

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k22-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.9 Effects of Power-Managed Modes on the Various Clock Sources

For more information about the modes discussed in this section see **Section 3.0** "**Power-Managed Modes**". A quick reference list is also available in Table 3-1.

When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin, if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_IDLE), the secondary oscillator (SOSC) is operating and providing the device clock. The secondary oscillator may also run in all power-managed modes if required to clock Timer1, Timer3 or Timer5.

In internal oscillator modes (INTOSC_RUN and INTOSC_IDLE), the internal oscillator block provides the device clock source. The 31.25 kHz LFINTOSC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the power-managed mode (see Section 24.3 "Watchdog Timer (WDT)", Section 2.12 "Two-Speed Clock Start-up Mode" and Section 2.13 "Fail-Safe Clock Monitor" for more information on WDT, Fail-Safe Clock Monitor and Two-Speed Start-up). The HFINTOSC and MFINTOSC outputs may be used directly to clock the device or may be divided down by the postscaler. The HFINTOSC and MFINTOSC outputs are disabled when the clock is provided directly from the LFINTOSC output.

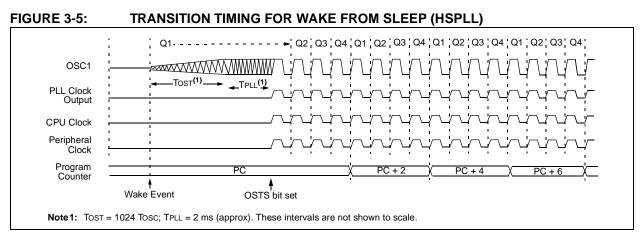
When the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The LFINTOSC is required to support WDT operation. Other features may be operating that do not require a device clock source (i.e., SSP slave, PSP, INTn pins and others). Peripherals that may add significant current consumption are listed in Section 27.8 "DC Characteristics: Input/Output Characteristics, PIC18(L)F2X/4XK22".

2.10 Power-up Delays

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 4.6** "**Device Reset Timers**".

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up. It is enabled by clearing (= 0) the PWRTEN Configuration bit.


The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (LP, XT and HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

When the PLL is enabled with external oscillator modes, the device is kept in Reset for an additional 2 ms, following the OST delay, so the PLL can lock to the incoming clock frequency.

There is a delay of interval TCSD, following POR, while the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the EC, RC or INTIOSC modes are used as the primary clock source.

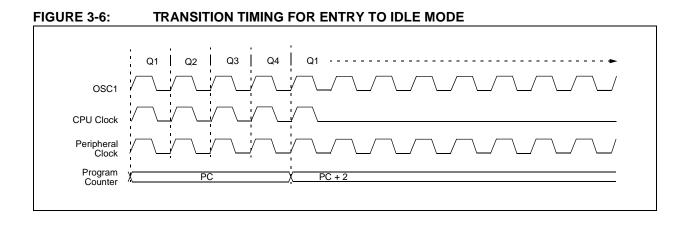
When the HFINTOSC is selected as the primary clock, the main system clock can be delayed until the HFINTOSC is stable. This is user selectable by the HFOFST bit of the CONFIG3H Configuration register. When the HFOFST bit is cleared, the main system clock is delayed until the HFINTOSC is stable. When the HFOFST bit is set, the main system clock starts immediately.

In either case, the HFIOFS bit of the OSCCON register can be read to determine whether the HFINTOSC is operating and stable.

3.4.1 PRI_IDLE MODE

This mode is unique among the three low-power Idle modes, in that it does not disable the primary device clock. For timing sensitive applications, this allows for the fastest resumption of device operation with its more accurate primary clock source, since the clock source does not have to "warm-up" or transition from another oscillator.

PRI_IDLE mode is entered from PRI_RUN mode by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then clear the SCS bits and execute SLEEP. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified by the FOSC<3:0> Configuration bits. The OSTS bit remains set (see Figure 3-6).


When a wake event occurs, the CPU is clocked from the primary clock source. A delay of interval TCSD is required between the wake event and when code execution starts. This is required to allow the CPU to become ready to execute instructions. After the wake-up, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 3-7).

3.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the SOSC oscillator. This mode is entered from SEC_RUN by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set the IDLEN bit first, then set the SCS<1:0> bits to '01' and execute SLEEP. When the clock source is switched to the SOSC oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the SOSCRUN bit is set.

When a wake event occurs, the peripherals continue to be clocked from the SOSC oscillator. After an interval of TCSD following the wake event, the CPU begins executing code being clocked by the SOSC oscillator. The IDLEN and SCS bits are not affected by the wake-up; the SOSC oscillator continues to run (see Figure 3-7).

Note: The SOSC oscillator should already be running prior to entering SEC_IDLE mode. At least one of the secondary oscillator enable bits (SOSCGO, T1SOSCEN, T3SOSCEN or T5SOSCEN) must be set when the SLEEP instruction is executed. Otherwise, the main system clock will continue to operate in the previously selected mode and the corresponding IDLE mode will be entered (i.e., PRI_IDLE or RC_IDLE).

					· ·					
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
	—	—	—	—	CCP5IE	CCP4IE	CCP3IE			
bit 7 bit 0										
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7-3	Unimplemen	ted: Read as '	0'							
bit 2	CCP5IE: CCF	P5 Interrupt En	able bit							
	1 = Enabled									
	0 = Disabled									
bit 1	CCP4IE: CCF	P4 Interrupt En	able bit							
	1 = Enabled									
	0 = Disabled									
bit 0 CCP3IE: CCP3 Interrupt Enable bit										
	1 = Enabled									
	0 = Disabled									

REGISTER 9-12: PIE4: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 4

REGISTER 9-13: PIE5: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 5

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	TMR6IE	TMR5IE	TMR4IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3	Unimplemented: Read as '0'
bit 2	TMR6IE: TMR6 to PR6 Match Interrupt Enable bit
	 1 = Enables the TMR6 to PR6 match interrupt 0 = Disables the TMR6 to PR6 match interrupt
bit 1	TMR5IE: TMR5 Overflow Interrupt Enable bit
	1 = Enables the TMR5 overflow interrupt0 = Disables the TMR5 overflow interrupt
bit 0	TMR4IE: TMR4 to PR4 Match Interrupt Enable bit
	 1 = Enables the TMR4 to PR4 match interrupt 0 = Disables the TMR4 to PR4 match interrupt

10.1.1 PORTA OUTPUT PRIORITY

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the higher priority. Table 10-4 lists the PORTA pin functions from the highest to the lowest priority.

Analog input functions, such as ADC and comparator, are not shown in the priority lists.

These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below.

D I. M		Port Fun	ction Priority by P	ort Pin		
Port bit	PORTA	PORTB	PORTC	PORTD ⁽²⁾	PORTE ⁽²⁾	
0	RA0	CCP4 ⁽¹⁾	SOSCO	SCL2	CCP3 ⁽⁸⁾	
		RB0	P2B ⁽⁶⁾	SCK2	P3A ⁽⁸⁾	
			RC0	RD0	RE0	
1	RA1	SCL2 ⁽¹⁾	SOSCI	SDA2	P3B	
		SCK2 ⁽¹⁾	CCP2 ⁽³⁾	CCP4	RE1	
		P1C ⁽¹⁾	P2A ⁽³⁾	RD1		
		RB1	RC1			
2	RA2	SDA2 ⁽¹⁾	CCP1	P2B	CCP5	
		P1B ⁽¹⁾	P1A	RD2 ⁽⁴⁾	RE2	
		RB2	CTPLS			
			RC2			
3	RA3	SDO2 ⁽¹⁾	SCL1	P2C	MCLR	
		CCP2 ⁽⁶⁾	SCK1	RD3	Vpp	
		P2A ⁽⁶⁾	RC3		RE3	
		RB3				
4	SRQ	P1D ⁽¹⁾	SDA1	SDO2		
	C1OUT	RB4	RC4	P2D		
	CCP5 ⁽¹⁾			RD4		
	RA4					

TABLE 10-4: PORT PIN FUNCTION PRIORITY

Note 1: PIC18(L)F2XK22 devices.

2: PIC18(L)F4XK22 devices.

- **3:** Function default pin.
- **4:** Function default pin (28-pin devices).
- **5:** Function default pin (40/44-pin devices).
- **6:** Function alternate pin.
- 7: Function alternate pin (28-pin devices).
- 8: Function alternate pin (40/44-pin devices)

D . (1)(Port Fun	ction Priority by P	ort Pin	
Port bit	PORTA	PORTB	PORTC	PORTD ⁽²⁾	PORTE ⁽²⁾
5	SRNQ	CCP3 ⁽³⁾	SDO1	P1B	
	C2OUT	P3A ⁽³⁾	RC5	RD5	
	RA5	P2B ⁽¹⁾⁽⁴⁾			
		RB5			
6	OSC2	PGC	TX1/CK1	TX2/CK2	
	CLKO	TX2/CK2 ⁽¹⁾	CCP3 ⁽¹⁾⁽⁷⁾	P1C	
	RA6	RB6	P3A ⁽¹⁾⁽⁷⁾	RD6	
		ICDCK	RC6		
7	RA7				
	OSC1	PGD	RX1/DT1	RX2/DT2	
	RA7	RX2/DT2 ⁽¹⁾	P3B ⁽¹⁾	P1D	
		RB7	RC7	RD7	
		ICDDT			

TABLE 10-4: PORT PIN FUNCTION PRIORITY (CONTINUED)

Note 1: PIC18(L)F2XK22 devices.

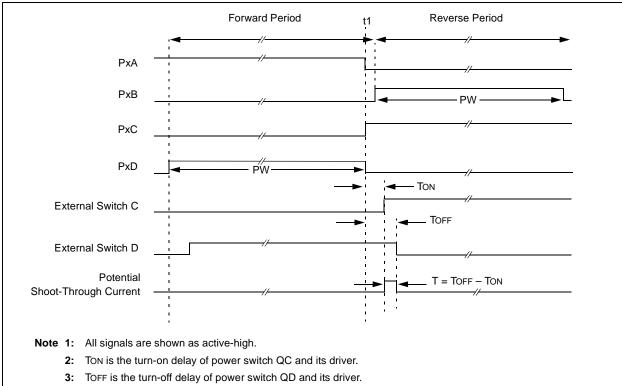
2: PIC18(L)F4XK22 devices.

3: Function default pin.

4: Function default pin (28-pin devices).

5: Function default pin (40/44-pin devices).

6: Function alternate pin.


7: Function alternate pin (28-pin devices).

8: Function alternate pin (40/44-pin devices)

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u		
TMRxGE	TxGPOL	TxGTM	TxGSPM	TxGGO/DONE	TxGVAL	TxGSS	S<1:0>		
bit 7							bit 0		
Legend:									
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'									
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value at P	OR and BOR	/Value at all ot	her Resets		
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is clear	ed by hardwa	re			
bit 7	If TMRxON = This bit is ign If TMRxON = 1 = Timer1/3	 ored <u>1</u> : /5 counting is c	controlled by th	ne Timer1/3/5 gate r1/3/5 gate function					
bit 6	1 = Timer1/3 0 = Timer1/3	/5 gate is activ	e-high (Timer1 e-low (Timer1/	/3/5 counts when 3/5 counts when g					
bit 5	1 = Timer1/3 0 = Timer1/3	er1/3/5 Gate To /5 Gate Toggle /5 Gate Toggle ate flip-flop togg	mode is enab	led bled and toggle flip	-flop is cleare	d			
bit 4	1 = Timer1/3	ner1/3/5 Gate \$ /5 gate Single- /5 gate Single-	Pulse mode is	enabled and is co	ontrolling Time	r1/3/5 gate			
bit 3	1 = Timer1/3 0 = Timer1/3	/5 gate single- /5 gate single-	oulse acquisition	ulse Acquisition St on is ready, waiting on has completed SPM is cleared.	g for an edge	en started			
bit 2	This bit is automatically cleared when TxGSPM is cleared. TxGVAL: Timer1/3/5 Gate Current State bit Indicates the current state of the Timer1/3/5 gate that could be provided to TMRxH:TMRxL. Unaffected by Timer1/3/5 Gate Enable (TMRxGE)								
bit 1-0	Indicates the current state of the Timer1/3/5 gate that could be provided to TMRxH:TMRxL. Unaffected by Timer1/3/5 Gate Enable (TMRxGE). TxGSS<1:0>: Timer1/3/5 Gate Source Select bits 00 = Timer1/3/5 Gate pin 01 = Timer2/4/6 Match PR2/4/6 output (See Table 12-5 for proper timer match selection) 10 = Comparator 1 optionally synchronized output (sync_C1OUT) 11 = Comparator 2 optionally synchronized output (sync_C2OUT)								

REGISTER 12-2: TXGCON: TIMER1/3/5 GATE CONTROL REGISTER

14.4.3 ENHANCED PWM AUTO-SHUTDOWN MODE

The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the CCPxAS<2:0> bits of the ECCPxAS register. A shutdown event may be generated by:

- A logic '0' on the INT pin
- Comparator Cx (async_CxOUT)
- Setting the CCPxASE bit in firmware

A shutdown condition is indicated by the CCPxASE (Auto-Shutdown Event Status) bit of the ECCPxAS register. If the bit is a '0', the PWM pins are operating normally. If the bit is a '1', the PWM outputs are in the shutdown state.

When a shutdown event occurs, two things happen:

The CCPxASE bit is set to '1'. The CCPxASE will remain set until cleared in firmware or an auto-restart occurs (see Section 14.4.4 "Auto-Restart Mode").

The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs [PxA/PxC] and [PxB/PxD].

The state of each pin pair is determined by the PSSxAC<1:0> and PSSxBD<1:0> bits of the ECCPxAS register. Each pin pair may be placed into one of three states:

- Drive logic '1'
- Drive logic '0'
- Tri-state (high-impedance)

Note 1: The auto-shutdown condition is a levelbased signal, not an edge-based signal. As long as the level is present, the autoshutdown will persist.

- 2: Writing to the CCPxASE bit is disabled while an auto-shutdown condition persists.
- 3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart), the PWM signal will always restart at the beginning of the next PWM period.

R/C/HS-0	R/C/HS-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPxOV	SSPxEN	CKP		SSPx	M<3:0>	
bit 7							bit (
Legend:							
R = Readable b	oit	W = Writable b	it	U = Unimpleme	ented bit, read as	s 'O'	
u = Bit is uncha	nged	x = Bit is unkno	own	-n/n = Value at	POR and BOR/\	/alue at all other F	Resets
'1' = Bit is set		'0' = Bit is clea	red	HS = Bit is set	by hardware	C = User cleare	d
bit 7	Master mode 1 = A write t be starte 0 = No collis <u>Slave mode</u> :	o the SSPxBUF re ed sion PxBUF register is w	egister was atte				
bit 6	$\begin{array}{rcl} & \underline{\text{In SPI mode:}} \\ 1 &= & A \text{ new by} \\ & & \text{in SSPx} \\ & & \text{if only tra} \\ & & \text{tion (and 0 = No over} \\ \hline & & \underline{\text{In I}^2 \text{C mode:}} \\ 1 &= & A \text{ byte is} \end{array}$	yte is received whil SR is lost. Overflow ansmitting data, to a I transmission) is in flow s received while th t mode (must be c	e the SSPxBUF can only occur avoid setting ove itiated by writin ne SSPxBUF re	in Slave mode. In S erflow. In Master m g to the SSPxBUF egister is still holdi	Slave mode, the u ode, the overflow register (must be	ser must read the s bit is not set since cleared in softwar	SSPxBUF, ever each new recep e).
bit 5	SSPxEN: Syn In both mode ln SPI mode: 1 = Enables 0 = Disables $ln l^2C mode:$ 1 = Enables	nchronous Serial I s, when enabled,	these pins mus figures SCKx, s onfigures these configures the s	It be properly conf SDOx, SDIx and \overline{S} pins as I/O port p SDAx and SCLx pir	Sx as the source opins	of the serial port pi	
bit 4	In SPI mode: 1 = Idle state 0 = Idle state In I ² C Slave r SCLx release 1 = Enable cl	for clock is a high for clock is a low mode: e control ock ck low (clock stret mode:	level	ensure data setup	time.)		

REGISTER 15-3: SSPxCON1: SSPx CONTROL REGISTER 1

PIC18(L)F2X/4XK22

SRCLK<2:0>	Divider	Fosc = 20 MHz	Fosc = 16 MHz	Fosc = 8 MHz	Fosc = 4 MHz	Fosc = 1 MHz
111	512	25.6 μs	32 μs	64 μs	128 μs	512 μs
110	256	12.8 μs	16 μs	32 µs	64 μs	256 μs
101	128	6.4 μs	8 μs	16 μs	32 μs	128 μs
100	64	3.2 μs	4 μs	8 μs	16 μs	64 μs
011	32	1.6 μs	2 μs	4 μs	8 μs	32 μs
010	16	0.8 μs	1 μs	2 μs	4 μs	16 μs
001	8	0.4 μs	0.5 μs	1 μs	2 μs	8 μs
000	4	0.2 μs	0.25 μs	0.5 μs	1 μs	4 μs

TABLE 20-1: DIVSRCLK FREQUENCY TABLE

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			DACR<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 22-2: VREFCON2: VOLTAGE REFERENCE CONTROL REGISTER 1

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits VOUT = ((VSRC+) - (VSRC-))*(DACR<4:0>/(2⁵)) + VSRC-

TABLE 22-1: REGISTERS ASSOCIATED WITH DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
VREFCON0	FVREN	FVRST	FVRS<1:0>		_	_	_	_	332
VREFCON1	DACEN	DACLPS	DACOE	_	DACPS	S<1:0>	_	DACNSS	335
VREFCON2	_	_	_			DACR<4:0>			336

Legend: — = Unimplemented locations, read as '0'. Shaded bits are not used by the DAC module.

24.0 SPECIAL FEATURES OF THE CPU

PIC18(L)F2X/4XK22 devices include several features intended to maximize reliability and minimize cost through elimination of external components. These are:

- Oscillator Selection
- Resets:
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Code Protection
- ID Locations
- In-Circuit Serial Programming[™]

The oscillator can be configured for the application depending on frequency, power, accuracy and cost. All of the options are discussed in detail in Section 2.0 "Oscillator Module (With Fail-Safe Clock Monitor)".

A complete discussion of device Resets and interrupts is available in previous sections of this data sheet.

In addition to their Power-up and Oscillator Start-up Timers provided for Resets, PIC18(L)F2X/4XK22 devices have a Watchdog Timer, which is either permanently enabled via the Configuration bits or software controlled (if configured as disabled).

The inclusion of an internal RC oscillator also provides the additional benefits of a Fail-Safe Clock Monitor (FSCM) and Two-Speed Start-up. FSCM provides for background monitoring of the peripheral clock and automatic switchover in the event of its failure. Two-Speed Start-up enables code to be executed almost immediately on start-up, while the primary clock source completes its start-up delays.

All of these features are enabled and configured by setting the appropriate Configuration register bits.

24.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h-3FFFFFh), which can only be accessed using table reads and table writes.

Programming the Configuration registers is done in a manner similar to programming the Flash memory. The WR bit in the EECON1 register starts a self-timed write to the Configuration register. In Normal operation mode, a TBLWT instruction with the TBLPTR pointing to the Configuration register sets up the address and the data for the Configuration register write. Setting the WR bit starts a long write to the Configuration register. The Configuration registers are written a byte at a time. To write or erase a configuration cell, a TBLWT instruction can write a '1' or a '0' into the cell. For additional details on Flash programming, refer to Section 6.6 "Writing to Flash Program Memory".

U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1		
_	— WDTPS<3:0>			PS<3:0>	WDTEN<1:0>				
bit 7							bit		
Legend:									
R = Readable	e bit	P = Programma	ble bit	U = Unimpleme	nted bit, read as '	0'			
-n = Value when device is unprogrammed				x = Bit is unknow	wn				
bit 7-6	Unimplemented	I: Read as '0'							
bit 5-2	WDTPS<3:0>: Watchdog Timer Postscale Select bits								
	1111 = 1:32,768	•							
	1110 = 1:16,384	Ļ							
	1101 = 1:8,192								
	1100 = 1:4,096								
	1011 = 1:2,048								
	1010 = 1:1,024								
	1001 = 1:512								
	1000 = 1:256								
	0111 = 1:128								
	0110 = 1:64								
	0101 = 1:32								
	0100 = 1:16								
	0011 = 1:8								
	0010 = 1:4								
	0001 = 1:2								
	0000 = 1:1								
bit 1-0	WDTEN<1:0>: \	Vatchdog Timer	Enable bits						
	11 = WDT enabl	led in hardware;	SWDTEN bit dis	abled					
	10 = WDT control								
	01 = WDT enab	led when device	is active, disabl	ed when device is	in Sleep; SWDTE	EN bit disabled			
		led in hardware;			1,7 -				

REGISTER 24-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH

25.0 INSTRUCTION SET SUMMARY

PIC18(L)F2X/4XK22 devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of eight new instructions, for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

25.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC^{\circledast} MCU instruction sets, while maintaining an easy migration from these PIC^{\circledast} MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18 instruction set summary in Table 25-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 25-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction. The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the four MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 25-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 25-2, lists the standard instructions recognized by the Microchip Assembler (MPASM[™]).

Section 25.1.1 "Standard Instruction Set" provides a description of each instruction.

25.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18(L)F2X/4XK22 family of devices. This includes the MPLAB C18 C compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- A command line option
- A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

27.9 Memory Programming Requirements

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
		Internal Program Memory Programming Specifications ⁽¹⁾						
D170	Vpp	Voltage on MCLR/VPP pin	8	_	9	V	(Note 3), (Note 4)	
D171	IDDP	Supply Current during Programming	—	—	10	mA		
		Data EEPROM Memory						
D172	ED	Byte Endurance	100K	—	_	E/W	-40°C to +85°C	
D173	Vdrw	VDD for Read/Write	Vddmin	—	VDDMAX	V	Using EECON to read/ write	
D175	TDEW	Erase/Write Cycle Time	_	3	4	ms		
D176	Tretd	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	
D177	Tref	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C	
		Program Flash Memory						
D178	Еρ	Cell Endurance	10K	—	_	E/W	-40°C to +85°C (Note 5)	
D179	Vpr	VDD for Read	VDDMIN	—	VDDMAX	V		
D181	Viw	VDD for Row Erase or Write	2.2	—	VDDMAX	V	PIC18LF24K22	
D182	Viw		VDDMIN	—	VDDMAX	V	PIC18(L)F26K22	
D183	Tiw	Self-timed Write Cycle Time	—	2	-	ms		
D184	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

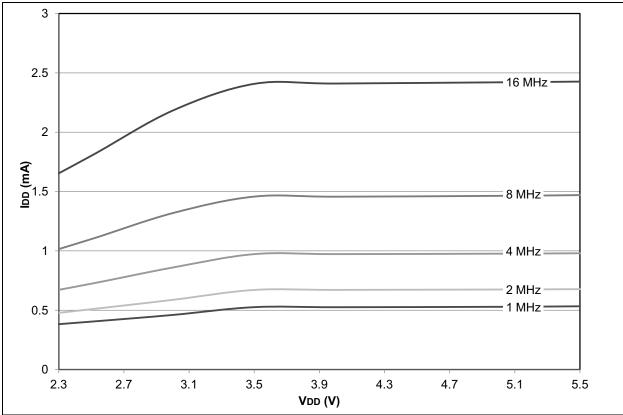
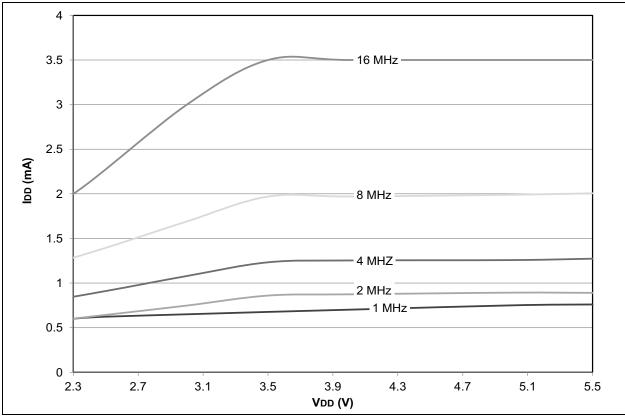
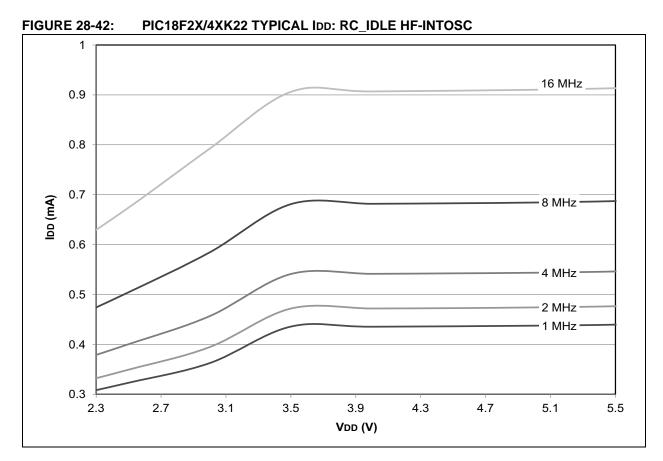
2: Refer to Section 7.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

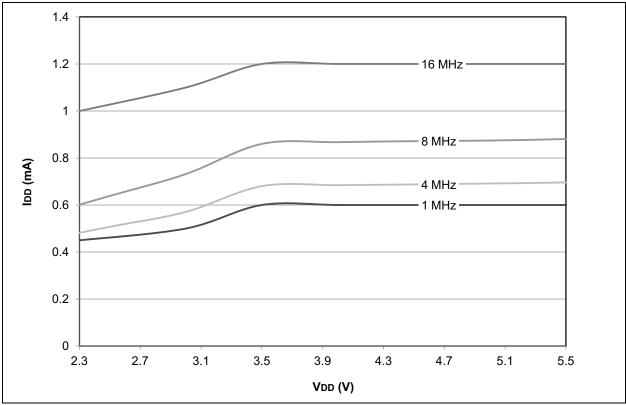
3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the MPLAB ICD 2 VPP voltage must be placed between the MPLAB ICD 2 and target system when programming or debugging with the MPLAB ICD 2.

5: Self-write and Block Erase.

PIC18(L)F2X/4XK22


FIGURE 28-29: PIC18F2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC

PIC18(L)F2X/4XK22

© 2010-2016 Microchip Technology Inc.

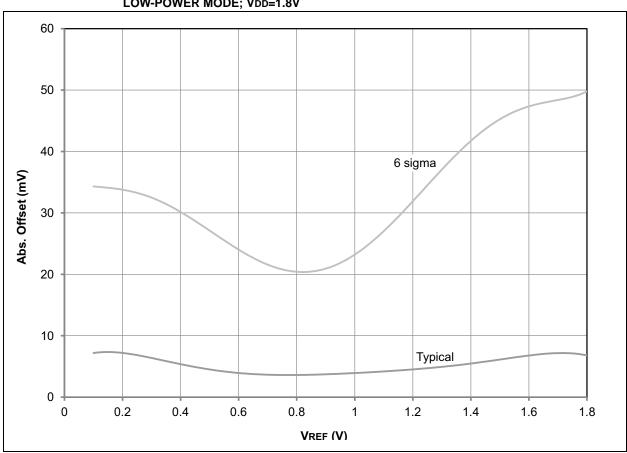
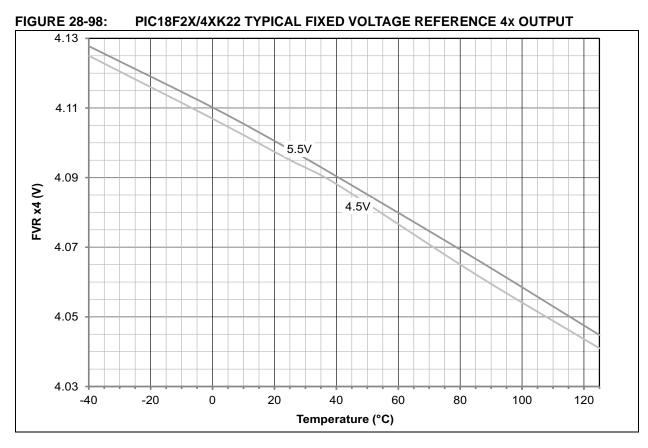
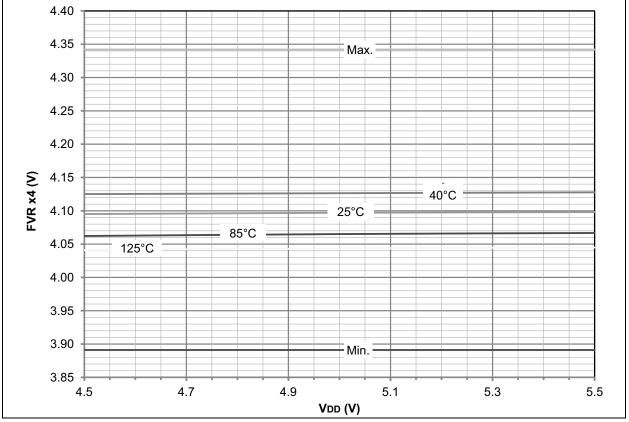
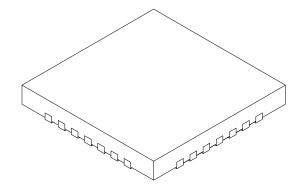




FIGURE 28-92: PIC18LF2X/4XK22 COMPARATOR OFFSET VOLTAGE, LOW-POWER MODE; VDD=1.8V



© 2010-2016 Microchip Technology Inc.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	/ILLIMETER	S		
Dimensi	on Limits	MIN	NOM	MAX		
Number of Pins	N	28				
Pitch	е	0.40 BSC				
Overall Height	Α	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.127 REF				
Overall Width	E	4.00 BSC				
Exposed Pad Width	E2	2.55	2.65	2.75		
Overall Length	D	4.00 BSC				
Exposed Pad Length	D2	2.55	2.65	2.75		
Contact Width	b	0.15	0.20	0.25		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2