

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k22-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin N	lumber			Pin	Buffer				
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description			
37	14	14	12	RB4/IOC0/T5G/AN11						
				RB4	I/O	TTL	Digital I/O.			
				IOC0	I	TTL	Interrupt-on-change pin.			
				T5G	I	ST	Timer5 external clock gate input.			
				AN11	I	Analog	Analog input 11.			
38	15	15	13	RB5/IOC1/P3A/CCP3/T3C	KI/T1G/A	N13				
				RB5	I/O	TTL	Digital I/O.			
				IOC1	I	TTL	Interrupt-on-change pin.			
				P3A ⁽¹⁾	0	CMOS	Enhanced CCP3 PWM output.			
				CCP3 ⁽¹⁾	I/O	ST	Capture 3 input/Compare 3 output/PWM 3 output.			
				Т3СКІ ⁽²⁾	I	ST	Timer3 clock input.			
				T1G	I	ST	Timer1 external clock gate input.			
				AN13	I	Analog	Analog input 13.			
39	16	16	14	RB6/IOC2/PGC	AN13 I Analog Analog input 13. RB6/IOC2/PGC					
				RB6	I/O	TTL	Digital I/O.			
				IOC2	I	TTL	Interrupt-on-change pin.			
				PGC	I/O	ST	In-Circuit Debugger and ICSP™ programming			
							clock pin.			
40	17	17	15	RB7/IOC3/PGD						
				RB7	I/O	TTL	Digital I/O.			
				IOC3	I	TTL	Interrupt-on-change pin.			
				PGD	I/O	ST	In-Circuit Debugger and ICSP™ programming data pin.			
15	32	34	30	RC0/P2B/T3CKI/T3G/T1C	KI/SOSC	0				
				RC0	I/O	ST	Digital I/O.			
				P2B ⁽²⁾	0	CMOS	Enhanced CCP1 PWM output.			
				Т3СКІ ⁽¹⁾	I	ST	Timer3 clock input.			
				T3G	I	ST	Timer3 external clock gate input.			
				T1CKI	I	ST	Timer1 clock input.			
				SOSCO	0		Secondary oscillator output.			
16	35	35	31	RC1/P2A/CCP2/SOSCI						
				RC1	I/O	ST	Digital I/O.			
				P2A ⁽¹⁾	0	CMOS	Enhanced CCP2 PWM output.			
				CCP2 ⁽¹⁾	I/O	ST	Capture 2 input/Compare 2 output/PWM 2 output.			
				SOSCI	I	Analog	Secondary oscillator input.			
17	36	36	32	RC2/CTPLS/P1A/CCP1/T	5CKI/AN1	4				
				RC2	I/O	ST	Digital I/O.			
				CTPLS O CTMU pulse generator output.		CTMU pulse generator output.				
				P1A	0	смоз	Enhanced CCP1 PWM output.			
				CCP1	I/O	ST	Capture 1 input/Compare 1 output/PWM 1 output.			
				T5CKI	I	ST	Timer5 clock input.			
				AN14		Analog	Analog input 14			
Logon	а. <u>тт</u> і		I		untible inc					

TABLE 1-3	PIC18(I)F4XK22 PINOUT I/O DESCRIPTIONS ((CONTINUED)	
			/

Legend: IIL = IIL compatible input CMOS = CMOS compatible input or output; SI = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

4.0 RESET

The PIC18(L)F2X/4XK22 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR and covers the operation of the various start-up timers. Stack Reset events are covered in Section 5.2.0.1 "Stack Full and Underflow Resets". WDT Resets are covered in Section 24.3 "Watchdog Timer (WDT)". A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 4-1.

4.1 RCON Register

Device Reset events are tracked through the RCON register (Register 4-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 4.7 "Reset State of Registers"**.

The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 9.0 "Interrupts". BOR is covered in Section 4.5 "Brown-out Reset (BOR)".

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
FD1h	WDTCON	_	_	_	_	_	_	_	SWDTEN	0
FD0h	RCON	IPEN	SBOREN	_	RI	TO	PD	POR	BOR	01-1 1100
FCFh	TMR1H		Holding R	egister for the	Most Significa	ant Byte of the	16-bit TMR1 R	egister		xxxx xxxx
FCEh	TMR1L			Least Signifi	icant Byte of th	e 16-bit TMR1	Register			xxxx xxxx
FCDh	T1CON	TMR1C	S<1:0>	T1CKF	PS<1:0>	T1SOSCEN	T1SYNC	T1RD16	TMR10N	0000 0000
FCCh	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	0000 xx00		
FCBh	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000
FCAh	SSP1MSK		SSP1 MASK Register bits							1111 1111
FC9h	SSP1BUF			SSP1	Receive Buffer	/Transmit Reg	ister			xxxx xxxx
FC8h	SSP1ADD	SSP1 /	Address Regis	ster in I ² C Slav	ve Mode. SSP	1 Baud Rate R	eload Register	in I ² C Master	Mode	0000 0000
FC7h	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000
FC6h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		0000 0000
FC5h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000
FC4h	ADRESH				A/D Result,	High Byte				xxxx xxxx
FC3h	ADRESL				A/D Result,	Low Byte		-	-	xxxx xxxx
FC2h	ADCON0	_			CHS<4:0>	-		GO/DONE	ADON	00 0000
FC1h	ADCON1	TRIGSEL	_	_	_	PVCF	G<1:0>	NVCF	G<1:0>	0 0000
FC0h	ADCON2	ADFM	-		ACQT<2:0>			ADCS<2:0>		0-00 0000
FBFh	CCPR1H			Captur	e/Compare/PV	VM Register 1,	High Byte			xxxx xxxx
FBEh	CCPR1L			Captur	e/Compare/PV	VM Register 1,	Low Byte			xxxx xxxx
FBDh	CCP1CON	P1M<	:1:0>	DC1E	8<1:0>		CCP1N	l<3:0>		0000 0000
FBCh	TMR2				Timer2 F	Register				0000 0000
FBBh	PR2				Timer2 Peri	od Register		-		1111 1111
FBAh	T2CON	_		T2OUT	PS<3:0>	-	TMR2ON	T2CKP	S<1:0>	-000 0000
FB9h	PSTR1CON	_	-	-	STR1SYNC	STR1D	STR1C	STR1B	STR1A	0 0001
FB8h	BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	-	WUE	ABDEN	0100 0-00
FB7h	PWM1CON	P1RSEN				P1DC<6:0>				0000 0000
FB6h	ECCP1AS	CCP1ASE		CCP1AS<2:0:	>	PSS1A	C<1:0>	PSS1B	D<1:0>	0000 0000
FB4h	T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T <u>3GGO</u> / DONE	T3GVAL	T3GSS	S<1:0>	00x0 0x00
FB3h	TMR3H		Holding R	egister for the	Most Significa	ant Byte of the	16-bit TMR3 R	egister		xxxx xxxx
FB2h	TMR3L			Least Signifi	cant Byte of th	e 16-bit TMR3	Register	n	n	xxxx xxxx
FB1h	T3CON	TMR3C	S<1:0>	T3CKF	°S<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	0000 0000
FB0h	SPBRGH1			EUSAR	T1 Baud Rate	Generator, Hig	h Byte			0000 0000
FAFh	SPBRG1			EUSAR	T1 Baud Rate	Generator, Lov	w Byte			0000 0000
FAEh	RCREG1			EUSAR	T1 Receive Re	egister				0000 0000
FADh	TXREG1			EUSAR	T1 Transmit R	egister		r	r	0000 0000
FACh	TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010
FABh	RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x
FAAh	EEADRH ⁽⁵⁾	_	_	_	_	_	_	EEAD	R<9:8>	00
FA9h	EEADR				EEAD	R<7:0>				0000 0000
FA8h	EEDATA				EEPROM Da	ita Register				0000 0000
FA7h	EECON2			EEPROM Co	ontrol Register	2 (not a physic	cal register)	1	1	00
FA6h	EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000
FA5h	IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	0000 0000
FA4h	PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	0000 0000
FA3h	PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	0000 0000

TABLE 5-2: REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES (CONTINUED)

Legend: \mathbf{x} = unknown, \mathbf{u} = unchanged, — = unimplemented, \mathbf{q} = value depends on condition

PIC18(L)F4XK22 devices only. Note 1:

PIC18(L)F2XK22 devices only. 2:

PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only. PIC18(L)F26K22 and PIC18(L)F46K22 devices only. 3:

4:

DS40001412G-page 80

6.5 Erasing Flash Program Memory

The minimum erase block is 32 words or 64 bytes. Only through the use of an external programmer, or through ICSP[™] control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. The TBLPTR<5:0> bits are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

The write initiate sequence for EECON2, shown as steps 4 through 6 in **Section 6.5.1** "**Flash Program Memory Erase Sequence**", is used to guard against accidental writes. This is sometimes referred to as a long write.

A long write is necessary for erasing the internal Flash. Instruction execution is halted during the long write cycle. The long write is terminated by the internal programming timer.

6.5.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory is:

- 1. Load Table Pointer register with address of block being erased.
- 2. Set the EECON1 register for the erase operation:
 - set EEPGD bit to point to program memory;
 - clear the CFGS bit to access program memory;
 - set WREN bit to enable writes;
 - set FREE bit to enable the erase.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write 0AAh to EECON2.
- 6. Set the WR bit. This will begin the block erase cycle.
- 7. The CPU will stall for duration of the erase (about 2 ms using internal timer).
- 8. Re-enable interrupts.

M M M M M	NOVLW C NOVWF T NOVLW C NOVWF T NOVLW C	CODE_ADDR BLPTRU CODE_ADDR BLPTRH	_UPPER _HIGH _LOW	; ;	load TBLPTR with the base address of the memory block
M	NOVWE T	BLPTRL			
ERASE_BLOCK	10 1 11 1				
В	BSF E	ECON1, E	EPGD	;	point to Flash program memory
В	BCF E	ECON1, C	FGS	;	access Flash program memory
В	BSF E	ECON1, W	REN	;	enable write to memory
В	BSF E	ECON1, FI	REE	;	enable block Erase operation
В	BCF I	NTCON, G	IE	;	disable interrupts
Required M	MOVLW 5	5h			
Sequence M	OVWF E	ECON2		;	write 55h
M	NOVLW 0.	AAh			
M	OVWF E	ECON2		;	write OAAh
В	BSF E	ECON1, W	R	;	start erase (CPU stall)
В	BSF I	NTCON, G	IE	;	re-enable interrupts

EXAMPLE 6-2: ERASING A FLASH PROGRAM MEMORY BLOCK

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
bit 7	Unimplemen	ted: Read as '	0'.				
bit 6	ADIE: A/D Co	onverter Interru	pt Enable bit				
	1 = Enables t	he A/D interrup	ot ot				
hit 5			Jl Interrupt Engl	ala hit			
bit 5	1 – Enables ti		eceive interru				
	0 = Disables the set of the s	the EUSART1	receive interru	upt			
bit 4	TX1IE: EUSA	RT1 Transmit	Interrupt Enat	ole bit			
	1 = Enables tl	he EUSART1 t	ransmit interr	upt			
	0 = Disables t	the EUSART1	transmit interr	rupt			
bit 3	SSP1IE: Mas	ter Synchronou	us Serial Port	1 Interrupt Ena	able bit		
	1 = Enables ti 0 = Disables t	he MSSP1 inte he MSSP1 inte	errupt errupt				
bit 2	CCP1IE: CCF	P1 Interrupt En	able bit				
	1 = Enables tl	he CCP1 interr	upt				
	0 = Disables t	the CCP1 inter	rupt				
bit 1	TMR2IE: TMF	R2 to PR2 Mate	ch Interrupt E	nable bit			
	1 = Enables t	he TMR2 to PF	R2 match inter	rrupt			
h.:. 0			R2 match inte	errupt			
DITU			errupt Enable	DIT			
	$\perp = \Box ables ti0 = Disables t$	the TMR1 over	flow interrupt				
	2.000.000						

REGISTER 9-9: PIE1: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 1

Dort bit	Port Function Priority by Port Pin										
Port bit	PORTA	PORTB	PORTC	PORTD ⁽²⁾	PORTE ⁽²⁾						
5	SRNQ	CCP3 ⁽³⁾	SDO1	P1B							
	C2OUT	P3A ⁽³⁾	RC5	RD5							
	RA5	P2B ⁽¹⁾⁽⁴⁾									
		RB5									
6	OSC2	PGC	TX1/CK1	TX2/CK2							
	CLKO	TX2/CK2 ⁽¹⁾	CCP3 ⁽¹⁾⁽⁷⁾	P1C							
	RA6	RB6	P3A(1)(7)	RD6							
		ICDCK	RC6								
7	RA7										
	OSC1	PGD	RX1/DT1	RX2/DT2							
	RA7	RX2/DT2 ⁽¹⁾	P3B ⁽¹⁾	P1D							
		RB7	RC7	RD7							
		ICDDT									

TABLE 10-4: PORT PIN FUNCTION PRIORITY (CONTINUED)

Note 1: PIC18(L)F2XK22 devices.

2: PIC18(L)F4XK22 devices.

3: Function default pin.

4: Function default pin (28-pin devices).

5: Function default pin (40/44-pin devices).

6: Function alternate pin.

7: Function alternate pin (28-pin devices).

8: Function alternate pin (40/44-pin devices)

TABLE 10-5: PORTB I/O SUMMARY (CONTINUED)

Pin	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RB2/INT2/CTED1/	RB2	0	0	0	DIG	LATB<2> data output; not affected by analog input.
P1B/SDI2/SDA2/ AN8		1	0	Ι	TTL	PORTB<2> data input; disabled when analog input enabled.
	INT2	1	0	I	ST	External interrupt 2.
	CTED1	1	0	I	ST	CTMU Edge 1 input.
	P1B ⁽³⁾	0	0	0	DIG	Enhanced CCP1 PWM output 2.
	SDI2 ⁽³⁾	1	0	I	ST	MSSP2 SPI data input.
	SDA2 ⁽³⁾	0	0	0	DIG	MSSP2 I ² C data output.
		1	0	I	l ² C	MSSP2 I ² C data input.
	AN8	1	1	I	AN	Analog input 8.
RB3/CTED2/P2A/	RB3	0	0	0	DIG	LATB<3> data output; not affected by analog input.
CCP2/SDO2/ C12IN2-/AN9		1	0	I	TTL	PORTB<3> data input; disabled when analog input enabled.
	CTED2	1	0	Ι	ST	CTMU Edge 2 input.
	P2A	0	0	0	DIG	Enhanced CCP1 PWM output 1.
	CCP2 ⁽²⁾	0	0	0	DIG	Compare 2 output/PWM 2 output.
		1	0	I	ST	Capture 2 input.
	SDO2 ⁽²⁾	0	0	0	DIG	MSSP2 SPI data output.
	C12IN2-	1	1	Ι	AN	Comparators C1 and C2 inverting input.
	AN9	1	1	I	AN	Analog input 9.
RB4/IOC0/P1D/	RB4	0	0	0	DIG	LATB<4> data output; not affected by analog input.
T5G/AN11		1	0	I	TTL	PORTB<4> data input; disabled when analog input enabled.
	IOC0	1	0	Ι	TTL	Interrupt-on-change pin.
	P1D	0	0	0	DIG	Enhanced CCP1 PWM output 4.
	T5G	1	0	I	ST	Timer5 external clock gate input.
	AN11	1	1	Ι	AN	Analog input 11.
RB5/IOC1/P2B/	RB5	0	0	0	DIG	LATB<5> data output; not affected by analog input.
P3A/CCP3/T3CKI/ T1G/AN13		1	0	I	TTL	PORTB<5> data input; disabled when analog input enabled.
	IOC1	1	0	Ι	TTL	Interrupt-on-change pin 1.
	P2B ⁽¹⁾⁽³⁾	0	0	0	DIG	Enhanced CCP2 PWM output 2.
	P3A ⁽¹⁾	0	0	0	DIG	Enhanced CCP3 PWM output 1.
	CCP3 ⁽¹⁾	0	0	0	DIG	Compare 3 output/PWM 3 output.
		1	0	I	ST	Capture 3 input.
	T3CKI ⁽²⁾	1	0	I	ST	Timer3 clock input.
	T1G	1	0	I	ST	Timer1 external clock gate input.
	AN13	1	1	Ι	AN	Analog input 13.

Legend:AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I^2C = Schmitt Trigger input with I^2C .

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

3: Function on PORTD and PORTE for PIC18(L)F4XK22 devices.

13.0 TIMER2/4/6 MODULE

There are three identical 8-bit Timer2-type modules available. To maintain pre-existing naming conventions, the Timers are called Timer2, Timer4 and Timer6 (also Timer2/4/6).

Note:	The 'x' variable used in this section is									
	used to designate Timer2, Timer4, or									
	Timer6. For example, TxCON references									
	T2CON, T4CON, or T6CON. PRx									
	references PR2, PR4, or PR6.									

The Timer2/4/6 module incorporates the following features:

- 8-bit Timer and Period registers (TMRx and PRx, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMRx match with PRx, respectively
- Optional use as the shift clock for the MSSPx modules (Timer2 only)

See Figure 13-1 for a block diagram of Timer2/4/6.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPTMRS0	C3TSE	L<1:0>	—	C2TSE	L<1:0>	—	C1TSEL<1:0>		201
CCPTMRS1	—		—	_	C5TSE	L<1:0>	C4TS	EL<1:0>	201
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR5	_		_	_		TMR6IP	TMR5IP	TMR4IP	124
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE5	—	_	—	—	_	TMR6IE	TMR5IE	TMR4IE	120
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR5	—	_	—	—	_	TMR6IF	TMR5IF	TMR4IF	116
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
PR2			-	Timer2 Peri	od Register				—
PR4			-	Timer4 Peri	od Register				—
PR6			-	Timer6 Peri	od Register				—
T2CON	—		T2OUTPS	S<3:0>		TMR2ON	T2CK	PS<1:0>	166
T4CON	—		T4OUTPS	S<3:0>		TMR4ON	T4CK	PS<1:0>	166
T6CON	—		T6OUTPS	S<3:0>		TMR6ON	T6CK	PS<1:0>	166
TMR2				Timer2 I	Register				
TMR4				Timer4 I	Register				—
TMR6				Timer6 I	Register				_

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by Timer2/4/6.

14.4.8 SETUP FOR ECCP PWM OPERATION USING ECCP1 AND TIMER2

The following steps should be taken when configuring the ECCP1 module for PWM operation using Timer2:

- 1. Configure the PWM pins to be used (P1A, P1B, P1C, and P1D):
 - Configure PWM outputs to be used as inputs by setting the corresponding TRIS bits. This prevents spurious outputs during setup.
 - Set the PSTR1CON bits for each PWM output to be used.
- Select Timer2 as the period timer by configuring CCPTMR0 register bits C1TSEL<1:0> = '00'.
- 3. Set the PWM period by loading the PR2 register.
- 4. Configure auto-shutdown as OFF or select the source with the CCP1AS<2:0> bits of the ECCP1AS register.
- 5. Configure the auto-shutdown sources as needed:
 - Configure each comparator used.
 - Configure the comparator inputs as analog.
 - Configure the FLT0 input pin and clear ANSB0.
- 6. Force a shutdown condition (OFF included):
 - Configure safe starting output levels by setting the default shutdown drive states with the PSS1AC<1:0> and PSS1BD<1:0> bits of the ECCP1AS register.
 - Clear the P1RSEN bit of the PWM1CON register.
 - Set the CCP1AS bit of the ECCP1AS register.
- Configure the ECCP1 module for the desired PWM mode and configuration by loading the CCP1CON register with the appropriate values:
 - Select one of the available output configurations and direction with the P1M<1:0> bits.
 - Select the polarities of the PWM output signals with the CCP1M<3:0> bits.
- 8. Set the 10-bit PWM duty cycle:
 - Load the eight MSbs into the CCPR1L register.
 - Load the two LSbs into the DC<1:0> bits of the CCP1CON register.
- For Half-Bridge Output mode, set the deadband delay by loading P1DC<6:0> bits of the PWM1CON register with the appropriate value.

- 10. Configure and start TMR2:
 - Set the TMR2 prescale value by loading the T2CKPS bits of the T2CON register.
 - Start Timer2 by setting the TMR2ON bit.
- 11. Enable the ECCP1/P1A, P1B, P1C and/or P1D pin outputs by clearing the respective TRIS bits.
- 12. Start the PWM:
 - If shutdown auto-restart is used, then set the P1RSEN bit of the PWM1CON register.
 - If shutdown auto-restart is not used, then clear the CCP1ASE bit of the ECCP1AS register.

15.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDAx from a high-to -low state while SCLx line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an active state. Figure 15-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDAx line low before asserting it low. This does not conform to the I^2C specification that states no bus collision can occur on a Start.

15.4.6 STOP CONDITION

A Stop condition is a transition of the SDAx line from a low-to-high state while the SCLx line is high.

Note: At least one SCLx low time must appear before a Stop is valid, therefore, if the SDAx line goes low then high again while the SCLx line stays high, only the Start condition is detected.

15.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 15-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/W bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a high address with R/\overline{W} clear, or high address match fails.

15.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

FIGURE 15-12: I²C START AND STOP CONDITIONS

16.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

16.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for Synchronous Master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTAx register configures the device for synchronous operation. Setting the CSRC bit of the TXSTAx register configures the device as a master. Clearing the SREN and CREN bits of the RCSTAx register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTAx register enables the EUSART. If the RXx/DTx or TXx/CKx pins are shared with an analog peripheral the analog I/O functions must be disabled by clearing the corresponding ANSEL bits.

The TRIS bits corresponding to the RXx/DTx and TXx/CKx pins should be set.

16.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TXx/CKx line. The TXx/CKx pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

16.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the CKTXP bit of the BAUDCONx register. Setting the CKTXP bit sets the clock Idle state as high. When the CKTXP bit is set, the data changes on the falling edge of each clock and is sampled on the rising edge of each clock. Clearing the CKTXP bit sets the Idle state as low. When the CKTXP bit is cleared, the data changes on the rising edge of each clock and is sampled on the falling edge of each clock.

16.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RXx/DTx pin. The RXx/DTx and TXx/CKx pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXREGx register. If the TSR still contains all or part of a previous character the new character data is held in the TXREGx until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREGx is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREGx.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note: The TSR register is not mapped in data memory, so it is not available to the user.

16.5.1.4 Data Polarity

The polarity of the transmit and receive data can be controlled with the DTRXP bit of the BAUDCONx register. The default state of this bit is '0' which selects high true transmit and receive data. Setting the DTRXP bit to '1' will invert the data resulting in low true transmit and receive data.

- 16.5.1.5 Synchronous Master Transmission Setup:
- 1. Initialize the SPBRGHx, SPBRGx register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 16.4 "EUSART Baud Rate Generator (BRG)").
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC. Set the TRIS bits corresponding to the RXx/DTx and TXx/CKx I/O pins.

- 4. Disable Receive mode by clearing bits SREN and CREN.
- 5. Enable Transmit mode by setting the TXEN bit.
- 6. If 9-bit transmission is desired, set the TX9 bit.
- 7. If interrupts are desired, set the TXxIE, GIE/ GIEH and PEIE/GIEL interrupt enable bits.
- 8. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 9. Start transmission by loading data to the TXREGx register.

FIGURE 16-10: SYNCHRONOUS TRANSMISSION

FIGURE 16-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
MC1OUT	MC2OUT	C1RSEL	C2RSEL	C1HYS	C2HYS	C1SYNC	C2SYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	MC1OUT: Min	rror Copy of C	IOUT bit				
bit 6	MC2OUT: Min	rror Copy of C2	2OUT bit				
bit 5	C1RSEL: Co	mparator C1 R	eference Sele	ct bit			
	1 = FVR BUF	1 routed to C1	VREF input				
	0 = DAC rout	ed to C1VREF i	nput				
bit 4	C2RSEL: Co	mparator C2 R	eference Sele	ct bit			
	1 = FVR BUF	1 routed to C2	VREF input				
	$0 = DAC \operatorname{rout}$	ed to C2VREF i	nput				
bit 3	C1HYS: Com	parator C1 Hy	steresis Enable	e bit			
	1 = Compar	ator C1 hyster	esis enabled				
h # 0		ator C1 nystere	esis disabled	- h:t			
DIT 2		parator C2 Hy	steresis Enable	e Dit			
	1 = Compare 0 = Compare 1	ator C2 hyster	esis enabled				
bit 1	C1SYNC: C1	Output Synch	ronous Mode b	oit			
2	1 = C1 outp	ut is synchroni	zed to risina e	dae of TMR1 c	lock (T1CLK)		
	0 = C1 outp	ut is asynchror	nous	3			
bit 0	C2SYNC: C2	Output Synch	ronous Mode t	pit			
	1 = C2 outp	ut is synchroni	zed to rising e	dge of TMR1 c	lock (T1CLK)		
	0 = C2 outp	ut is asynchror	nous				

REGISTER 18-2: CM2CON1: COMPARATOR 1 AND 2 CONTROL REGISTER

MOVFF	Move f to	Move f to f		МО	VLB	Move liter	al to low ni	bble in BSR		
Syntax:	MOVFF f _s	,f _d		Syn	tax:	MOVLW k				
Operands:	$0 \le f_s \le 409$	5		Ope	rands:	$0 \leq k \leq 255$				
	$0 \le f_d \le 409$	95		Ope	ration:	$k \to BSR$	$k \rightarrow BSR$			
Operation:	$(f_s) \to f_d$			Stat	us Affected:	None	None			
Status Affected:	None			Enc	oding:	0000	0000 0001 kkkk kkkk			
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	1100 ffff ffff ffff _s 1111 ffff ffff ffff _d			cription:	The 8-bit lite Bank Selec of BSR<7:4	The 8-bit literal 'k' is loaded into the Bank Select Register (BSR). The value of BSR<7:4> always remains '0',			
Description:	The conten	ts of source re estination regi	gister 'f _s ' are ster 'f _s '			regardless of	of the value o	f k ₇ :k ₄ .		
	Location of	source 'f _s ' can	be anywhere	Wor	ds:	1				
	in the 4096	-byte data spa	ce (000h to	Cyc	es:	1				
	FFFh) and	location of des	stination 'f _d '	QC	Cycle Activity:					
	FFFh.	any more no			Q1	Q2	Q3	Q4		
	Either sourd (a useful sp	ce or destination	on can be W).		Decode	Read literal 'k'	Process Data	Write literal 'k' to BSR		
MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.		<u>Exa</u>	<u>mple</u> : Before Instru BSR Re After Instructi BSR Re	MOVLB ction egister = 021 ion egister = 051	MOVLB 5 ion ister = 02h n ister = 05h					
Words:	2									
Cycles:	2 (3)									
Q Cycle Activity:										
Q1	Q2	Q3	Q4							
Decode	Read register 'f' (src)	Process Data	No operation							
Decode	No operation No dummy read	No No Write operation operation register 'f' No dummy read								
Example: Before Instruct REG1 REG2	MOVFF 1 ction = 33 = 11	REG1, REG2 h h								

REG1 REG2 = = 33h 33h

26.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
 Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

26.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

© 2010-2016 Microchip Technology Inc.

FIGURE 28-89: PIC18LF2X/4XK22 COMPARATOR OFFSET VOLTAGE,

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	