An iterative process may need to be used to adjust the time, t, that the circuit is charged to obtain a reasonable voltage reading from the A/D Converter. The value of t may be determined by setting COFFSET to a theoretical value, then solving for t. For example, if CSTRAY is theoretically calculated to be 11 pF, and V is expected to be 70% of VDD, or 2.31V, then t would be:

or 63 µs.

See Example 19-3 for a typical routine for CTMU capacitance calibration.

23.7 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

23.8 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN			337		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151

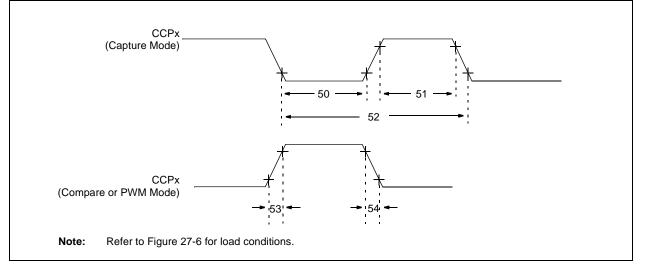
TABLE 23-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented locations, read as '0'. Shaded bits are unused by the HLVD module.

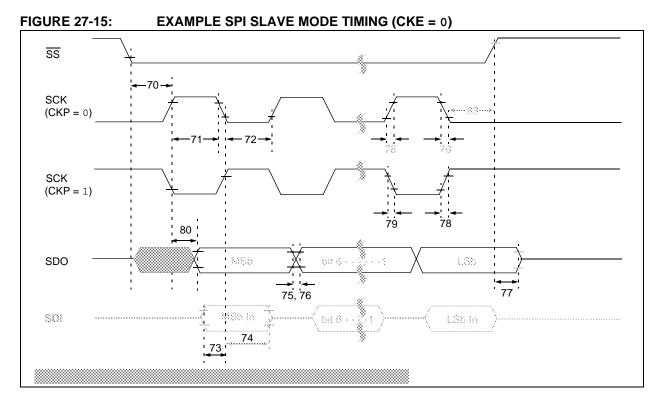
PIC18(L)F2X/4XK22

DAW	,	D	Decimal Adjust W Register						
Synta	x:	D	AW						
Opera	ands:	N	one						
Opera	ation:	(V el:	If $[W<3:0>>9]$ or $[DC = 1]$ then $(W<3:0>) + 6 \rightarrow W<3:0>;$ else $(W<3:0>) \rightarrow W<3:0>;$						
		(v el:	V<7:4>) + se	+ DC > 9] · 6 + DC - DC → W•	→ Ŵ<	<7:4:			
Status	Affected:	С							
Encod	ding:		0000	0000	000	00	0111		
Description:			g from the bles (each	s the 8-bit earlier ac in packec correct pa	dditic I BC	on of D foi	rmat) and		
Words	S:	1	1						
Cycle	s:	1							
Q Cy	cle Activity:								
_	Q1		Q2	Q3			Q4		
	Decode		Read gister W	Proces Data	S		Write W		
<u>Exam</u>	<u>ple1</u> :								
		DA	AM						
E	Before Instruc	tion							
	W C	=	A5h 0						
	DC	=	0						
A	After Instructio	n							
_	W C DC	= = =	05h 1 0						
Exam		+: ~ ~							
E	Before Instruc W	tion =	CEh						
	C	=	0						
,	DC After Instructio	=	0						
4	W	n =	34h						
	C	=	1						
	DC	=	0						

DECF	Decremer	nt f						
Syntax:	DECF f{,c	DECF f {,d {,a}}						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	d ∈ [0,1]						
Operation:	$(f) - 1 \rightarrow de$	est						
Status Affected:	C, DC, N, C	OV, Z						
Encoding:	0000	01da ff:	ff ffff					
Description:	result is sto result is sto (default). If 'a' is '0', tl If 'a' is '1', tl GPR bank. If 'a' is '0' al set is enabl in Indexed I mode when Section 25	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	Write to destination					
Example: Before Instruct CNT Z After Instructio CNT Z	tion = 01h = 0	ENT, 1, 0						


PIC18(L)F2X/4XK22

CAL	.LW	Subroutir	ne Call Using	g WREG	MO	VSF	Move Ind	exed to f	
Synta	ax:	CALLW			Synt	ax:	MOVSF [z	ːs], f _d	
Oper	ands:	None	None		Ope	rands:	$0 \le z_s \le 127$	7	
Oper	ration:	$(PC + 2) \rightarrow$,		_		$0 \le f_d \le 409$		
		$(W) \rightarrow PCL$ (PCLATH) -				ration:	((FSR2) + z	$(z_s) \rightarrow f_d$	
		(PCLATU)				us Affected:	None	1	
Statu	is Affected:	None				oding: vord (source)	1110	1011 Oz:	zz zzzzs
Enco	oding:	0000	0000 000	01 0100		word (destin.)	1110	ffff ff:	5
	ription	First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched. Unlike CALL, there is no option to update W, Status or BSR.		Des	cription:	moved to d actual addr determined offset ' z_s ' in FSR2. The register is s 'f _d ' in the se can be any space (000 The MOVSF	address of the specified by the econd word. Be where in the 4	e register are ster ' f_d '. The rce register is ? 7-bit literal to the value of e destination e 12-bit literal oth addresses 096-byte data nnot use the	
Word		1					destination		
Cycle		2							dress points to
QC	ycle Activity:	•	•	<u>.</u>				addressing reo ned will be 00h	
	Q1 Decode	Q2 Read	Q3 PUSH PC to	Q4 No	Wor	ds:	2		
	Decoue	WREG	stack	operation	Cycl	es:	2		
	No	No	No	No	QC	cycle Activity:			
	operation	operation	operation	operation		Q1	Q2	Q3	Q4
						Decode	Determine	Determine	Read
<u>Exan</u>	nple:	HERE	CALLW			Decede	source addr	source addr	source reg
	Before Instruct PC PCLATH PCLATU W After Instruction	= address = 10h = 00h = 06h	(HERE)			Decode	No operation No dummy read	No operation	Write register 'f' (dest)
	PC TOS PCLATH		h 5 (HERE + 2)	<u>Exa</u>	<u>mple</u> : Before Instruc		[05h], REG2	2
	PČLATU W					FSR2 Contents of 85h REG2 After Instruction FSR2 Contents of 85h REG2	= 80 = 33 = 11 on = 80	h h h	


Param. No.	Symbol		Characteristic			Max	Units	Conditions
40	Tt0H	T0CKI High P	ulse Width	No prescaler	0.5 TCY + 20	—	ns	
				With prescaler	10		ns	
41	Tt0L	T0CKI Low P	ulse Width	No prescaler	0.5 TCY + 20	_	ns	
				With prescaler	10	_	ns	
42	Tt0P	T0CKI Period		No prescaler	Tcy + 10	_	ns	
				With prescaler	Greater of: 20 ns or (TcY + 40)/N	_	ns	N = prescale value (1, 2, 4,, 256)
45	Tt1H TxCKI High Synchronous, r		Synchronous, no	o prescaler	0.5 TCY + 20	_	ns	
		Time	Synchronous, with prescaler		10	—	ns	
			Asynchronous		30	—	ns	
46	Tt1L	TxCKI Low	Synchronous, no	o prescaler	0.5 TCY + 5	_	ns	
		Time	Synchronous, with prescaler		10	—	ns	
			Asynchronous		30	_	ns	
47	Tt1P	TxCKI Input Period	Synchronous		Greater of: 20 ns or (Tcy + 40)/N	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—	ns	
	Ft1	TxCKI Clock	nput Frequency R	DC	50	kHz		
48	Tcke2tmrl	Delay from Ex Increment	kternal TxCKI Cloc	k Edge to Timer	2 Tosc	7 Tosc	—	

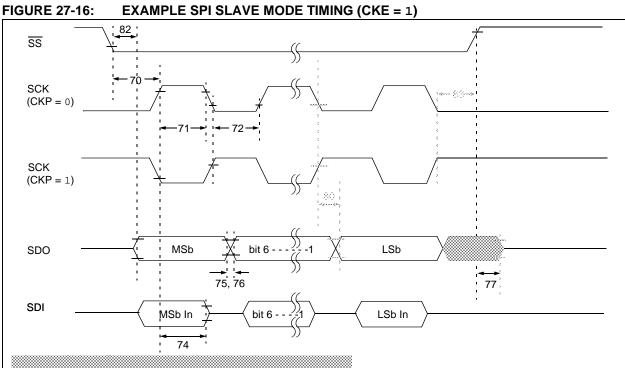
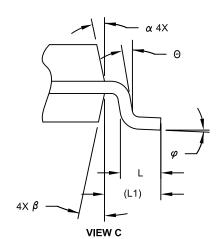
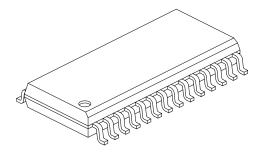

TABLE 27-12:	TIMER0 AND TIMER1/3/5 EXTERNAL CLOCK REQUIREMENTS
--------------	---

FIGURE 27-12: CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)

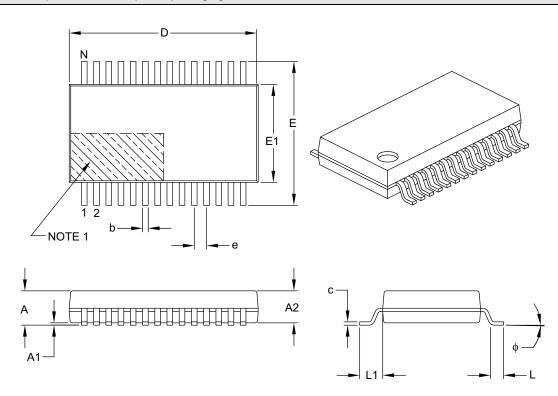

PIC18(L)F2X/4XK22



28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		1.27 BSC		
Overall Height	A	I	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			6
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	Α	—	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	Е	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	с	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B