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built-in motor control peripherals and automotive-grade
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PIC18(L)F2X/4XK22
2.13 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device
to continue operating should the external oscillator fail.
The FSCM can detect oscillator failure any time after
the Oscillator Start-up Timer (OST) has expired. The
FSCM is enabled by setting the FCMEN bit in the
CONFIG1H Configuration register. The FSCM is
applicable to all external oscillator modes (LP, XT, HS,
EC, RC and RCIO).

FIGURE 2-10: FSCM BLOCK DIAGRAM 

2.13.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by
comparing the external oscillator to the FSCM sample
clock. The sample clock is generated by dividing the
LFINTOSC by 64 (see Figure 2-10). Inside the fail
detector block is a latch. The external clock sets the
latch on each falling edge of the external clock. The
sample clock clears the latch on each rising edge of the
sample clock. A failure is detected when an entire half-
cycle of the sample clock elapses before the primary
clock goes low.

2.13.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the
device clock to an internal clock source and sets the bit
flag OSCFIF of the PIR2 register. The OSCFIF flag will
generate an interrupt if the OSCFIE bit of the PIE2
register is also set. The device firmware can then take
steps to mitigate the problems that may arise from a
failed clock. The system clock will continue to be
sourced from the internal clock source until the device
firmware successfully restarts the external oscillator
and switches back to external operation. An automatic
transition back to the failed clock source will not occur.

The internal clock source chosen by the FSCM is
determined by the IRCF<2:0> bits of the OSCCON
register. This allows the internal oscillator to be
configured before a failure occurs.

2.13.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared by either one of the
following:

• Any Reset 

• By toggling the SCS1 bit of the OSCCON register

Both of these conditions restart the OST. While the
OST is running, the device continues to operate from
the INTOSC selected in OSCCON. When the OST
times out, the Fail-Safe condition is cleared and the
device automatically switches over to the external clock
source. The Fail-Safe condition need not be cleared
before the OSCFIF flag is cleared.

2.13.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure
after the Oscillator Start-up Timer (OST) has expired.
The OST is used after waking up from Sleep and after
any type of Reset. The OST is not used with the EC or
RC Clock modes so that the FSCM will be active as
soon as the Reset or wake-up has completed. 
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Note: Due to the wide range of oscillator start-up

times, the Fail-Safe circuit is not active
during oscillator start-up (i.e., after exiting
Reset or Sleep). After an appropriate
amount of time, the user should check the
OSTS bit of the OSCCON register to verify
the oscillator start-up and that the system
clock switchover has successfully
completed.

Note: When the device is configured for Fail-
Safe clock monitoring in either HS, XT, or
LS Oscillator modes then the IESO config-
uration bit should also be set so that the
clock will automatically switch from the
internal clock to the external oscillator
when the OST times out.
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FIGURE 4-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2    

FIGURE 4-6: SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)      

FIGURE 4-7: TIME-OUT SEQUENCE ON POR W/PLL ENABLED (MCLR TIED TO VDD)   
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Note: TOST = 1024 clock cycles.
TPLL  2 ms max. First three stages of the PWRT timer.
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5.3.3 INSTRUCTIONS IN PROGRAM 
MEMORY

The program memory is addressed in bytes.
Instructions are stored as either two bytes or four bytes
in program memory. The Least Significant Byte of an
instruction word is always stored in a program memory
location with an even address (LSb = 0). To maintain
alignment with instruction boundaries, the PC
increments in steps of two and the LSb will always read
‘0’ (see Section 5.1.1 “Program Counter”).

Figure 5-4 shows an example of how instruction words
are stored in the program memory.

The CALL and GOTO instructions have the absolute
program memory address embedded into the
instruction. Since instructions are always stored on word
boundaries, the data contained in the instruction is a
word address. The word address is written to PC<20:1>,
which accesses the desired byte address in program
memory. Instruction #2 in Figure 5-4 shows how the
instruction GOTO 0006h is encoded in the program
memory. Program branch instructions, which encode a
relative address offset, operate in the same manner. The
offset value stored in a branch instruction represents the
number of single-word instructions that the PC will be
offset by. Section 25.0 “Instruction Set Summary”
provides further details of the instruction set.

FIGURE 5-4: INSTRUCTIONS IN PROGRAM MEMORY

5.3.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word
instructions: CALL, MOVFF, GOTO and LSFR. In all
cases, the second word of the instruction always has
‘1111’ as its four Most Significant bits; the other 12 bits
are literal data, usually a data memory address. 

The use of ‘1111’ in the 4 MSbs of an instruction
specifies a special form of NOP. If the instruction is
executed in proper sequence – immediately after the
first word – the data in the second word is accessed
and used by the instruction sequence. 

If the first word is skipped for some reason and the
second word is executed by itself, a NOP is executed
instead. This is necessary for cases when the two-word
instruction is preceded by a conditional instruction that
changes the PC. Example 5-4 shows how this works.

EXAMPLE 5-4: TWO-WORD INSTRUCTIONS

Word Address
LSB = 1 LSB = 0 

Program Memory
Byte Locations        

000000h
000002h
000004h
000006h

Instruction 1: MOVLW 055h 0Fh 55h 000008h
Instruction 2: GOTO 0006h EFh 03h 00000Ah

F0h 00h 00000Ch
Instruction 3: MOVFF 123h, 456h C1h 23h 00000Eh

F4h 56h 000010h
000012h
000014h

Note: See Section 5.8 “PIC18 Instruction
Execution and the Extended
Instruction Set” for information on
two-word instructions in the extended
instruction set.

CASE 1:

Object Code Source Code

0110 0110 0000 0000 TSTFSZ REG1 ; is RAM location 0?
1100 0001 0010 0011 MOVFF REG1, REG2 ; No, skip this word

1111 0100 0101 0110 ; Execute this word as a NOP
0010 0100 0000 0000 ADDWF REG3 ; continue code

CASE 2:

Object Code Source Code

0110 0110 0000 0000 TSTFSZ REG1 ; is RAM location 0?
1100 0001 0010 0011 MOVFF REG1, REG2 ; Yes, execute this word
1111 0100 0101 0110 ; 2nd word of instruction

0010 0100 0000 0000 ADDWF REG3 ; continue code
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6.3  Register Definitions: Memory Control 

REGISTER 6-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

R/W-x R/W-x U-0 R/W-0 R/W-x R/W-0 R/S-0 R/S-0

EEPGD CFGS — FREE WRERR WREN WR RD

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit

S = Bit can be set by software, but not cleared U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 EEPGD: Flash Program or Data EEPROM Memory Select bit

1 = Access Flash program memory
0 = Access data EEPROM memory

bit 6 CFGS: Flash Program/Data EEPROM or Configuration Select bit

1 = Access Configuration registers
0 = Access Flash program or data EEPROM memory

bit 5 Unimplemented: Read as ‘0’

bit 4 FREE: Flash Row (Block) Erase Enable bit

1 = Erase the program memory block addressed by TBLPTR on the next WR command 
(cleared by completion of erase operation)

0 = Perform write-only

bit 3 WRERR: Flash Program/Data EEPROM Error Flag bit(1)

1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal
operation, or an improper write attempt)

0 = The write operation completed

bit 2 WREN: Flash Program/Data EEPROM Write Enable bit

1 = Allows write cycles to Flash program/data EEPROM
0 = Inhibits write cycles to Flash program/data EEPROM

bit 1 WR: Write Control bit

1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle. 
(The operation is self-timed and the bit is cleared by hardware once write is complete. 
The WR bit can only be set (not cleared) by software.)

0 = Write cycle to the EEPROM is complete

bit 0 RD: Read Control bit

1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared by hardware. The RD bit can only
be set (not cleared) by software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.)

0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the
error condition.
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REGISTER 9-10: PIE2: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 2

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

OSCFIE C1IE C2IE EEIE BCL1IE HLVDIE TMR3IE CCP2IE

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 OSCFIE: Oscillator Fail Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 6 C1IE: Comparator C1 Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 5 C2IE: Comparator C2 Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 4 EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit 

1 = Enabled
0 = Disabled

bit 3 BCL1IE: MSSP1 Bus Collision Interrupt Enable bit 

1 = Enabled
0 = Disabled

bit 2 HLVDIE: Low-Voltage Detect Interrupt Enable bit 

1 = Enabled
0 = Disabled

bit 1 TMR3IE: TMR3 Overflow Interrupt Enable bit 

1 = Enabled
0 = Disabled

bit 0 CCP2IE: CCP2 Interrupt Enable bit 

1 = Enabled
0 = Disabled
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REGISTER 9-17: IPR4: PERIPHERAL INTERRUPT PRIORITY REGISTER 4

U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0

— — — — — CCP5IP CCP4IP CCP3IP

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-3 Unimplemented: Read as ‘0’

bit 2 CCP5IP: CCP5 Interrupt Priority bit 

1 = High priority
0 = Low priority

bit 1 CCP4IP: CCP4 Interrupt Priority bit 

1 = High priority
0 = Low priority

bit 0 CCP3IP: CCP3 Interrupt Priority bit 

1 = High priority
0 = Low priority

REGISTER 9-18: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5

U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0

— — — — — TMR6IP TMR5IP TMR4IP

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-3 Unimplemented: Read as ‘0’

bit 2 TMR6IP: TMR6 to PR6 Match Interrupt Priority bit 

1 = High priority
0 = Low priority

bit 1 TMR5IP: TMR5 Overflow Interrupt Priority bit 

1 = High priority
0 = Low priority

bit 0 TMR4IP: TMR4 to PR4 Match Interrupt Priority bit 

1 = High priority
0 = Low priority
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The I2C interface supports the following modes and
features:

• Master mode

• Slave mode

• Byte NACKing (Slave mode)

• Limited Multi-master support

• 7-bit and 10-bit addressing

• Start and Stop interrupts

• Interrupt masking

• Clock stretching

• Bus collision detection

• General call address matching

• Address masking

• Address Hold and Data Hold modes

• Selectable SDAx hold times

Figure 15-2 is a block diagram of the I2C interface
module in Master mode. Figure 15-3 is a diagram of the
I2C interface module in Slave mode.

The PIC18(L)F2X/4XK22 has two MSSP modules,
MSSP1 and MSSP2, each module operating
independently from the other.

FIGURE 15-2: MSSPx BLOCK DIAGRAM (I2C MASTER MODE)

Note 1: In devices with more than one MSSP
module, it is very important to pay close
attention to SSPxCONx register names.
SSP1CON1 and SSP1CON2 registers
control different operational aspects of
the same module, while SSP1CON1 and
SSP2CON1 control the same features for
two different modules.

2: Throughout this section, generic
references to an MSSP module in any of
its operating modes may be interpreted
as being equally applicable to MSSP1 or
MSSP2. Register names, module I/O
signals, and bit names may use the
generic designator ‘x’ to indicate the use
of a numeral to distinguish a particular
module when required.
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15.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCLx pulse for any transferred byte in I2C is
dedicated as an Acknowledge. It allows receiving
devices to respond back to the transmitter by pulling
the SDAx line low. The transmitter must release con-
trol of the line during this time to shift in the response.
The Acknowledge (ACK) is an active-low signal, pull-
ing the SDAx line low indicated to the transmitter that
the device has received the transmitted data and is
ready to receive more. 

The result of an ACK is placed in the ACKSTAT bit of
the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are
set, allow the user to set the ACK value sent back to
the transmitter. The ACKDT bit of the SSPxCON2
register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the
AHEN and DHEN bits of the SSPxCON3 register are
clear. 

There are certain conditions where an ACK will not be
sent by the slave. If the BF bit of the SSPxSTAT
register or the SSPxOV bit of the SSPxCON1 register
are set when a byte is received. 

When the module is addressed, after the 8th falling
edge of SCLx on the bus, the ACKTIM bit of the SSPx-
CON3 register is set. The ACKTIM bit indicates the
acknowledge time of the active bus.

The ACKTIM Status bit is only active when the AHEN
bit or DHEN bit is enabled.

15.5 I2C Slave Mode Operation

The MSSPx Slave mode operates in one of four
modes selected in the SSPxM bits of SSPxCON1
register. The modes can be divided into 7-bit and 10-bit
Addressing mode. 10-bit Addressing modes operate
the same as 7-bit with some additional overhead for
handling the larger addresses.

Modes with Start and Stop bit interrupts operated the
same as the other modes with SSPxIF additionally
getting set upon detection of a Start, Restart, or Stop
condition.

15.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 15-7) contains the
Slave mode address. The first byte received after a
Start or Restart condition is compared against the
value stored in this register. If the byte matches, the
value is loaded into the SSPxBUF register and an
interrupt is generated. If the value does not match, the
module goes Idle and no indication is given to the
software that anything happened.

The SSPx Mask register (Register 15-6) affects the
address matching process. See Section 15.5.9
“SSPx Mask Register” for more information.

15.5.1.1 I2C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data
byte is ignored when determining if there is an address
match.

15.5.1.2 I2C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is
compared to the binary value of ‘1 1 1 1 0 A9 A8 0’. A9
and A8 are the two MSb of the 10-bit address and
stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set
and SCLx is held low until the user updates SSPxADD
with the low address. The low address byte is clocked
in and all eight bits are compared to the low address
value in SSPxADD. Even if there is not an address
match; SSPxIF and UA are set, and SCLx is held low
until SSPxADD is updated to receive a high byte
again. When SSPxADD is updated the UA bit is
cleared. This ensures the module is ready to receive
the high address byte on the next communication.

A high and low address match as a write request is
required at the start of all 10-bit addressing
communication. A transmission can be initiated by
issuing a Restart once the slave is addressed, and
clocking in the high address with the R/W bit set. The
slave hardware will then acknowledge the read
request and prepare to clock out data. This is only
valid for a slave after it has received a complete high
and low address byte match.
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15.6.5 I2C MASTER MODE REPEATED 
START CONDITION TIMING

A Repeated Start condition (Figure 15-27) occurs when
the RSEN bit of the SSPxCON2 register is
programmed high and the master state machine is no
longer active. When the RSEN bit is set, the SCLx pin
is asserted low. When the SCLx pin is sampled low, the
Baud Rate Generator is loaded and begins counting.
The SDAx pin is released (brought high) for one Baud
Rate Generator count (TBRG). When the Baud Rate
Generator times out, if SDAx is sampled high, the SCLx
pin will be deasserted (brought high). When SCLx is
sampled high, the Baud Rate Generator is reloaded
and begins counting. SDAx and SCLx must be
sampled high for one TBRG. This action is then followed
by assertion of the SDAx pin (SDAx = 0) for one TBRG

while SCLx is high. SCLx is asserted low. 

Following this, the RSEN bit of the SSPxCON2 register
will be automatically cleared and the Baud Rate
Generator will not be reloaded, leaving the SDAx pin
held low. As soon as a Start condition is detected on the
SDAx and SCLx pins, the S bit of the SSPxSTAT
register will be set. The SSPxIF bit will not be set until
the Baud Rate Generator has timed out.

FIGURE 15-27: REPEAT START CONDITION WAVEFORM   

Note 1: If RSEN is programmed while any other
event is in progress, it will not take effect.

2: A bus collision during the Repeated Start
condition occurs if: 

• SDAx is sampled low when SCLx 
goes from low-to-high.

• SCLx goes low before SDAx is 
asserted low. This may indicate 
that another master is attempting to 
transmit a data ‘1’. 
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TABLE 15-2: REGISTERS ASSOCIATED WITH I2C OPERATION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

ANSELA — — ANSA5 — ANSA3 ANSA2 ANSA1 ANSA0 149

ANSELB — — ANSB5 ANSB4 ANSB3 ANSB2 ANSB1(1) ANSB0(1) 150

ANSELC ANSC7 ANSC6 ANSC5 ANSC4 ANSC3 ANSC2 — — 150

ANSELD ANSD7 ANSD6 ANSD5 ANSD4 ANSD3 ANSD2 ANSD1(2) ANSD0(2) 150

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 109

IPR1 — ADIP RC1IP TX1IP SSP1IP CCP1IP TMR2IP TMR1IP 121

IPR2 OSCFIP C1IP C2IP EEIP BCL1IP HLVDIP TMR3IP CCP2IP 122

IPR3 SSP2IP BCL2IP RC2IP TX2IP CTMUIP TMR5GIP TMR3GIP TMR1GIP 123

PIE1 — ADIE RC1IE TX1IE SSP1IE CCP1IE TMR2IE TMR1IE 117

PIE2 OSCFIE C1IE C2IE EEIE BCL1IE HLVDIE TMR3IE CCP2IE 118

PIE3 SSP2IE BCL2IE RC2IE TX2IE CTMUIE TMR5GIE TMR3GIE TMR1GIE 119

PIR1 — ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF 112

PIR2 OSCFIF C1IF C2IF EEIF BCL1IF HLVDIF TMR3IF CCP2IF 113

PIR3 SSP2IF BCL2IF RC2IF TX2IF CTMUIF TMR5GIF TMR3GIF TMR1GIF 114

PMD1 MSSP2MD MSSP1MD — CCP5MD CCP4MD CCP3MD CCP2MD CCP1MD 53

SSP1ADD SSP1 Address Register in I2C Slave mode. SSP1 Baud Rate Reload Register in I2C Master mode. 258

SSP1BUF SSP1 Receive Buffer/Transmit Register —

SSP1CON1 WCOL SSPOV SSPEN CKP SSPM<3:0> 253

SSP1CON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 255

SSP1CON3 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN 256

SSP1MSK SSP1 MASK Register bits 257

SSP1STAT SMP CKE D/A P S R/W UA BF 252

SSP2ADD SSP2 Address Register in I2C Slave mode. SSP2 Baud Rate Reload Register in I2C Master mode. 258

SSP2BUF SSP2 Receive Buffer/Transmit Register —

SSP2CON1 WCOL SSPOV SSPEN CKP SSPM<3:0> 253

SSP2CON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 255

SSP2CON3 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN 256

SSP2MSK SSP1 MASK Register bits 257

SSP2STAT SMP CKE D/A P S R/W UA BF 252

TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1(1) TRISB0(1) 151

TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 151

TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1(2) TRISD0(2) 151

Legend: Shaded bits are not used by the MSSPx in I2C mode.
Note 1: PIC18(L)F2XK22 devices.

2: PIC18(L)F4XK22 devices.
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REGISTER 15-7: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I2C MODE)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

ADD<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

Master mode:

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits
SCLx pin clock period = ((ADD<7:0> + 1) *4)/FOSC

10-Bit Slave mode — Most Significant Address byte:

bit 7-3 Not used: Unused for Most Significant Address byte. Bit state of this register is a “don’t care”. Bit 
pattern sent by master is fixed by I2C specification and must be equal to ‘11110’. However, those bits 
are compared by hardware and are not affected by the value in this register.

bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address

bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.

10-Bit Slave mode — Least Significant Address byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1 ADD<7:1>: 7-bit address

bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.
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16.5 EUSART Synchronous Mode

Synchronous serial communications are typically used
in systems with a single master and one or more
slaves. The master device contains the necessary
circuitry for baud rate generation and supplies the clock
for all devices in the system. Slave devices can take
advantage of the master clock by eliminating the
internal clock generation circuitry. 

There are two signal lines in Synchronous mode: a
bidirectional data line and a clock line. Slaves use the
external clock supplied by the master to shift the serial
data into and out of their respective receive and
transmit shift registers. Since the data line is
bidirectional, synchronous operation is half-duplex
only. Half-duplex refers to the fact that master and
slave devices can receive and transmit data but not
both simultaneously. The EUSART can operate as
either a master or slave device.

Start and Stop bits are not used in synchronous
transmissions.

16.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART
for Synchronous Master operation:

• SYNC = 1
• CSRC = 1
• SREN = 0 (for transmit); SREN = 1 (for receive)

• CREN = 0 (for transmit); CREN = 1 (for receive)

• SPEN = 1

Setting the SYNC bit of the TXSTAx register configures
the device for synchronous operation. Setting the CSRC
bit of the TXSTAx register configures the device as a
master. Clearing the SREN and CREN bits of the
RCSTAx register ensures that the device is in the
Transmit mode, otherwise the device will be configured
to receive. Setting the SPEN bit of the RCSTAx register
enables the EUSART. If the RXx/DTx or TXx/CKx pins
are shared with an analog peripheral the analog I/O
functions must be disabled by clearing the corresponding
ANSEL bits.

The TRIS bits corresponding to the RXx/DTx and
TXx/CKx pins should be set.

16.5.1.1 Master Clock

Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device configured
as a master transmits the clock on the TXx/CKx line. The
TXx/CKx pin output driver is automatically enabled when
the EUSART is configured for synchronous transmit or
receive operation. Serial data bits change on the leading
edge to ensure they are valid at the trailing edge of each
clock. One clock cycle is generated for each data bit.
Only as many clock cycles are generated as there are
data bits.

16.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire
compatibility. Clock polarity is selected with the CKTXP
bit of the BAUDCONx register. Setting the CKTXP bit
sets the clock Idle state as high. When the CKTXP bit
is set, the data changes on the falling edge of each
clock and is sampled on the rising edge of each clock.
Clearing the CKTXP bit sets the Idle state as low. When
the CKTXP bit is cleared, the data changes on the
rising edge of each clock and is sampled on the falling
edge of each clock. 

16.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RXx/DTx
pin. The RXx/DTx and TXx/CKx pin output drivers are
automatically enabled when the EUSART is configured
for synchronous master transmit operation. 

A transmission is initiated by writing a character to the
TXREGx register. If the TSR still contains all or part of
a previous character the new character data is held in
the TXREGx until the last bit of the previous character
has been transmitted. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREGx is immediately trans-
ferred to the TSR. The transmission of the character
commences immediately following the transfer of the
data to the TSR from the TXREGx.

Each data bit changes on the leading edge of the
master clock and remains valid until the subsequent
leading clock edge.

16.5.1.4 Data Polarity

The polarity of the transmit and receive data can be
controlled with the DTRXP bit of the BAUDCONx
register. The default state of this bit is ‘0’ which selects
high true transmit and receive data. Setting the DTRXP
bit to ‘1’ will invert the data resulting in low true transmit
and receive data.

Note: The TSR register is not mapped in data
memory, so it is not available to the user.
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20.0 SR LATCH

The module consists of a single SR latch with multiple
Set and Reset inputs as well as separate latch outputs.
The SR latch module includes the following features:

• Programmable input selection

• SR latch output is available internally/externally

• Selectable Q and Q output

• Firmware Set and Reset

The SR latch can be used in a variety of analog
applications, including oscillator circuits, one-shot
circuit, hysteretic controllers, and analog timing
applications.

20.1 Latch Operation

The latch is a Set-Reset latch that does not depend on a
clock source. Each of the Set and Reset inputs are
active-high. The latch can be set or reset by:

• Software control (SRPS and SRPR bits)

• Comparator C1 output (sync_C1OUT)

• Comparator C2 output (sync_C2OUT)

• SRI Pin

• Programmable clock (DIVSRCLK)

The SRPS and the SRPR bits of the SRCON0 register
may be used to set or reset the SR latch, respectively.
The latch is Reset-dominant. Therefore, if both Set and
Reset inputs are high, the latch will go to the Reset
state. Both the SRPS and SRPR bits are self resetting
which means that a single write to either of the bits is all
that is necessary to complete a latch Set or Reset
operation.

The output from Comparator C1 or C2 can be used as
the Set or Reset inputs of the SR latch. The output of
either Comparator can be synchronized to the Timer1
clock source. See Section 18.0 “Comparator
Module” and Section 12.0 “Timer1/3/5 Module with
Gate Control” for more information.

An external source on the SRI pin can be used as the
Set or Reset inputs of the SR latch.

An internal clock source, DIVSRCLK, is available and it
can periodically set or reset the SR latch. The
SRCLK<2:0> bits in the SRCON0 register are used to
select the clock source period. The SRSCKE and
SRRCKE bits of the SRCON1 register enable the clock
source to set or reset the SR latch, respectively.

20.2 Latch Output

The SRQEN and SRNQEN bits of the SRCON0 register
control the Q and Q latch outputs. Both of the SR latch
outputs may be directly output to I/O pins at the same
time. Control is determined by the state of bits SRQEN
and SRNQEN in the SRCON0 register.

The applicable TRIS bit of the corresponding port must
be cleared to enable the port pin output driver. 

20.3 DIVSRCLK Clock Generation

The DIVSRCLK clock signal is generated from the
peripheral clock which is pre-scaled by a value
determined by the SRCLK<2:0> bits. See Figure 20-2
and Table 20-1 for additional detail.

20.4 Effects of a Reset

Upon any device Reset, the SR latch is not initialized,
and the SRQ and SRNQ outputs are unknown. The
user’s firmware is responsible to initialize the latch
output before enabling it to the output pins.
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23.0 HIGH/LOW-VOLTAGE DETECT 
(HLVD)

The PIC18(L)F2X/4XK22 devices have a High/Low-Volt-
age Detect module (HLVD). This is a programmable cir-
cuit that sets both a device voltage trip point and the
direction of change from that point. If the device experi-
ences an excursion past the trip point in that direction, an
interrupt flag is set. If the interrupt is enabled, the pro-
gram execution branches to the interrupt vector address
and the software responds to the interrupt.

The High/Low-Voltage Detect Control register
(Register 23-1) completely controls the operation of the
HLVD module. This allows the circuitry to be “turned
off” by the user under software control, which
minimizes the current consumption for the device.

The module’s block diagram is shown in Figure 23-1.

23.1 Register - HLVD Control 

REGISTER 23-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-1

VDIRMAG BGVST IRVST HLVDEN HLVDL<3:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 VDIRMAG: Voltage Direction Magnitude Select bit

1 = Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>)
0 = Event occurs when voltage equals or falls below trip point (HLVDL<3:0>)

bit 6 BGVST: Band Gap Reference Voltages Stable Status Flag bit

1 = Internal band gap voltage references are stable
0 = Internal band gap voltage reference is not stable

bit 5 IRVST: Internal Reference Voltage Stable Flag bit

1 = Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage range
0 = Indicates that the voltage detect logic will not generate the interrupt flag at the specified voltage

range and the HLVD interrupt should not be enabled 

bit 4 HLVDEN: High/Low-Voltage Detect Power Enable bit

1 = HLVD enabled
0 = HLVD disabled

bit 3-0 HLVDL<3:0>: Voltage Detection Level bits(1)

1111 = External analog input is used (input comes from the HLVDIN pin) 
1110 = Maximum setting 
.
.
.
0000 = Minimum setting

Note 1: See Table 27-5 for specifications.
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BTFSC Bit Test File, Skip if Clear

Syntax: BTFSC   f, b {,a}

Operands: 0  f  255
0  b  7
a [0,1]

Operation: skip if (f<b>) = 0

Status Affected: None

Encoding: 1011 bbba ffff ffff

Description: If bit ‘b’ in register ‘f’ is ‘0’, then the next 
instruction is skipped. If bit ‘b’ is ‘0’, then 
the next instruction fetched during the 
current instruction execution is discarded 
and a NOP is executed instead, making 
this a 2-cycle instruction. 
If ‘a’ is ‘0’, the Access Bank is selected. If 
‘a’ is ‘1’, the BSR is used to select the 
GPR bank.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates in 
Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). 
See Section 25.2.3 “Byte-Oriented and 
Bit-Oriented Instructions in Indexed 
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

No 
operation

If skip:

Q1 Q2 Q3 Q4

No 
operation

No 
operation

No 
operation

No 
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

Example: HERE
FALSE
TRUE

BTFSC
:
:

FLAG, 1, 0

Before Instruction
PC = address (HERE)

After Instruction
If FLAG<1> = 0;

PC = address (TRUE)
If FLAG<1> = 1;

PC = address (FALSE)

BTFSS Bit Test File, Skip if Set

Syntax: BTFSS   f, b {,a}

Operands: 0  f  255
0  b < 7
a [0,1]

Operation: skip if (f<b>) = 1

Status Affected: None

Encoding: 1010 bbba ffff ffff

Description: If bit ‘b’ in register ‘f’ is ‘1’, then the next 
instruction is skipped. If bit ‘b’ is ‘1’, then 
the next instruction fetched during the 
current instruction execution is discarded 
and a NOP is executed instead, making 
this a 2-cycle instruction. 
If ‘a’ is ‘0’, the Access Bank is selected. If 
‘a’ is ‘1’, the BSR is used to select the 
GPR bank.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). 
See Section 25.2.3 “Byte-Oriented and 
Bit-Oriented Instructions in Indexed 
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

No 
operation

If skip:

Q1 Q2 Q3 Q4

No 
operation

No 
operation

No 
operation

No 
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

Example: HERE
FALSE
TRUE

BTFSS
:
:

FLAG, 1, 0

Before Instruction
PC = address (HERE)

After Instruction
If FLAG<1> = 0;

PC = address (FALSE)
If FLAG<1> = 1;

PC = address (TRUE)
 2010-2016 Microchip Technology Inc.  DS40001412G-page 373



PIC18(L)F2X/4XK22
              

         

               

        

CPFSGT Compare f with W, skip if f > W

Syntax: CPFSGT    f {,a}

Operands: 0  f  255
a  [0,1]

Operation: (f) –W),
skip if (f) > (W) 
(unsigned comparison)

Status Affected: None

Encoding: 0110 010a ffff ffff

Description: Compares the contents of data memory 
location ‘f’ to the contents of the W by 
performing an unsigned subtraction.
If the contents of ‘f’ are greater than the 
contents of WREG, then the fetched 
instruction is discarded and a NOP is 
executed instead, making this a 
2-cycle instruction. 
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See 
Section 25.2.3 “Byte-Oriented and 
Bit-Oriented Instructions in Indexed 
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register ‘f’
Process 

Data
No 

operation
If skip:

Q1 Q2 Q3 Q4
No 

operation
No 

operation
No

operation
No 

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No 

operation
No 

operation
No 

operation
No 

operation
No 

operation
No 

operation
No 

operation
No 

operation

Example: HERE      CPFSGT REG, 0
NGREATER  :
GREATER   :

Before Instruction
PC = Address (HERE)
W = ?

After Instruction

If REG  W;
PC = Address (GREATER)

If REG  W;
PC = Address (NGREATER)

CPFSLT Compare f with W, skip if f < W

Syntax: CPFSLT    f {,a}

Operands: 0  f  255
a  [0,1]

Operation: (f) –W),
skip if (f) < (W) 
(unsigned comparison)

Status Affected: None

Encoding: 0110 000a ffff ffff

Description: Compares the contents of data memory 
location ‘f’ to the contents of W by 
performing an unsigned subtraction.
If the contents of ‘f’ are less than the 
contents of W, then the fetched 
instruction is discarded and a NOP is 
executed instead, making this a 
2-cycle instruction. 
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

No 
operation

If skip:

Q1 Q2 Q3 Q4

No 
operation

No 
operation

No 
operation

No 
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

Example: HERE    CPFSLT REG, 1
NLESS   :
LESS    :

Before Instruction
PC = Address (HERE)
W = ?

After Instruction

If REG < W;
PC = Address (LESS)
If REG  W;
PC = Address (NLESS)
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MOVLW Move literal to W

Syntax: MOVLW   k

Operands: 0  k  255

Operation: k  W

Status Affected: None

Encoding: 0000 1110 kkkk kkkk

Description: The 8-bit literal ‘k’ is loaded into W.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process 
Data

Write to W

Example: MOVLW 5Ah

After Instruction

W = 5Ah

MOVWF Move W to f

Syntax: MOVWF     f {,a}

Operands: 0  f  255
a  [0,1]

Operation: (W)  f

Status Affected: None

Encoding: 0110 111a ffff ffff

Description: Move data from W to register ‘f’. 
Location ‘f’ can be anywhere in the 
256-byte bank. 
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See 
Section 25.2.3 “Byte-Oriented and 
Bit-Oriented Instructions in Indexed 
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write
register ‘f’

Example: MOVWF REG, 0

Before Instruction

W = 4Fh
REG = FFh

After Instruction

W = 4Fh
REG = 4Fh
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FIGURE 28-34: PIC18LF2X/4XK22 TYPICAL IDD: RC_IDLE LF-INTOSC 31 kHz

FIGURE 28-35: PIC18LF2X/4XK22 MAXIMUM IDD: RC_IDLE LF-INTOSC 31 kHz
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FIGURE 28-48: PIC18LF2X/4XK22 TYPICAL IDD: PRI_RUN EC MEDIUM POWER

FIGURE 28-49: PIC18LF2X/4XK22 MAXIMUM IDD: PRI_RUN EC MEDIUM POWER
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FIGURE 28-62: PIC18F2X/4XK22 TYPICAL IDD: PRI_IDLE EC MEDIUM POWER

FIGURE 28-63: PIC18F2X/4XK22 MAXIMUM IDD: PRI_IDLE EC MEDIUM POWER
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