

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k22t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2:	PIC18(L)F2XK22 PIN SUMMARY
----------	----------------------------

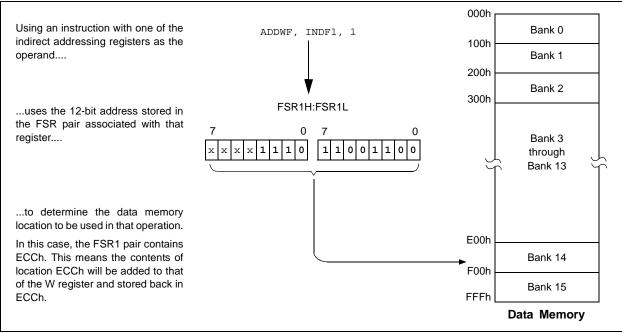
IAD				FZANZZ	1 114 50									
28-SSOP, SOIC 28-SPDIP	28-QFN, UQFN	0/1	Analog	Comparator	СТМИ	SR Latch	Reference	(E)CCP	EUSART	MSSP	Timers	Interrupts	dn-lluq	Basic
2	27	RA0	AN0	C12IN0-										
3	28	RA1	AN1	C12IN1-										
4	1	RA2	AN2	C2IN+			VREF- DACOUT							
5	2	RA3	AN3	C1IN+			VREF+							
6	3	RA4		C1OUT		SRQ		CCP5			TOCKI			
7	4	RA5	AN4	C2OUT		SRNQ	HLVDIN			SS1				
10	7	RA6												OSC2 CLKO
9	6	RA7												OSC1 CLKI
21	18	RB0	AN12			SRI		CCP4 FLT0		SS2		INT0	Y	
22	19	RB1	AN10	C12IN3-				P1C		SCK2 SCL2		INT1	Y	
23	20	RB2	AN8		CTED1			P1B		SDI2 SDA2		INT2	Y	
24	21	RB3	AN9	C12IN2-	CTED2			CCP2 P2A ⁽¹⁾		SDO2			Y	
25	22	RB4	AN11					P1D			T5G	IOC	Υ	
26	23	RB5	AN13					CCP3 P3A ⁽⁴⁾ P2B ⁽³⁾			T1G T3CKI ⁽²⁾	IOC	Y	
27	24	RB6							TX2/CK2			IOC	Y	PGC
28	25	RB7							RX2/DT2			IOC	Y	PGD
11	8	RC0						P2B ⁽³⁾			SOSCO T1CKI T3CKI ⁽²⁾ T3G			
12	9	RC1						CCP2 P2A ⁽¹⁾			SOSCI			
13	10	RC2	AN14		CTPLS			CCP1 P1A			T5CKI			
14	11	RC3	AN15							SCK1 SCL1				
15	12	RC4	AN16							SDI1 SDA1				
16	13	RC5	AN17							SDO1				
17	14	RC6	AN18					CCP3 P3A ⁽⁴⁾	TX1/CK1					
18	15	RC7	AN19					P3B	RX1/DT1					
1	26	RE3												MCLR VPP
8, 19 19	5, 16 16	Vss												Vss
20	17	Vdd												Vdd

 CCP2/P2A multiplexed in fuses.
 T3CKI multiplexed in fuses.
 P2B multiplexed in fuses.
 CCP3/P3A multiplexed in fuses. Note 1:

5.6.3.1 FSR Registers and the INDF Operand

At the core of indirect addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers, FSRnH and FSRnL. Each FSR pair holds a 12-bit value, therefore, the four upper bits of the FSRnH register are not used. The 12-bit FSR value can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

Indirect addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These can be thought of as "virtual" registers: they are mapped in the SFR space but are not physically implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction's target. The INDF operand is just a convenient way of using the pointer.


Because indirect addressing uses a full 12-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and the Access RAM bit have no effect on determining the target address.

5.6.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these are "virtual" registers which cannot be directly read or written. Accessing these registers actually accesses the location to which the associated FSR register pair points, and also performs a specific action on the FSR value. They are:

- POSTDEC: accesses the location to which the FSR points, then automatically decrements the FSR by 1 afterwards
- POSTINC: accesses the location to which the FSR points, then automatically increments the FSR by 1 afterwards
- PREINC: automatically increments the FSR by one, then uses the location to which the FSR points in the operation
- PLUSW: adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the location to which the result points in the operation.

In this context, accessing an INDF register uses the value in the associated FSR register without changing it. Similarly, accessing a PLUSW register gives the FSR value an offset by that in the W register; however, neither W nor the FSR is actually changed in the operation. Accessing the other virtual registers changes the value of the FSR register.

FIGURE 5-10: INDIRECT ADDRESSING

REGISTER						D # • • • •	D 4 + 1 - 2				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF				
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 7	SSP2IF: Svn	chronous Seria	l Port Interrup	ot Flag bit							
	1 = The trans		tion is comple	•	eared in softwa	re)					
bit 6	BCL2IF: MSS	SP2 Bus Collis	ion Interrupt F	lag bit							
	(must be	cleared in soft	ware)	e SSP2 modu	le configured ir	n I ² C master wa	as transmitting				
		collision occurre									
bit 5	RC2IF: EUSART2 Receive Interrupt Flag bit 1 = The EUSART2 receive buffer, RCREG2, is full (cleared by reading RCREG2)										
		SART2 receive			red by reading	RGREGZ)					
bit 4	TX2IF: EUSART2 Transmit Interrupt Flag bit										
		SART2 transmit SART2 transmit		G2, is empty (cleared by writi	ng TXREG2)					
bit 3	CTMUIF: CT	CTMUIF: CTMU Interrupt Flag bit									
		terrupt occurre U interrupt occ		eared in softwa	are)						
bit 2	TMR5GIF: T	MR5 Gate Inter	rupt Flag bits								
	0	e interrupt occ gate occurred	urred (must be	e cleared in sof	ftware)						
bit 1	TMR3GIF: T	MR3 Gate Inter	rupt Flag bits								
		e interrupt occ gate occurred	urred (must be	e cleared in sof	itware)						
bit 0	TMR1GIF: T	MR1 Gate Inter	rupt Flag bits								
	1 = TMR gat 0 = No TMR		urred (must be	e cleared in sof	ftware)						

REGISTER 9-6: PIR3: PERIPHERAL INTERRUPT (FLAG) REGISTER 3

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP
bit 7	÷	·		•		•	bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle		x = Bit is unkr	nown
bit 7	OSCFIP: O 1 = High pr 0 = Low pri	•	rrupt Priority I	bit			
bit 6	C1IP: Comp 1 = High pr 0 = Low pri		upt Priority bit				
bit 5	C2IP: Comp 1 = High pr 0 = Low pri		upt Priority bit	:			
bit 4	EEIP: Data 1 = High pr 0 = Low pri	•	Write Operat	ion Interrupt Pr	iority bit		
bit 3	BCL1IP: M3 1 = High pr 0 = Low pri		ion Interrupt F	Priority bit			
bit 2	HLVDIP: Lo 1 = High pr 0 = Low pri		ct Interrupt Pri	ority bit			
bit 1	-	MR3 Overflow In iority	terrupt Priority	/ bit			
bit 0	-	CP2 Interrupt Pri iority	ority bit				

REGISTER 9-15: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

- 6. Configure and start the 8-bit TimerX resource:
 - Clear the TMRxIF interrupt flag bit of the PIR2 or PIR4 register. See Note 1 below.
 - Configure the TxCKPS bits of the TxCON register with the Timer prescale value.
 - Enable the Timer by setting the TMRxON bit of the TxCON register.
- 7. Enable PWM output pin:
 - Wait until the Timer overflows and the TMRxIF bit of the PIR2 or PIR4 register is set. See Note 1 below.
 - Enable the CCPx pin output driver by clearing the associated TRIS bit.

Note 1:	In order to send a complete duty cycle
	and period on the first PWM output, the
	above steps must be included in the
	setup sequence. If it is not critical to start
	with a complete PWM signal on the first
	output, then step 6 may be ignored.

14.3.3 PWM TIMER RESOURCE

The PWM standard mode makes use of one of the 8-bit Timer2/4/6 timer resources to specify the PWM period.

Configuring the CxTSEL<1:0> bits in the CCPTMRS0 or CCPTMRS1 register selects which Timer2/4/6 timer is used.

14.3.4 PWM PERIOD

The PWM period is specified by the PRx register of 8-bit TimerX. The PWM period can be calculated using the formula of Equation 14-1.

EQUATION 14-1: PWM PERIOD

 $PWM Period = [(PRx) + 1] \bullet 4 \bullet Tosc \bullet$ (TMRx Prescale Value)

Note 1: Tosc = 1/Fosc

When TMRx is equal to PRx, the following three events occur on the next increment cycle:

- TMRx is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

Note: The Timer postscaler (see Section 13.0 "Timer2/4/6 Module") is not used in the determination of the PWM frequency.

14.3.5 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PRx and TMRx registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 14-2 is used to calculate the PWM pulse width.

Equation 14-3 is used to calculate the PWM duty cycle ratio.

EQUATION 14-2: PULSE WIDTH

$$Pulse Width = (CCPRxL:CCPxCON < 5:4>) \bullet$$

TOSC • (TMRx Prescale Value)

EQUATION 14-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4>)}{4(PRx + 1)}$

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMRx register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the TimerX prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (see Figure 14-4).

Register Definitions: ECCP Control 14.5

REGISTER 14-1: CCPxCON: STANDARD CCPx CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	DCxB	<1:0>	CCPxM<3:0>							
pit 7							bit				
ogondi											
L egend: R = Readal	ble bit	W = Writable	hit	U = Unimpler	mented bit, read	1 as '0'					
u = Bit is ur		x = Bit is unkr		•	at POR and BO		other Reset				
"1' = Bit is s	-	'0' = Bit is clea									
bit 7-6	Unused										
bit 5-4	DCxB<1:0:	>: PWM Duty Cyc	cle Least Sigr	nificant bits							
	<u>Capture mo</u> Unused	ode:									
	<u>Compare m</u> Unused	node:									
	PWM mode	<u>ə:</u>									
	These bits	are the two LSbs	of the PWM	duty cycle. The	eight MSbs are	found in CCP	RxL.				
bit 3-0	CCPxM<3:	CCPxM<3:0>: ECCPx Mode Select bits									
		 Capture/Compare/PWM off (resets the module) 									
	0001 = Re										
	0010 = Co 0011 = Re	mpare mode: tog served	gle output on	match							
		pture mode: ever		1							
		pture mode: ever									
		pture mode: ever									
	0111 = Ca	pture mode: ever	y 16th rising (edge							
	1000 = Co	mpare mode: set	output on co	mpare match (C	CPx pin is set,	CCPxIF is set)				
		mpare mode: clea									
	CC	mpare mode: ge PxIF is set)			•						
	1011 = Co		rX (selected b	igger (CCPx pir by CxTSEL bits) ing A/D convers	is reset						
	11xx =: PV		1 10 00t, 5tart								
Note 1:	This feature is a	vailable on CCP5	5 only.								

Note 1: This feature is available on CCP5 only.

15.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCLx line low effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCLx.

The CKP bit of the SSPxCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCLx line to go low and then hold it. Setting CKP will release SCLx and allow more communication.

15.5.6.1 Normal Clock Stretching

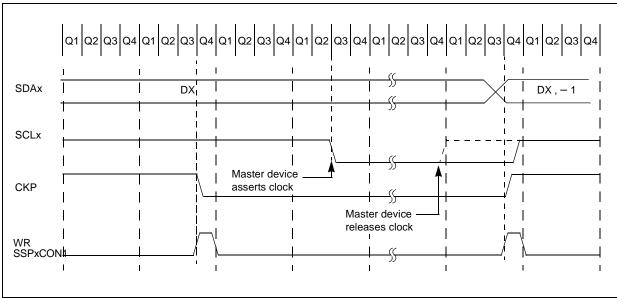
Following an ACK if the R/W bit of SSPxSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPxBUF with data to transfer to the master. If the SEN bit of SSPxCON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes.

- Note 1: The BF bit has no effect on whether the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPxBUF was read before the 9th falling edge of SCLx.
 - 2: Previous versions of the module did not stretch the clock for a transmission if SSPxBUF was loaded before the 9th falling edge of SCLx. It is now always cleared for read requests.

15.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set, the clock is always stretched. This is the only time the SCLx is stretched without CKP being cleared. SCLx is released immediately after a write to SSPxADD.

Note: Previous versions of the module did not stretch the clock if the second address byte did not match.

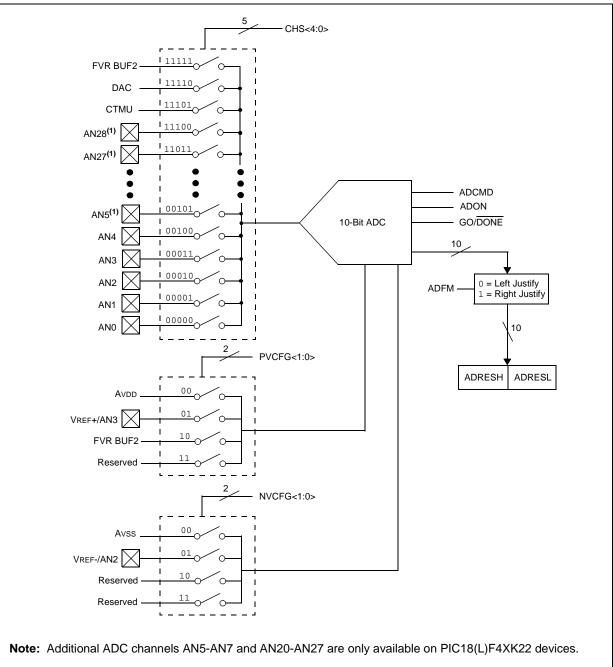

15.5.6.3 Byte NACKing

When the AHEN bit of SSPxCON3 is set; CKP is cleared by hardware after the 8th falling edge of SCLx for a received matching address byte. When the DHEN bit of SSPxCON3 is set; CKP is cleared after the 8th falling edge of SCLx for received data.

Stretching after the 8th falling edge of SCLx allows the slave to look at the received address or data and decide if it wants to ACK the received data.

15.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCLx line to go low and then hold it. However, clearing the CKP bit will not assert the SCLx output low until the SCLx output is already sampled low. Therefore, the CKP bit will not assert the SCLx line until an external I²C master device has already asserted the SCLx line. The SCLx output will remain low until the CKP bit is set and all other devices on the I²C bus have released SCLx. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCLx (see Figure 15-23).


FIGURE 15-23: CLOCK SYNCHRONIZATION TIMING

17.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESL and ADRESH). The ADC voltage reference is software selectable to either VDD or a voltage applied to the external reference pins.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

Figure 17-1 shows the block diagram of the ADC.

FIGURE 17-1: ADC BLOCK DIAGRAM

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
TRIGSEL	—	—	_	PVCF	G<1:0>	<1:0> NVCFG<1:				
bit 7							bit			
Legend:										
R = Readable bitW = Writable bitU = Unimplemented bit, read						d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 7		ecial Trigger S								
	 Selects the special trigger from CTMU Selects the special trigger from CCP5 									
h it O A										
bit 6-4	-	ted: Read as '								
bit 3-2	PVCFG<1:0>	: Positive Volta	ge Reference	Configuration I	oits					
	00 = A/D VREF+ connected to internal signal, AVDD									
	01 = A/D VREF+ connected to external pin, VREF+									
	10 = A/D VREF+ connected to internal signal, FVR BUF2									
	11 = Reserve	d (by default, A	/D VREF+ con	nected to interr	nal signal, AVD	D)				
bit 1-0	NVCFG<1:0>	: Negative Volt	age Reference	e Configuration	bits					
	00 = A/D VREF- connected to internal signal, AVss									
	01 = A/D VREF- connected to external pin, VREF-									
	10 = Reserve	d (by default, A	/D VREF- conr	nected to intern	al signal, AVs	5)				
	11 = Reserve	d (by default, A	D VREE- conr	nected to intern	al signal AV/se	3)				

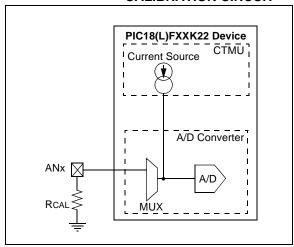
REGISTER 17-2: ADCON1: A/D CONTROL REGISTER 1

19.3 Calibrating the CTMU Module

The CTMU requires calibration for precise measurements of capacitance and time, as well as for accurate time delay. If the application only requires measurement of a relative change in capacitance or time, calibration is usually not necessary. An example of this type of application would include a capacitive touch switch, in which the touch circuit has a baseline capacitance, and the added capacitance of the human body changes the overall capacitance of a circuit.

If actual capacitance or time measurement is required, two hardware calibrations must take place: the current source needs calibration to set it to a precise current, and the circuit being measured needs calibration to measure and/or nullify all other capacitance other than that to be measured.

19.3.1 CURRENT SOURCE CALIBRATION


The current source on the CTMU module is trimable. Therefore, for precise measurements, it is possible to measure and adjust this current source by placing a high precision resistor, RCAL, onto an unused analog channel. An example circuit is shown in Figure 19-2. The current source measurement is performed using the following steps:

- 1. Initialize the A/D Converter.
- 2. Initialize the CTMU.
- Enable the current source by setting EDG1STAT (CTMUCONL<0>).
- 4. Issue settling time delay.
- 5. Perform A/D conversion.
- 6. Calculate the current source current using I = V/RCAL, where RCAL is a high precision resistance and *V* is measured by performing an A/D conversion.

The CTMU current source may be trimmed with the trim bits in CTMUICON using an iterative process to get an exact desired current. Alternatively, the nominal value without adjustment may be used; it may be stored by the software for use in all subsequent capacitive or time measurements.

To calculate the value for *RCAL*, the nominal current must be chosen, and then the resistance can be calculated. For example, if the A/D Converter reference voltage is 3.3V, use 70% of full scale, or 2.31V as the desired approximate voltage to be read by the A/D Converter. If the range of the CTMU current source is selected to be 0.55 μ A, the resistor value needed is calculated as *RCAL* = 2.31V/0.55 μ A, for a value of 4.2 MΩ. Similarly, if the current source is chosen to be 5.5 μ A, *RCAL* would be 420,000Ω, and 42,000Ω if the current source is set to 55 μ A.

FIGURE 19-2: CTMU CURRENT SOURCE CALIBRATION CIRCUIT

A value of 70% of full-scale voltage is chosen to make sure that the A/D Converter was in a range that is well above the noise floor. Keep in mind that if an exact current is chosen, that is to incorporate the trimming bits from CTMUICON, the resistor value of RCAL may need to be adjusted accordingly. RCAL may also be adjusted to allow for available resistor values. RCAL should be of the highest precision available, keeping in mind the amount of precision needed for the circuit that the CTMU will be used to measure. A recommended minimum would be 0.1% tolerance.

The following examples show one typical method for performing a CTMU current calibration. Example 19-1 demonstrates how to initialize the A/D Converter and the CTMU; this routine is typical for applications using both modules. Example 19-2 demonstrates one method for the actual calibration routine.

21.3 Register Definitions: FVR Control

REGISTER	<u> 21-1: VREF</u>	CON0: FIXED		REFERENC	E CONTROL F	REGISTER	
R/W-0	R/W-0	R/W-0	R/W-1	U-0	U-0	U-0	U-0
FVREN	FVRST	FVRS<1:0>		—	—	—	—
bit 7		·		-			bit
Legend:							
R = Readable bit W = Writable bit				U = Unimplei	mented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown				-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 6	0 = Fixed V	ed Voltage Refe oltage Referenc oltage Referenc	e output is no	ot ready or not e	enabled		
bit 5-4	FVRS<1:0> 00 = Fixed \ 01 = Fixed \ 10 = Fixed \	: Fixed Voltage /oltage Referen /oltage Referen /oltage Referen /oltage Referen	Reference Se ce Peripheral ce Peripheral ce Peripheral	election bits output is off output is 1x (1, output is 2x (2,	.048V)(1)		
bit 3-2		Read as '0'. Mai	•	•			
bit 1-0	Unimpleme	nted: Read as '	0'.				
Note 1.	Fixed Voltage B						

REGISTER 21-1: VREFCON0: FIXED VOLTAGE REFERENCE CONTROL REGISTER

Note 1: Fixed Voltage Reference output cannot exceed VDD.

TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
VREFCON0	FVREN	FVRST	FVRS<1:0>		_				332

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by the FVR module.

23.3 HLVD Setup

To set up the HLVD module:

- 1. Select the desired HLVD trip point by writing the value to the HLVDL<3:0> bits.
- 2. Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0).
- 3. Enable the HLVD module by setting the HLVDEN bit.
- 4. Clear the HLVD interrupt flag (PIR2<2>), which may have been set from a previous interrupt.
- If interrupts are desired, enable the HLVD interrupt by setting the HLVDIE and GIE/GIEH bits (PIE2<2> and INTCON<7>, respectively).

An interrupt will not be generated until the IRVST bit is set.

Note: Before changing any module settings (VDIRMAG, HLVDL<3:0>), first disable the module (HLVDEN = 0), make the changes and re-enable the module. This prevents the generation of false HLVD events.

23.4 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and consume static current. The total current consumption, when enabled, is specified in **Section 27.0** "**Electrical Specifications**". Depending on the application, the HLVD module does not need to operate constantly. To reduce current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After such a check, the module could be disabled.

23.5 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in **Section 27.0 "Electrical Specifications**", may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed.

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (see Figure 23-2 or Figure 23-3).

Mnemo	onic,	Description	Cycles	16-Bit Instruction Word				Status	Notes
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
LITERAL O	OPERAT	TIONS							
ADDLW	k	Add literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	IORY ←	PROGRAM MEMORY OPERATIO	NS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with post-increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with post-decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with pre-increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with post-increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with post-decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with pre-increment		0000	0000	0000	1111	None	

TABLE 25-2: PIC18(L)F2X/4XK22 INSTRUCTION SET (CONTINUED)

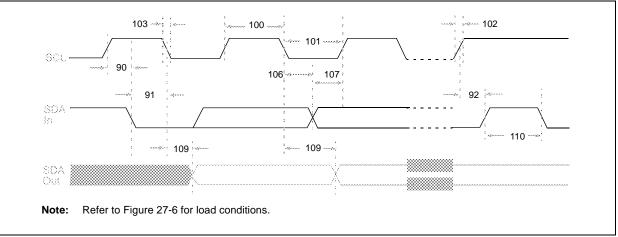
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

$RLNCF \\ 0 \le f \le 255$	f {,d {,a}]	•						
	RLNCF f {,d {,a}}							
d ∈ [0,1] a ∈ [0,1]								
· /		l>,						
N, Z								
0100	01da	ffff	ffff					
The contents of register 'f' are rotated one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.								
1								
1								
02	03		Q4					
Read egister 'f'	Proce		Write to estination					
	L011	1, 0						
	$f(<7>) \rightarrow 0$ N, Z 0100 The content one bit to 1 s placed in stored back f 'a' is '0', f 'a' is '1', GPR bank f 'a' is '1', GPR b	f(<7>) → dest<0> N, Z 0100 01da The contents of regination of the left. If s placed in W. If 'd' stored back in regisation of the left. If s placed in W. If 'd' stored back in regisation of the left. If s placed in W. If 'd' stored back in regisation of the left. If s placed in W. If 'd' stored back in regisation of the left. If a 'is '0', the Access f 'a' is '0' and the end set is enabled, this in n Indexed Literal Of mode whenever f ≤ Section 25.2.3 "By Bit-Oriented Instru- Literal Offset Mode Tregination 1 1 Q2 Q3 Read Process Section of the left. If Data	N, Z 0100 01da ffff The contents of register 'f' ar one bit to the left. If 'd' is '0', 's splaced in W. If 'd' is '1', the stored back in register 'f' (def f 'a' is '0', the Access Bank is f 'a' is '1', the BSR is used to GPR bank. f 'a' is '0' and the extended i set is enabled, this instruction n Indexed Literal Offset Addr mode whenever $f \le 95$ (5Fh). Section 25.2.3 "Byte-Orient Bit-Oriented Instructions in Literal Offset Mode" for det register f 1 1 Q2 Q3 Read Process M egister 'f' Data de RLNCF REG, 1, 0 1010 1011					

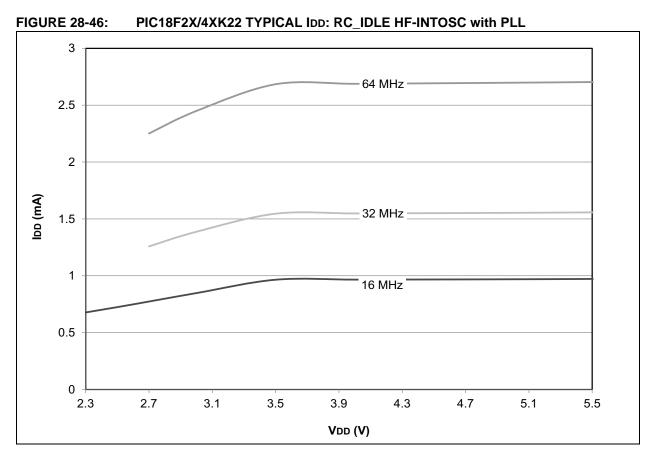

Syntax:		ght f throu	
	RRCF f{	,d {,a}}	
Operands:	$0 \leq f \leq 255$		
	d ∈ [0,1]		
o <i>i</i> :	a ∈ [0,1]		
Operation:	$(f < n >) \rightarrow dr$ $(f < 0 >) \rightarrow C$ $(C) \rightarrow dest$		
Status Affected:	C, N, Z		
Encoding:	0011	00da f	fff fff:
Description:	one bit to th flag. If 'd' is If 'd' is '1', 1 register 'f' (If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a	he right throu '0', the result the result is p default). the Access B the BSR is us and the exten led, this instr	"f' are rotated igh the CARF It is placed in " placed back in ank is selected sed to select the ruction operate Addression
	Section 25 Bit-Oriente	never f ≤ 95 (5. 2.3 "Byte-0	(5Fh). See Driented and ons in Indexe or details.
Words:	Section 25 Bit-Oriente Literal Off	never f ≤ 95 (5.2.3 "Byte-C ed Instructio set Mode" fo	(5Fh). See Driented and ons in Indexe or details.
	Section 25 Bit-Oriente Literal Offs	never f ≤ 95 (5.2.3 "Byte-C ed Instructio set Mode" fo	(5Fh). See Driented and ons in Indexe or details.
Cycles:	Section 25 Bit-Oriente Literal Offs	never f ≤ 95 (5.2.3 "Byte-C ed Instructio set Mode" fo	(5Fh). See Driented and ons in Indexe or details.
Cycles: Q Cycle Activity:	Section 25 Bit-Oriente Literal Off C	never f ≤ 95 (5.2.3 "Byte-C ed Instruction set Mode" for regis	(5Fh). See Oriented and ons in Indexe or details. ter f
Cycles:	Section 25 Bit-Oriente Literal Offs	never f ≤ 95 (5.2.3 "Byte-C ed Instructio set Mode" fo	(5Fh). See Driented and ons in Indexe or details.
Cycles: Q Cycle Activity: Q1	Section 25 Bit-Oriente Literal Offs C 1 1 2 2	never f ≤ 95 (5.2.3 "Byte-C ed Instruction set Mode" fo regis	(5Fh). See Oriented and ons in Indexe or details. ter f
Cycles: Q Cycle Activity: Q1 Decode	Section 25 Bit-Oriente Literal Offs C 1 1 1 Q2 Read register 'f'	Q3 Process Data	Q4 Q4 Write to destinatio
Q1 Decode Example:	Section 25 Bit-Oriente Literal Offs C 1 1 1 2 Q2 Read register 'f' RRCF	Q3 Process	Q4 Q4 Write to destinatio
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct	Section 25 Bit-Oriente Literal Offs 1 1 1 Q2 Read register 'f' RRCF	Q3 Process Data REG, 0,	Q4 Q4 Write to destinatio
Cycles: Q Cycle Activity: Q1 Decode Example:	Section 25 Bit-Oriente Literal Offs C 1 1 1 2 Q2 Read register 'f' RRCF	Q3 Process Data REG, 0,	Q4 Q4 Write to destinatio
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instructi	Section 25 Bit-Oriente Literal Offs C 1 1 1 2 Q2 Read register 'f' RRCF ction = 1110 (= 0	Q3 Process Data REG, 0,	Q4 Q4 Write to destinatio
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C	Section 25 Bit-Oriente Literal Offs C 1 1 1 Q2 Read register 'f' RRCF Ction = 1110 (on = 1110 (Q3 Process Data REG, 0,	Q4 Q4 Write to destinatio

SUBLW	LW Subtract W from literal		SUBWF	Subtract W from f					
Syntax:	SUBLW k		Syntax:	SUBWF f {,d {,a}}					
Operands:	$0 \le k \le 25$	5		Operands:	$0 \le f \le 255$	5			
Operation:	$k-(W) \rightarrow$	W			$d \in [0,1]$				
Status Affected:	N, OV, C,	DC, Z		Operation:	$a \in [0,1]$	deat			
Encoding:	0000	1000 kki	kk kkkk	Status Affected:		(f) – (W) \rightarrow dest N, OV, C, DC, Z			
Description		acted from the		Encoding:	0101	11da ff	ff ffff		
	literal 'k'.	The result is pl	aced in W.	Description:		V from registe			
Words:	1			Description.		nt method). If			
Cycles:	1					ored in W. If 'o			
Q Cycle Activity:					result is st (default).	ored back in r	egister 'f'		
Q1	Q2	Q3	Q4		lf 'a' is '0',	the Access B			
Decode	Read literal 'k'	Process Data	Write to W	selected. If 'a' is '1', the BS to select the GPR bank.					
Example 1:	SUBLW ()2h				and the extend pled, this instr			
Before Instruc						n Indexed Lite			
W C	= 01h = ?					g mode when			
After Instruction	on = 01h					n). See Sectio ented and Bit			
С	= 1 ; re	esult is positive	e		Instructio	ns in Indexed			
Z N	= 0 = 0				Mode" for	details.			
Example 2:	SUBLW (02h		Words:	1				
Before Instruc				Cycles:	1				
W C	= 02h = ?			Q Cycle Activity:	02	02	04		
After Instruction				Q1 Decode	Q2 Read	Q3 Process	Q4 Write to		
W C	= 00h = 1 ; re	esult is zero		Debbad	register 'f'	Data	destination		
Z N	= 1 = 0			Example 1:	SUBWF	REG, 1, 0			
Example 3:	SUBLW ()2h		Before Instru					
Before Instruc	ction			REG W	= 3 = 2				
W C	= 03h = ?			C After Instructi	= ?				
After Instruction	on			After Instructi REG	= 1				
W C		2's compleme esult is negati		W C	= 2 = 1 :re	esult is positiv	е		
Z N	= 0 = 1			Z N	= 0 = 0				
N	- 1			Example 2:	- U SUBWF	REG, 0, 0			
				Before Instru	ction	-, -, -			
				REG W	= 2 = 2				
				С	= ?				
				After Instructi REG	on = 2				
				W C	= 0 = 1 ; re	esult is zero			
				Z	= 1	2011 13 2010			
				N <u>Example 3</u> :	= 0	REG, 1, 0			
				Example 5. Before Instru	SUBWF ction	мев, Ι, Ο			
				REG W C	= 1 = 2 = ?				
				U U	-				
				After Instruct	on				
				After Instructi REG W	= FFh ;(2	's complemen	t)		
				After Instructi REG W C Z	= FFh ;(2 = 2	's complemen esult is negativ			

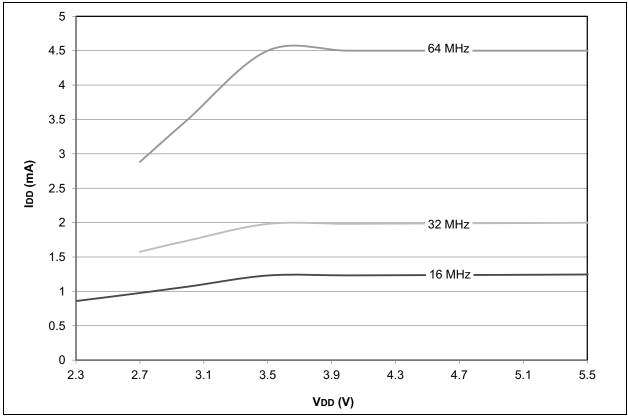
Param. No.	Symbol Tsu:sta	Characteristic		Min	Max	Units	Conditions
90		Start Condition	100 kHz mode	4700	_	ns	Only relevant for Repeated
		Setup Time	400 kHz mode	600	_		Start condition
91	THD:STA	Start Condition	100 kHz mode	4000	_	ns	After this period, the first clock pulse is generated
		Hold Time	400 kHz mode	600	_		
92	Tsu:sto	Stop Condition	100 kHz mode	4700		ns	
		Setup Time	400 kHz mode	600			
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	
		Hold Time	400 kHz mode	600		1	

TABLE 27-15: I²C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

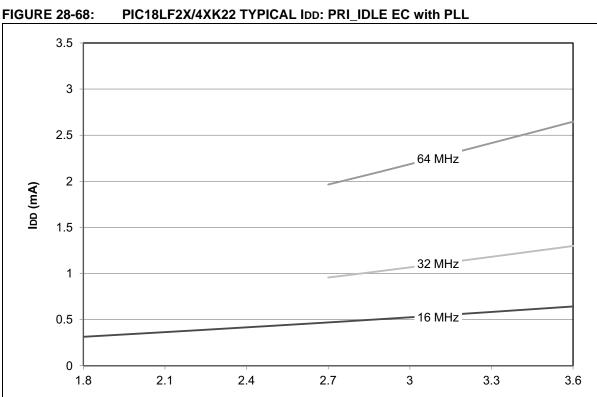
FIGURE 27-18: I²C BUS DATA TIMING

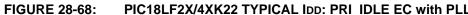


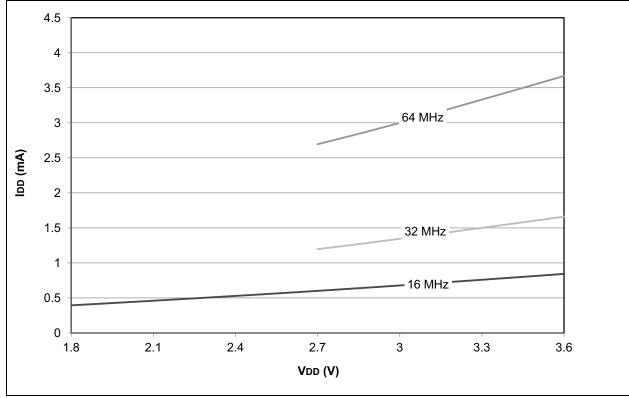
Param. No.	Symbol	Charact	eristic	Min	Max	Units	Conditions	
100 Тн	Thigh	Clock High Time	100 kHz mode	4.0	—	μs	Must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Must operate at a minimum of 10 MHz	
			SSP Module	1.5 TCY	—			
101	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	Must operate at a minimum of 1.5 MHz	
		400 kHz mode	1.3	—	μS	Must operate at a minimum of 10 MHz		
			SSP Module	1.5 TCY	—			
102	102 Tr	SDA and SCL Rise	100 kHz mode	—	1000	ns		
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF	
103	TF	SDA and SCL Fall	100 kHz mode	—	300	ns		
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF	
90	90 TSU:STA	Start Condition	100 kHz mode	4.7	_	μS	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6	_	μS	Start condition	
91	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first	
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated	
106	THD:DA	Data Input Hold	100 kHz mode	0	—	ns	-	
	Т	Time	400 kHz mode	0	0.9	μS		
107	TSU:DAT	Data Input Setup	100 kHz mode	250	—	ns	(Note 2)	
		Time	400 kHz mode	100	—	ns]	
92 Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	_	μS			
		400 kHz mode	0.6	—	μS			
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	_	3500	ns	(Note 1)	
			400 kHz mode	_	—	ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free	
			400 kHz mode	1.3	—	μS	before a new transmission can start	
D102	Св	Bus Capacitive Load	ding	—	400	pF		


TABLE 27-16:	I ² C BUS DATA	REQUIREMENTS	(SLAVE MODE)
--------------	---------------------------	--------------	--------------

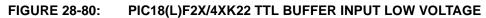
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

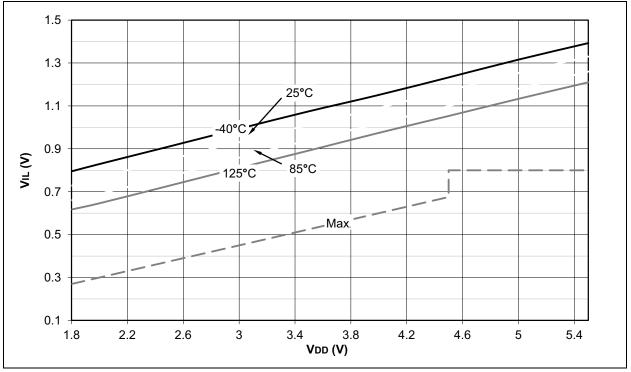

2: A fast mode I²C bus device can be used in a standard mode I²C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification), before the SCL line is released.

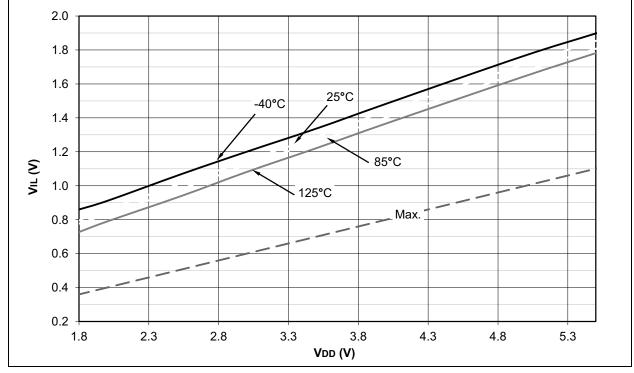




© 2010-2016 Microchip Technology Inc.







VDD (V)

