

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k22t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE I Z.							
	Pin Nu	ımber		Pin	Buffer		
	PDIP, SOIC	QFN, UQFN	Pin Name	Туре Туре		Description	
	20	17	Vdd	Р	_	Positive supply for logic and I/O pins.	
	8, 19	5, 16	Vss	Р	_	Ground reference for logic and I/O pins.	

TABLE 1-2: PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

TABLE 1-3:	PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS
------------	--

	Pin Number		Din Nama	Pin	Buffer	Description	
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description
2	19	19	17	RA0/C12IN0-/AN0			
				RA0	I/O	TTL	Digital I/O.
				C12IN0-	I	Analog	Comparators C1 and C2 inverting input.
				AN0	Ι	Analog	Analog input 0.
3	20	20	18	RA1/C12IN1-/AN1			
				RA1	I/O	TTL	Digital I/O.
				C12IN1-	I	Analog	Comparators C1 and C2 inverting input.
				AN1	I	Analog	Analog input 1.
4	21	21	19	RA2/C2IN+/AN2/DACOUT	Wref-		
				RA2	I/O	TTL	Digital I/O.
				C2IN+	I	Analog	Comparator C2 non-inverting input.
				AN2	I	Analog	Analog input 2.
				DACOUT	0	Analog	DAC Reference output.
				VREF-	I	Analog	A/D reference voltage (low) input.
5	22	22	20	RA3/C1IN+/AN3/VREF+			
				RA3	I/O	TTL	Digital I/O.
				C1IN+	Ι	Analog	Comparator C1 non-inverting input.
				AN3	I	Analog	Analog input 3.
				VREF+	Ι	Analog	A/D reference voltage (high) input.
6	23	23	21	RA4/C1OUT/SRQ/T0CKI			
				RA4	I/O	ST	Digital I/O.
				C1OUT	0	CMOS	Comparator C1 output.
				SRQ	0	TTL	SR latch Q output.
				TOCKI	l atible inc	ST	Timer0 external clock input.

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

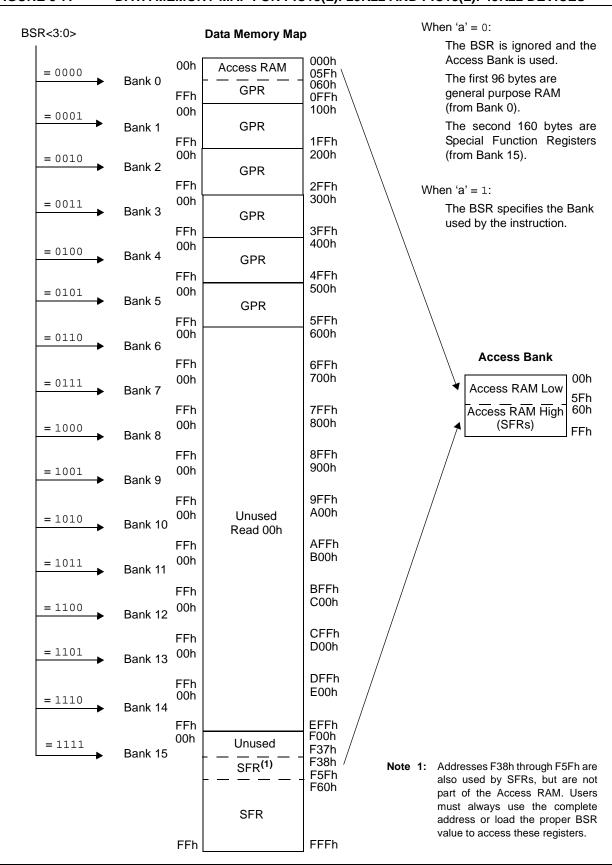
3.6 Selective Peripheral Module Control

Idle mode allows users to substantially reduce power consumption by stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what IDLE mode does not provide: the allocation of power resources to the CPU processing with minimal power consumption from the peripherals. PIC18(L)F2X/4XK22 family devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with control bits in the Peripheral Module Disable (PMD) registers. These bits generically named XXXMD are located in control registers PMD0, PMD1 or PMD2.

Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, power to the control and status registers associated with the peripheral is removed. Writes to these registers have no effect and read values are invalid. Clearing a set PMD bit restores power to the associated control and status registers, thereby setting those registers to their default values.

3.7 Register Definitions: Peripheral Module Disable

REGISTER 3-1: PMD0: PERIPHERAL MODULE DISABLE REGISTER 0


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD
bit 7	·						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	UART2MD: UART2 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 6	UART1MD: UART1 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 5	TMR6MD: Timer6 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 4	TMR5MD: Timer5 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 3	TMR4MD: Timer4 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 2	TMR3MD: Timer3 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 1	TMR2MD: Timer2 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 0	TMR1MD: Timer1 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	_	—	CTMUMD	CMP2MD	CMP1MD	ADCMD
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-4	Unimplemen	ted: Read as ')'				
bit 3	CTMUMD: CT	MU Periphera	I Module Disa	able Control bit			
	1 = Module is	disabled, Clo	ck Source is o	disconnected, n	nodule does no	t draw digital po	ower
	0 = Module is	enabled, Cloo	k Source is c	connected, mod	lule draws digita	al power	
bit 2	CMP2MD: Co	mparator C2 F	eripheral Mo	dule Disable Co	ontrol bit		
					nodule does no		ower
					lule draws digita	al power	
bit 1	CMP1MD: Co	mparator C1 F	eripheral Mo	dule Disable Co	ontrol bit		
					nodule does no	• .	ower
					lule draws digita	al power	
bit 0		C Peripheral M					
					nodule does no	• .	ower
	0 = iviodule is		K Source IS C	connected, mod	lule draws digita	a power	

REGISTER 3-3: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
FD1h	WDTCON	_	—	—	_	_		—	SWDTEN	0
FD0h	RCON	IPEN	SBOREN	_	RI	TO	PD	POR	BOR	01-1 1100
FCFh	TMR1H		Holding R	egister for the	Most Significa	ant Byte of the	16-bit TMR1 R	egister	•	xxxx xxxx
FCEh	TMR1L			Least Signif	icant Byte of th	ne 16-bit TMR1	Register			xxxx xxxx
FCDh	T1CON	TMR1C	S<1:0>	T1CKF	PS<1:0>	T1SOSCEN	T1SYNC	T1RD16	TMR10N	0000 0000
FCCh	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>	0000 xx00
FCBh	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000
FCAh	SSP1MSK				SSP1 MASK F	Register bits				1111 1111
FC9h	SSP1BUF			SSP1	Receive Buffer	r/Transmit Reg	ister			xxxx xxxx
FC8h	SSP1ADD	SSP1	Address Regis	ster in I ² C Sla	ve Mode. SSP	1 Baud Rate R	eload Register	r in I ² C Master	Mode	0000 0000
FC7h	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000
FC6h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		0000 0000
FC5h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000
FC4h	ADRESH				A/D Result,	High Byte				xxxx xxxx
FC3h	ADRESL				A/D Result,	Low Byte				xxxx xxxx
FC2h	ADCON0	_			CHS<4:0>			GO/DONE	ADON	00 0000
FC1h	ADCON1	TRIGSEL	_	_	_	PVCF	G<1:0>	NVCF	G<1:0>	0 0000
FC0h	ADCON2	ADFM	_		ACQT<2:0>			ADCS<2:0>		0-00 0000
FBFh	CCPR1H			Captu	re/Compare/P\	VM Register 1,	High Byte			xxxx xxxx
FBEh	CCPR1L			Captur	e/Compare/PV	VM Register 1,	Low Byte			xxxx xxxx
FBDh	CCP1CON	P1M<	<1:0>	DC1E	3<1:0>		CCP1N	1<3:0>		0000 0000
FBCh	TMR2				Timer2 F	Register				0000 0000
FBBh	PR2				Timer2 Peri	od Register				1111 1111
FBAh	T2CON	_		T2OUT	PS<3:0>		TMR2ON	'S<1:0>	-000 0000	
FB9h	PSTR1CON	_	_	_	STR1SYNC	STR1D	STR1C	STR1B	STR1A	0 0001
FB8h	BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	_	WUE	ABDEN	0100 0-00
FB7h	PWM1CON	P1RSEN				P1DC<6:0>				0000 0000
FB6h	ECCP1AS	CCP1ASE		CCP1AS<2:0	>	PSS1A	PSS1AC<1:0> PSS1BD<1:0>			0000 0000
FB4h	T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T <u>3GGO</u> / DONE	T3GVAL T3GSS<1:0>			00x0 0x00
FB3h	TMR3H		Holding R	egister for the	Most Significa	ant Byte of the	16-bit TMR3 R	egister		xxxx xxxx
FB2h	TMR3L			Least Signif	icant Byte of th	ne 16-bit TMR3	Register			xxxx xxxx
FB1h	T3CON	TMR3C	S<1:0>	T3CKF	PS<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	0000 0000
FB0h	SPBRGH1			EUSAR	T1 Baud Rate	Generator, Hig	h Byte			0000 0000
FAFh	SPBRG1			EUSAR	T1 Baud Rate	Generator, Lov	w Byte			0000 0000
FAEh	RCREG1				T1 Receive Re					0000 0000
FADh	TXREG1			EUSAR	T1 Transmit R	egister				0000 0000
FACh	TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010
FABh	RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x
FAAh	EEADRH ⁽⁵⁾	_	_	_	_	_	_		R<9:8>	00
FA9h	EEADR			1	EEAD	R<7:0>				0000 0000
FA8h	EEDATA				EEPROM Da					0000 0000
FA7h	EECON2			EEPROM Co		2 (not a physic	cal register)			00
FA6h	EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000
FA5h	IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	0000 0000
FA4h	PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	0000 0000
FA3h	PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	0000 0000

TABLE 5-2: REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES (CONTINUED)

Legend: \mathbf{x} = unknown, \mathbf{u} = unchanged, — = unimplemented, \mathbf{q} = value depends on condition

PIC18(L)F4XK22 devices only. Note 1:

PIC18(L)F2XK22 devices only. 2:

PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only. PIC18(L)F26K22 and PIC18(L)F46K22 devices only. 3:

4:

DS40001412G-page 80

10.7 Port Analog Control

Most port pins are multiplexed with analog functions such as the Analog-to-Digital Converter and comparators. When these I/O pins are to be used as analog inputs it is necessary to disable the digital input buffer to avoid excessive current caused by improper biasing of the digital input. Individual control of the digital input buffers on pins which share analog functions is provided by the ANSELA, ANSELB, ANSELC, ANSELD and ANSELE registers. Setting an ANSx bit high will disable the associated digital input buffer and cause all reads of that pin to return '0' while allowing analog functions of that pin to operate correctly.

The state of the ANSx bits has no affect on digital output functions. A pin with the associated TRISx bit clear and ANSx bit set will still operate as a digital output but the input mode will be analog. This can cause unexpected behavior when performing readmodify-write operations on the affected port.

All ANSEL register bits default to '1' upon POR and BOR, disabling digital inputs for their associated port pins. All TRIS register bits default to '1' upon POR or BOR, disabling digital outputs for their associated port pins. As a result, all port pins that have an ANSEL register will default to analog inputs upon POR or BOR.

10.8 Port Slew Rate Control

The output slew rate of each port is programmable to select either the standard transition rate or a reduced transition rate of approximately 0.1 times the standard to minimize EMI. The reduced transition time is the default slew rate for all ports.

10.9	Register	Definitions –	Port Control
------	----------	----------------------	--------------

REGISTER 10-1: PORTX⁽¹⁾: PORTX REGISTER

| R/W-u/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Rx7 | Rx6 | Rx5 | Rx4 | Rx3 | Rx2 | Rx1 | Rx0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
-n/n = Value at POR and BO	R/Value at all other Resets	

bit 7-0 Rx<7:0>: PORTx I/O bit values⁽²⁾

Note 1: Register Description for PORTA, PORTB, PORTC and PORTD.

2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCLx line, is called clock stretching. Clock stretching give slave devices a mechanism to control the flow of data. When this detection is used on the SDAx line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

15.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCLx clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCLx line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCLx connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

15.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

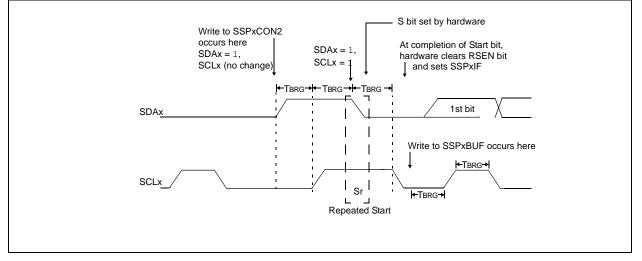
However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDAx data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels don't match, loses arbitration, and must stop transmitting on the SDAx line.

For example, if one transmitter holds the SDAx line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDAx line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDAx line. If this transmitter is also a master device, it also must stop driving the SCLx line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDAx line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.


Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

15.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 15-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. SCLx is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

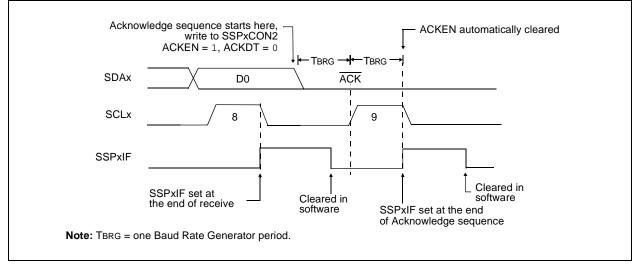
FIGURE 15-27: REPEAT START CONDITION WAVEFORM

15.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN, of the SSPxCON2 register. When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSPx module then goes into Idle mode (Figure 15-30).

15.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).


15.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN, of the SSPxCON2 register. At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 15-31).

15.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 15-30: ACKNOWLEDGE SEQUENCE WAVEFORM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	271
BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	_	WUE	ABDEN	271
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SPBRG1			EUSART1	Baud Rate	Generator, L	ow Byte			_
SPBRGH1			EUSART1	Baud Rate	Generator, H	ligh Byte			_
SPBRG2			EUSART2	Baud Rate	Generator, L	ow Byte			_
SPBRGH2			EUSART2	Baud Rate	Generator, H	ligh Byte			_
TRISB ⁽²⁾	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	—	150
ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	150
TXREG1	EUSART1 Transmit Register								
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269
TXREG2	EUSART2 Transmit Register								—
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269

TABLE 16-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for synchronous master transmission.

Note 1: PIC18(L)F4XK22 devices.

2: PIC18(L)F2XK22 devices.

21.3 Register Definitions: FVR Control

REGISTER	<u> 21-1: VREF</u>	CON0: FIXED		REFERENC	E CONTROL F	REGISTER	
R/W-0	R/W-0	R/W-0	R/W-1	U-0	U-0	U-0	U-0
FVREN	FVRST	FVRS	6<1:0>	—	—	—	—
bit 7		·		-			bit
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
u = Bit is ur	nchanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 6	0 = Fixed V	ed Voltage Refe oltage Referenc oltage Referenc	e output is no	ot ready or not e	enabled		
bit 5-4	FVRS<1:0> 00 = Fixed \ 01 = Fixed \ 10 = Fixed \	: Fixed Voltage /oltage Referen /oltage Referen /oltage Referen /oltage Referen	Reference Se ce Peripheral ce Peripheral ce Peripheral	election bits output is off output is 1x (1, output is 2x (2,	.048V)(1)		
bit 3-2		Read as '0'. Mai	•	•			
bit 1-0	Unimpleme	nted: Read as '	0'.				
Note 1.	Fixed Voltage B						

REGISTER 21-1: VREFCON0: FIXED VOLTAGE REFERENCE CONTROL REGISTER

Note 1: Fixed Voltage Reference output cannot exceed VDD.

TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
VREFCON0	FVREN	FVRST	FVRS<1:0>		_				332

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by the FVR module.

23.7 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

23.8 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN		HLVDI	_<3:0>		337
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151

TABLE 23-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented locations, read as '0'. Shaded bits are unused by the HLVD module.

CNT Z C DC

After Instruction

CNT Z C DC

FFh 0 ? ?

00h

= = = =

= = = 1 1 1

GOTO	Uncondit	ional Bran	ch		INCF	Incremen	t f			
Syntax:	GOTO k				Syntax:	INCF f{,c	INCF f {,d {,a}}			
Operands:	$0 \le k \le 104$	8575			Operands:	$0 \leq f \leq 255$				
Operation:	$k \rightarrow PC < 20$):1>				d ∈ [0,1] a ∈ [0,1]				
Status Affected:	None	None		Operation:	$a \in [0, 1]$ (f) + 1 \rightarrow de	act				
Encoding:					Status Affected:	$(1) \neq 1 \rightarrow 0$ C, DC, N,				
1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111		7kkk kkk	kkkk ₀ kkkk ₈	Encoding:	0010	10da ff	ff ffff		
Description:	GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction.			2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle			Description:	incremente placed in W placed bac If 'a' is '0', t	ts of register 'f d. If 'd' is '0', t V. If 'd' is '1', th k in register 'f' the Access Ba he BSR is use	he result is ne result is (default). nk is selected
Words:	2					GPR bank.				
Cycles:	2						If 'a' is '0' and the extended instructio set is enabled, this instruction operate			
Q Cycle Activity:						in Indexed Literal Offset Addressing				
Q1	Q2	Q3		Q4		mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and				
Decode	Read literal 'k'<7:0>,	No operation	'k'	ad literal 2<19:8>, rite to PC		Bit-Oriente	ed Instruction set Mode" for	s in Indexed		
No	No	No		No	Words:	1				
operation	operation	operation	op	peration	Cycles:	1				
					Q Cycle Activity:					
Example:	GOTO THE	RE			Q1	Q2	Q3	Q4		
After Instruction PC =	on Address (T	HERE)			Decode	Read register 'f'	Process Data	Write to destination		
					Example:	INCF	CNT, 1, 0			
				Before Instruc	ction					

SUBWFB	Su	btract	W from f wit	h Borrow					
Syntax:	SU	IBWFB	f {,d {,a}}						
Operands:	0 ≤	f ≤ 255							
		d ∈ [0,1]							
		a ∈ [0,1]							
Operation:	(f) ·	$(f) - (W) - (\overline{C}) \rightarrow dest$							
Status Affected:	N,	N, OV, C, DC, Z							
Encoding:	(0101	10da fff	f fff					
Description: Words:	Subtract W and the CARRY flag (borrow) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.								
	-								
Cycles:	1								
Q Cycle Activity: Q1		Q2	Q3	Q4					
Decode	F	Read	Process	Write to					
		gister 'f'	Data	destination					
Example 1:	S	UBWFB	REG, 1, 0						
Before Instruc	tion								
REG W C	= = =	19h 0Dh 1	(0001 10) (0000 11)						
After Instructic REG W C Z	n = = =	0Ch 0Dh 1 0	(0000 11) (0000 11)						
N	=	Ō	; result is positive						
Example 2:		UBWFB	REG, 0, 0						
Before Instruc REG W C	tion = = =	1Bh 1Ah 0	(0001 10: (0001 10:	11) 10)					
After Instructic REG W C	= =	1Bh 00h 1	(0001 103	11)					
Z N	= = =	1 0	; result is zero						
Example 3:		UBWFB	REG, 1, 0						
Before Instruc REG W C	= = =	03h 0Eh 1		11) 10)					
After Instructio REG	n =	F5h	; [2's comp]						
W C	=	0Eh 0	(0000 11						
Z N	= =	0 1	; result is n	egative					

SWAPF	Swap f							
Syntax:	SWAPF f {.d {.a}}							
Operands:	0 < f < 255							
op of an add	d ∈ [0,1] a ∈ [0,1]							
Operation:	(f<3:0>) → (f<7:4>) →		-					
Status Affected:	None							
Encoding:	0011	10da	ffff	ffff				
Mush	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.							
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	3	Q4				

		-17	-
Decode	Read	Process	Write to
	register 'f'	Data	destination

REG, 1, 0

Example:

SWAPF

Before Instruction REG = 53h After Instruction REG = 35h

TBLWT	Table W	rite							
Syntax:	TBLWT (*	'; *+; *-; +*	*)						
Operands:	None								
Operation:	if TBLWT*,								
	$(TABLAT) \rightarrow Holding Register;$								
	TBLPTR -		ige;						
	if TBLWT*								
	(TABLAT) (TBLPTR)			,					
	if TBLWT*		DEF IN,						
	(TABLAT)	,	g Register	;					
	(TBLPTR)		BLPTR;						
	if TBLWT+	,							
	(TBLPTR) (TABLAT)								
Status Affected:	None		g register	3					
Encoding:	0000	0000	0000	11nn					
Ũ				nn=0 *					
				=1 *+					
				=2 *- =3 +*					
Description:	This instru	iction uses	s the three						
Description.				of the eight					
				is written to.					
				I to program					
	the conter (Refer to \$								
	Memory"								
	programm								
	The TBLP	``	•						
	each byte								
	TBLPTR h The LSb c								
	byte of the								
	access.								
	TBLF	PTR[0] = 0		Significant [•] Program					
			Memor	y Word					
	IBL	PTR[0] = 1		ignificant Program					
	The TBLW			y Word					
	value of T								
	no char	nge							
	 post-ind 	crement							
	•	crement							
	 pre-incr 	rement							
Words:	1								
Cycles:	2								
Q Cycle Activity:									
	Q1	Q2	Q3	Q4					
	Decode	No	No	No					
	No		operation	operation					
	No operation	No operation	No operation	No operation					
	5,0000	(Read		(Write to					
	1	TABLAT)		Holding					

TBLWT Table Write (Continued)

Example1: TBLWT *+;		
Before Instruction		
TABLAT	=	55h
TBLPTR	=	00A356h
HOLDING REGISTER		
(00A356h)	=	FFh
After Instructions (table write	comp	letion)
TABLAT	=	55h
TBLPTR	=	00A357h
HOLDING REGISTER (00A356h)	_	55h
(00A3361)	=	5511
Example 2: TBLWT +*;		
Before Instruction		
TABLAT	=	34h
TBLPTR	=	01389Ah
HOLDING REGISTER		
(01389Ah) HOLDING REGISTER	=	FFh
(01389Bh)	=	FFh
After Instruction (table write o	_	
TABLAT	•	34h
	=	01389Bh
	-	01309011
(01389Ah)	=	FFh
HOLDING REGISTER		
(01389Bh)	=	34h

TABLAT)

Holding Register)

26.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

26.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

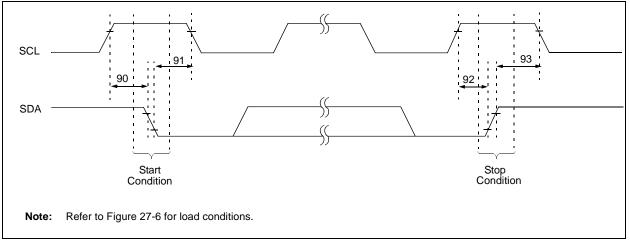
- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

27.4 DC Characteristics: RC Idle Supply Current, PIC18(L)F2X/4XK22

PIC18LF2X/4XK22				erating	Conditions (unle re -40°C ≤ TA ≤		tated)		
PIC18F2	X/4XK22	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Device Characteristics	Тур	Max	Units		Conditions			
D045	Supply Current (IDD)(1),(2)	0.5	18	μΑ	-40°C	VDD = 1.8V	Fosc = 31 kHz		
		0.6	18	μΑ	+25°C		(RC_IDLE mode, LFINTOSC source)		
		0.7	—	μΑ	+60°C		LFINTOSC Source)		
		0.75	20	μΑ	+85°C				
		2.3	22	μΑ	+125°C				
D046		1.1	20	μΑ	-40°C	VDD = 3.0V			
		1.2	20	μΑ	+25°C				
		1.3	—	μΑ	+60°C				
		1.4	22	μΑ	+85°C				
		3.2	25	μΑ	+125°C				
D047		17	30	μΑ	-40°C	VDD = 2.3V	Fosc = 31 kHz		
		13	30	μΑ	+25°C		(RC_IDLE mode, LFINTOSC source)		
		14	30	μΑ	+85°C				
		15	45	μΑ	+125°C				
D048		19	35	μΑ	-40°C	VDD = 3.0V			
		15	35	μΑ	+25°C				
		16	35	μΑ	+85°C				
		17	50	μΑ	+125°C				
D049		21	40	μΑ	-40°C	VDD = 5.0V			
		15	40	μΑ	+25°C				
		16	40	μΑ	+85°C				
		18	60	μΑ	+125°C				
D050		0.11	0.20	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 500 kHz		
D051		0.12	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MFINTOSC source)		
D052		0.14	0.21	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 500 kHz		
D053		0.15	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MEINTOSC source)		
D054		0.20	0.31	mA	-40°C to +125°C	VDD = 5.0V	MFINTOSC source)		

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

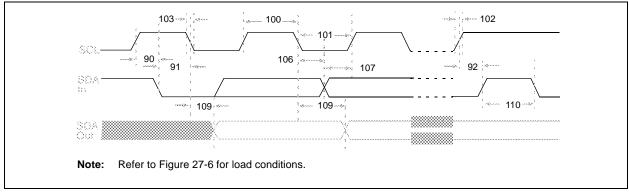
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

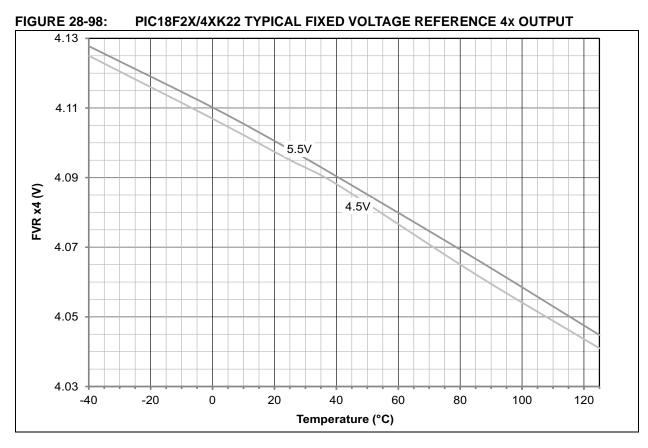

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

 $\overline{MCLR} = VDD;$

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).





Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		Repeated Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		condition
91	Thd:sta	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_		After this period, the first clock pulse is generated
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		

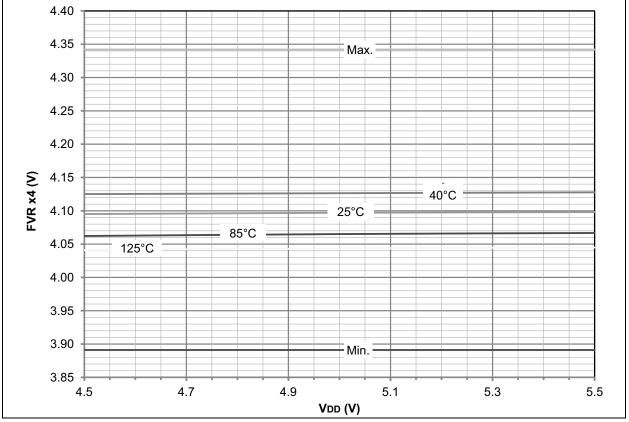
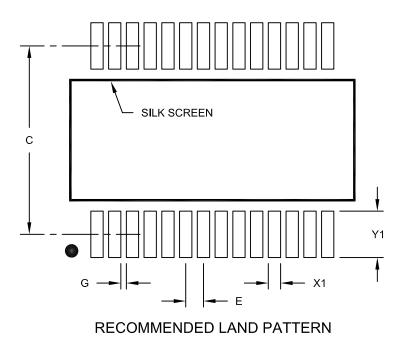

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

FIGURE 27-20: MASTER SSP I²C BUS DATA TIMING



© 2010-2016 Microchip Technology Inc.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	E	0.65 BSC				
Contact Pad Spacing	С		7.20			
Contact Pad Width (X28)	X1			0.45		
Contact Pad Length (X28)	Y1			1.75		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A