

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k22t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1: 28-PIN PDIP, SOIC, SSOP DIAGRAM

TABI	LE 3:	P	PIC18(L)F4>	(K22 F	PIN SUM	MARY	_						÷		
40-PDIP	40-UQFN	44-TQFP	44-QFN	0/1	Analog	Comparator	СТМИ	SR Latch	Reference	(E)CCP	EUSART	MSSP	Timers	Interrupts	Pull-up	Basic
2	17	19	19	RA0	AN0	C12IN0-										
3	18	20	20	RA1	AN1	C12IN1-										
4	19	21	21	RA2	AN2	C2IN+			VREF- DACOU T							
5	20	22	22	RA3	AN3	C1IN+			VREF+							
6	21	23	23	RA4		C1OUT		SRQ					TOCKI			
7	22	24	24	RA5	AN4	C2OUT		SRNQ	HLVDIN			SS1				
14	29	31	33	RA6												OSC2 CLKO
13	28	30	32	RA7												OSC1 CLKI
33	8	8	9	RB0	AN12			SRI		FLT0				INT0	Υ	
34	9	9	10	RB1	AN10	C12IN3-								INT1	Y	
35	10	10	11	RB2	AN8		CTED1							INT2	Y	
36	11	11	12	RB3	AN9	C12IN2-	CTED2			CCP2 P2A ⁽¹⁾			750	10.0	Y	
37	12	14	14	RB4	AN11					0000			15G	100	Y	
38	13	15	15	RB5	AN13					P3A ⁽³⁾			T3CKI ⁽²⁾	100	Y	500
39	14	16	16	RB6										IOC	Y	PGC
40	15	17	17	RB/						DOD(4)			00000	IOC	Y	PGD
15	30	32	34	KCU						F2D, ,			T1CKI T3CKI ⁽²⁾ T3G			
16	31	35	35	RC1						CCP2 ⁽¹⁾ P2A			SOSCI			
17	32	36	36	RC2	AN14		CTPLS			CCP1 P1A			T5CKI			
18	33	37	37	RC3	AN15							SCK1 SCL1				
23	38	42	42	RC4	AN16							SDI1 SDA1				
24	39	43	43	RC5	AN17							SDO1				
25	40	44	44	RC6	AN18						TX1 CK1					
26	1	1	1	RC7	AN19						RX1 DT1					
19	34	38	38	RD0	AN20							SCK2 SCL2				
20	35	39	39	RD1	AN21					CCP4		SDI2 SDA2				
21	36	40	40	RD2	AN22					P2B ⁽⁴⁾						
22	37	41	41	RD3	AN23					P2C		SS2			_	
27	2	2	2	RD4	AN24					P2D		SD02			-	
28	3	3	3	RD5	AN25					P1B	T) (0					
29	4	4	4	RD6	AN26					P1C	CK2					
30	5	5	5	RD7	AN27					P1D	RX2 DT2					
8	23	25	25	RE0	AN5					CCP3 P3A ⁽³⁾						

ABLE 3:	PIC18(L)F4XK22	PIN S	SUMMA	RY
ADEL V.	1 10 10(50 Willin <i>F</i>	

 Note
 1:
 CCP2 multiplexed in fuses.

 2:
 T3CKI multiplexed in fuses.

 3:
 CCP3/P3A multiplexed in fuses.

 4:
 P2B multiplexed in fuses.

2.5.4 EXTERNAL RC MODES

The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required. There are two modes: RC and RCIO.

2.5.4.1 RC Mode

In RC mode, the RC circuit connects to OSC1. OSC2/ CLKOUT outputs the RC oscillator frequency divided by four. This signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. Figure 2-8 shows the external RC mode connections.

FIGURE 2-8: EXTERNAL RC MODES

2.5.4.2 RCIO Mode

In RCIO mode, the RC circuit is connected to OSC1. OSC2 becomes a general purpose I/O pin.

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- input threshold voltage variation
- component tolerances
- · packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

2.6 Internal Clock Modes

The oscillator module has three independent, internal oscillators that can be configured or selected as the system clock source.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 2-3).
- The MFINTOSC (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 2-3).
- The LFINTOSC (Low-Frequency Internal Oscillator) is factory calibrated and operates at 31.25 kHz. The LFINTOSC cannot be useradjusted, but is designed to be stable over temperature and voltage.

The system clock speed can be selected via software using the Internal Oscillator Frequency select bits IRCF<2:0> of the OSCCON register.

The system clock can be selected between external or internal clock sources via the System Clock Selection (SCS<1:0>) bits of the OSCCON register. See **Section 2.11 "Clock Switching"** for more information.

2.6.1 INTOSC WITH I/O OR CLOCKOUT

Two of the clock modes selectable with the FOSC<3:0> bits of the CONFIG1H Configuration register configure the internal oscillator block as the primary oscillator. Mode selection determines whether the OSC2/ CLKOUT pin will be configured as general purpose I/O or FOSC/4 (CLKOUT). In both modes, the OSC1/CLKIN pin is configured as general purpose I/O. See **Section 24.0 "Special Features of the CPU"** for more information.

The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements.

FIGURE 4-6: SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)

FIGURE 4-7: TIME-OUT SEQUENCE ON POR W/PLL ENABLED (MCLR TIED TO VDD)

4.7 Reset State of Registers

Some registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. All other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, \overline{RI} , \overline{TO} , \overline{PD} , \overline{POR} and \overline{BOR} , are set or cleared differently in different Reset situations, as indicated in Table 4-3. These bits are used by software to determine the nature of the Reset.

Table 5-2 describes the Reset states for all of the Special Function Registers. The table identifies differences between Power-On Reset (POR)/Brown-Out Reset (BOR) and all other Resets, (i.e., Master Clear, WDT Resets, STKFUL, STKUNF, etc.). Additionally, the table identifies register bits that are changed when the device receives a wake-up from WDT or other interrupts.

TABLE 4-3:	STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION
	FOR RCON REGISTER

Condition	Program RCON Register						STKPTR Register		
Condition	Counter	SBOREN	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	1	0	0	0	0
RESET Instruction	0000h	ս (2)	0	u	u	u	u	u	u
Brown-out Reset	0000h	u (2)	1	1	1	u	0	u	u
MCLR during Power-Managed Run Modes	0000h	u (2)	u	1	u	u	u	u	u
MCLR during Power-Managed Idle Modes and Sleep Mode	0000h	u (2)	u	1	0	u	u	u	u
WDT Time-out during Full Power or Power-Managed Run Mode	0000h	u (2)	u	0	u	u	u	u	u
MCLR during Full Power Execution	0000h	u (2)	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u (2)	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	u (2)	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u (2)	u	u	u	u	u	u	1
WDT Time-out during Power- Managed Idle or Sleep Modes	PC + 2	u (2)	u	0	0	u	u	u	u
Interrupt Exit from Power- Managed Modes	PC + 2 ⁽¹⁾	u (2)	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (008h or 0018h).

2: Reset state is '1' for SBOREN and unchanged for all other Resets when software BOR is enabled (BOREN<1:0> Configuration bits = 01). Otherwise, the Reset state is '0'.

TABLE 4-4:REGISTERS ASSOCIATED WITH RESETS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
RCON	IPEN	SBOREN	_	RI	TO	PD	POR	BOR	56
STKPTR	STKFUL	STKUNF	_		67				

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for Resets.

5.6.3.1 FSR Registers and the INDF Operand

At the core of indirect addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers, FSRnH and FSRnL. Each FSR pair holds a 12-bit value, therefore, the four upper bits of the FSRnH register are not used. The 12-bit FSR value can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

Indirect addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These can be thought of as "virtual" registers: they are mapped in the SFR space but are not physically implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction's target. The INDF operand is just a convenient way of using the pointer.

Because indirect addressing uses a full 12-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and the Access RAM bit have no effect on determining the target address.

5.6.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these are "virtual" registers which cannot be directly read or written. Accessing these registers actually accesses the location to which the associated FSR register pair points, and also performs a specific action on the FSR value. They are:

- POSTDEC: accesses the location to which the FSR points, then automatically decrements the FSR by 1 afterwards
- POSTINC: accesses the location to which the FSR points, then automatically increments the FSR by 1 afterwards
- PREINC: automatically increments the FSR by one, then uses the location to which the FSR points in the operation
- PLUSW: adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the location to which the result points in the operation.

In this context, accessing an INDF register uses the value in the associated FSR register without changing it. Similarly, accessing a PLUSW register gives the FSR value an offset by that in the W register; however, neither W nor the FSR is actually changed in the operation. Accessing the other virtual registers changes the value of the FSR register.

FIGURE 5-10: INDIRECT ADDRESSING

9.4 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

9.5 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are five Peripheral Interrupt Request Flag registers (PIR1, PIR2, PIR3, PIR4 and PIR5).

9.6 **PIE Registers**

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are five Peripheral Interrupt Enable registers (PIE1, PIE2, PIE3, PIE4 and PIE5). When IPEN = 0, the PEIE/GIEL bit must be set to enable any of these peripheral interrupts.

9.7 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are five Peripheral Interrupt Priority registers (IPR1, IPR2, IPR3, IPR4 and IPR5). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	
bit 7							bit 0	
Lonondi								
Legena:	- hit	M - Mritabla	hit		monted hit rea	d oo '0'		
	Value at POP $(1^{\circ} - \text{Bit is set})$ $(0^{\circ} - \text{Bit})$		0 = 0	nented bit, rea	uas u v. Ditio unk	2 % *		
	FUK				areu	x = Dit is unk	nown	
bit 7	OSCFIP: O	scillator Fail Inte	rrupt Priority	bit				
	1 = High pr	iority	, ,					
	0 = Low pri	iority						
bit 6	C1IP: Comp	parator C1 Interr	upt Priority bi	t				
	1 = High pr	iority						
1.1.5		iority	(D · · · · · ·					
DIT 5	C2IP: Comp	barator C2 Interr	upt Priority bi	t				
	$1 = \Pi g \eta p \eta$ $0 = Low p \eta$	iority						
bit 4	EEIP: Data	EEPROM/Flash	Write Operat	tion Interrupt Pr	iority bit			
	1 = High pr	iority			,			
	0 = Low pri	iority						
bit 3	BCL1IP: M	SSP1 Bus Collis	ion Interrupt F	Priority bit				
	1 = High pr	iority						
	0 = Low pri	iority						
bit 2	HLVDIP: Lo	w-Voltage Detec	t Interrupt Pr	iority bit				
	1 = High pr	iority						
hit 1		MR3 Overflow In	terrunt Priorit	v bit				
bit i	1 = High pr	iority	terrupt i nont	y bit				
	0 = Low pri	iority						
bit 0	CCP2IP: CO	CP2 Interrupt Pri	ority bit					
	1 = High pr	iority						
	0 = Low pri	iority						

REGISTER 9-15: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

11.2 Timer0 Operation

Timer0 can operate as either a timer or a counter; the mode is selected with the T0CS bit of the T0CON register. In Timer mode (T0CS = 0), the module increments on every clock by default unless a different prescaler value is selected (see Section 11.4 "Prescaler"). Timer0 incrementing is inhibited for two instruction cycles following a TMR0 register write. The user can work around this by adjusting the value written to the TMR0 register to compensate for the anticipated missing increments.

The Counter mode is selected by setting the T0CS bit (= 1). In this mode, Timer0 increments either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE of the T0CON register; clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below.

An external clock source can be used to drive Timer0; however, it must meet certain requirements (see Table 27-12) to ensure that the external clock can be synchronized with the internal phase clock (Tosc). There is a delay between synchronization and the onset of incrementing the timer/counter.

11.3 Timer0 Reads and Writes in 16-Bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit mode; it is actually a buffered version of the real high byte of Timer0 which is neither directly readable nor writable (refer to Figure 11-2). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without the need to verify that the read of the high and low byte were valid. Invalid reads could otherwise occur due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. Writing to TMR0H does not directly affect Timer0. Instead, the high byte of Timer0 is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

FIGURE 11-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)

MUL	LW	Multiply	Multiply literal with W								
Synta	ax:	MULLW	k								
Oper	ands:	$0 \le k \le 25$	$0 \leq k \leq 255$								
Oper	ation:	(W) x k \rightarrow	(W) x k \rightarrow PRODH:PRODL								
Statu	is Affected:	None									
Enco	oding:	0000	1101	kkkk	kkk kkkk						
Desc	ription:	An unsign out betwe 8-bit litera placed in pair. PRO W is unch None of th Note that possible i is possible	ed multipl en the cor I 'k'. The 1 the PROD DH contai langed. ne Status f neither ov n this oper e but not c	lication is ntents of \ l6-bit resu H:PROD ns the hig flags are a reflow no ration. A z letected.	carried N and the ult is L register Jh byte. affected. r carry is zero result						
Word	ds:	1									
Cycles:		1									
Q Cycle Activity:											
	Q1	Q2	Q3		Q4						
	Decode	Read literal 'k'	Proce Data	ess a ro F	Write egisters PRODH: PRODL						
<u>Exan</u>	nple:	MULLW	0C4h								
	Before Instruc	tion									
	W PRODH PRODL After Instructio	= E = ? = ? on	:2h								
	W PRODH PRODL	= E = A = 0	2h NDh 8h								

MULWF	Multiply	W with f							
Syntax:	MULWF	f {,a}							
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$							
Operation:	(W) x (f) –	→ PRODH:P	RODL						
Status Affected:	None								
Encoding:	0000	001a i	fff	ffff					
Description:	An unsign out betwee register file result is st register pa high byte. unchange None of th Note that n possible in result is po If 'a' is '0', selected. I to select th If 'a' is '0' a set is enal operates in Addressin $f \le 95$ (5FH "Byte-Orie Instructio Mode" for	ed multiplica en the conte e location 'f' ored in the F air. PRODH Both W and d. e Status fla neither over in this operat bossible but r the Access f 'a' is '1', th e GPR ban and the exte bled, this ins in Indexed L g mode whe h). See Sect ented and E ns in Indexed	ation is ents of V . The 1 PRODE contain d f' are gs are a flow no tion. A 2 not dete Bank is be BSR bk. ended ir struction iteral O enever tion 25 Bit-Orie ed Liter	carried V and the 6-bit I:PRODL is the affected. r carry is zero ected. s is used is used is used notruction n ffset 2.3 ented ral Offset					
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Process Data	re Pl P	Write gisters RODH: RODL					
Example:	MULWF	REG, 1							
Before Instruc	tion								
W REG PRODH PRODL After Instructio	= C4 = B5 = ? = ?	łh ih							

C4h

B5h 8Ah 94h

=

= = =

W

REG PRODH PRODL

Syntax:SLEEPOperands:NoneOperation: $00h \rightarrow WDT$, $0 \rightarrow WDT postscaler,1 \rightarrow TO,0 \rightarrow PDStatus Affected:TO, PDEncoding:0000 \ 0000 \ 0000 \ 0011Description:The Power-down Status bit (PD) iscleared. The Time-out Status bit (TO)is set. Watchdog Timer and its posts-caler are cleared.The processor is put into Sleep modewith the oscillator stopped.Words:1Cycles:1Q Cycle Activity:Q1Q2Q3Q4DecodeNoProcessGo toSleepExample:SLEEPBefore InstructionTO = ?PD = ?After InstructionTO = 1 \uparrowPD = 0† If WDT causes wake-up, this bit is cleared.$	SLEEP	Enter Sle	ep mode)	
Operands:NoneOperation: $00h \rightarrow WDT$, $0 \rightarrow WDT postscaler,1 \rightarrow \overline{10},0 \rightarrow PDStatus Affected:\overline{T0}, \overline{PD}Encoding:0000 \ 0000 \ 0000 \ 0011Description:The Power-down Status bit (\overline{PD}) iscleared. The Time-out Status bit (\overline{TO})is set. Watchdog Timer and its postscaler are cleared.The processor is put into Sleep modewith the oscillator stopped.Words:1Cycles:1Q Cycle Activity:Q1Q2Q3Q4DecodeNoPD = ?After Instruction\overline{TO} = 1PD = 0t If WDT causes wake-up, this bit is cleared.$	Syntax:	SLEEP			
Operation: $00h \rightarrow WDT$, $0 \rightarrow WDT postscaler,1 \rightarrow TO, D Status Affected: TO, PD Encoding: 0000 \ 0000 \ 0000 \ 0011 Description: The Power-down Status bit (PD) iscleared. The Time-out Status bit (TO)is set. Watchdog Timer and its posts-caler are cleared.The processor is put into Sleep modewith the oscillator stopped. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode No Process Operation Data Sleep Example: SLEEP Before InstructionTO = 2PD = 2$ After Instruction TO = 1 PD = 0 † If WDT causes wake-up, this bit is cleared.	Operands:	None			
Status Affected: \overline{TO} , \overline{PD} Encoding: 0000 0000 0000 0011 Description: The Power-down Status bit (\overline{PD}) is cleared. The Time-out Status bit (\overline{TO}) is set. Watchdog Timer and its postscaler are cleared. The processor is put into Sleep mode with the oscillator stopped. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode No Process Go to Sleep Example: SLEEP SLEEP Before Instruction $\overline{TO} = ?$ $\overline{PD} = ?$ After Instruction $\overline{TO} = 1 \uparrow$ $\overline{PD} = 0$ † If WDT causes wake-up, this bit is cleared. the scleared.	Operation:	$\begin{array}{l} 00h \rightarrow WE \\ 0 \rightarrow \underline{WDT} \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$)T, postscaler,	3	
Encoding:000000000011Description:The Power-down Status bit (\overline{PD}) is cleared. The Time-out Status bit (\overline{TO}) is set. Watchdog Timer and its posts- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.Words:1Cycles:1Q Cycle Activity:Q1Q2Q3Q4DecodeNoProcessGo to SleepExample:SLEEPBefore Instruction $\overline{TO} = ?$ $PD = ?After Instruction\overline{TO} = 1 \uparrowPD = 0† If WDT causes wake-up, this bit is cleared.$	Status Affected:	TO, PD			
Description:The Power-down Status bit (\overline{PD}) is cleared. The Time-out Status bit (\overline{TO}) is set. Watchdog Timer and its posts- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.Words:1Cycles:1Q Cycle Activity:Q1Q2Q3Q4DecodeNoProcessGo to SleepExample:SLEEPBefore Instruction 	Encoding:	0000	0000	0000	0011
Words:1Cycles:1Q Cycle Activity: $Q1$ Q2Q3Q4DecodeNoProcessGo tooperationDataSLEEPBefore Instruction $TO = ?$ $PD = ?$ After Instruction $TO = 1 +$ $PD = 0$ † If WDT causes wake-up, this bit is cleared.	Description:	The Power cleared. The is set. Wate caler are common The procest with the ost	r-down Sta ne Time-ou chdog Tim leared. ssor is put scillator sto	tus bit (ut Status er and i into Sle pped.	PD) i <u>s</u> s bit (TO) ts posts- ep mode
Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode No Process Go to operation Data Sleep Example: SLEEP Before Instruction $\overline{TO} = ?$ PD = ? After Instruction $\overline{TO} = 1 \uparrow$ PD = 0 † If WDT causes wake-up, this bit is cleared.	Words:	1			
Q Cycle Activity: Q1 Q2 Q3 Q4 Decode No Process Go to operation Data Sleep Example: SLEEP Before Instruction $\overline{TO} = ?$ $\overline{PD} = ?$ After Instruction $\overline{TO} = 1$ $\overline{PD} = 0$ † If WDT causes wake-up, this bit is cleared.	Cycles:	1			
Q1Q2Q3Q4DecodeNoProcessGo tooperationDataSleepExample:SLEEPBefore Instruction $\overline{TO} = ?$ $\overline{PD} = ?$ After Instruction $\overline{TO} = 1 \uparrow$ $\overline{PD} = 0$ † If WDT causes wake-up, this bit is cleared.	Q Cycle Activity:				
DecodeNo operationProcess DataGo to SleepExample:SLEEPBefore Instruction $\overline{TO} = ?$ $\overline{PD} = ?$ After Instruction $\overline{TO} = 1 \uparrow$ $\overline{PD} = 0$ † If WDT causes wake-up, this bit is cleared.	Q1	Q2	Q3		Q4
Example:SLEEPBefore Instruction $TO = ?$ $PD = ?$ After Instruction $TO = 1 \uparrow$ $PD = 0$ † If WDT causes wake-up, this bit is cleared.	Decode	No operation	Process Data	5	Go to Sleep
	Example: Before Instruct TO = PD = After Instructio TO = PD = PD = † If WDT causes v	SLEEP tion ? on 1 † 0 wake-up, this b	oit is cleare	d.	

SUBFWB		Subtrac	t f from W	wi	th borrow
Syntax:		SUBFW	3 f {,d {,a}}		
Operands:		$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	5		
Operation:		(W) – (f) ·	$-(\overline{C}) \rightarrow dest$		
Status Affected:		N, OV, C	DC, Z		
Encoding:		0101	01da f	ff	f ffff
Description:		Subtract (borrow) method). in W. If 'd' register 'f If 'a' is '0' selected. to select If 'a' is '0' set is ena operates Addressii $f \le 95$ (5F "Byte-Or Instructic Mode" fo	register 'f' an from W (2's o If 'd' is '0', the ' is '1', the re ' (default). , the Access If 'a' is '1', th the GPR ban and the exte abled, this ins in Indexed L ong mode whe 'h). See Sect iented and E ons in Indexed r details.	d (con e re su Ba k. nd iter iter iter bit -	CARRY flag nplement esult is stored in ank is BSR is used ed instruction ration rat Offset ever n 25.2.3 Oriented Literal Offset
Words:		1			
Cycles:		1			
Q Cycle Activity:					
Q1		Q2	Q3		Q4
Decode	re	Read egister 'f'	Process Data		Write to destination
Example 1:		SUBFWB	REG, 1,	0	
Before Instruct REG W C After Instructio REG W C Z N	ion = = = = = = = = = = = = = = = = = = =	3 2 1 FF 2 0 0 1 ; r	esult is nega	tive	9
Example 2:		SUBFWB	REG, 0,	0	
Betore Instruct REG W C After Instructio REG W C Z	ion = = n = = =	2 5 1 2 3 1 0			
N	=	0 ; r	esult is positi	ve	
Example 3:	ion	SUBFWB	REG, 1,	0	
REG W	.ion = =	1 2			
C After Instructio	= n	U			
REG	=	0			
<u> </u>	=	2			
Z N	=	1 ; r 0	esult is zero		

SUBWFB	Subtract W from f with Borrow						
Syntax:	SI	SUBWFB f {,d {,a}}					
Operands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$						
Operation:	(f)	$(f) - (W) - (\overline{C}) \rightarrow dest$					
Status Affected:	Status Affected: N, OV, C, DC, Z						
Encoding:		0101	10da	fff	f ffff		
Description: Subtract W and the CARRY flag (borrow) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed							
Words:	1						
Cvcles:	1						
Q Cycle Activity:							
Q1	Q2		Q3		Q4		
Decode		Read	Proce	ess	Write to		
	re	gister 'f'	Dat	a	destination		
Example 1:	5	SUBWFB	REG, 1	, 0			
Before Instruc REG W C	tion = = =	19h 0Dh 1	(000)	1 100 0 110	01) 01)		
After Instructio REG W C Z	n = = =	n = OCh (0000 1100) = ODh (0000 1101) = 1 = 0					
Ν	=	0	; result is positive				
Example 2:	S	SUBWFB	REG, 0	, 0			
Before Instruc REG W C	tion = = =	1Bh 1Ah 0	(000)	1 101 1 101	.1) .0)		
After Instructic REG W C	n = =	1 = 1Bh (0001 1 = 00h			1)		
Z N		1 0	; result is zero				
Example 3:		SUBWFB	REG, 1	, 0			
Before Instruc REG W C	tion = = =	03h 0Eh 1	(000)	0 001 0 111	.1) .0)		
After Instructio REG	n = =	F5h 0Eh	(111); ; [2's ((000)	1 010 comp] 0 111	01) .0)		
C Z N	= = =	0 0 1	; resu	lt is ne	egative		

SWAPF	Swap f						
Syntax:	SWAPF 1	SWAPF f {,d {,a}}					
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]						
Operation:	(f<3:0>) → (f<7:4>) →	→ dest<7:4 → dest<3:0	l>,)>				
Status Affected:	None						
Encoding:	0011	10da	ffff	ffff			
	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			

Decode	Read	Process	Write to
	register 'f'	Data	destination

REG, 1, 0

Example:

SWAPF

Before Instruction REG = 53h After Instruction REG = 35h

25.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note: Enabling the PIC18 instruction set extension may cause legacy applications to behave erratically or fail entirely.

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing mode (Section 5.7.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank ('a' = 0), or in a GPR bank designated by the BSR ('a' = 1). When the extended instruction set is enabled and 'a' = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bitoriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 25.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset Addressing mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset Addressing mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

25.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within brackets, will generate an error in the MPASM assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled) when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASMTM assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_Y$, or the PE directive in the source listing.

25.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18(L)F2X/ 4XK22, it is very important to consider the type of code. A large, re-entrant application that is written in 'C' and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

Param. No.	Symbol		Characteristic	Min	Max	Units	Conditions		
40	Tt0H	T0CKI High P	0CKI High Pulse Width		0.5 Tcy + 20	—	ns		
				With prescaler	10	—	ns		
41	Tt0L	T0CKI Low P	ulse Width	No prescaler	0.5 TCY + 20	_	ns		
				With prescaler	10	—	ns		
42	Tt0P	T0CKI Period		No prescaler	Tcy + 10	—	ns		
				With prescaler	Greater of: 20 ns or (TCY + 40)/N	_	ns	N = prescale value (1, 2, 4,, 256)	
45	Tt1H	TxCKI High Time	Synchronous, no prescaler		0.5 TCY + 20	_	ns		
			Synchronous, with prescaler		10	—	ns		
			Asynchronous		30	_	ns		
46	Tt1L	TxCKI Low	Synchronous, no prescaler		0.5 TCY + 5	—	ns		
		Time	Synchronous, with prescaler		10	-	ns		
			Asynchronous		30	—	ns		
47	Tt1P	Tt1P TxCKI Inpu Period	TxCKI Input Period	Synchronous		Greater of: 20 ns or (Tcy + 40)/N	_	ns	N = prescale value $(1, 2, 4, 8)$
			Asynchronous		60	_	ns		
	Ft1	TxCKI Clock I	Input Frequency Range		DC	50	kHz		
48	Tcke2tmrl	Delay from External TxCKI Clock Edge to Timer Increment			2 Tosc	7 Tosc	_		

TABLE 27-12:	TIMER0 AND	TIMER1/3/5	EXTERNAL	CLOCK	REQUIREMENTS
--------------	------------	------------	----------	-------	--------------

FIGURE 27-12: CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)

© 2010-2016 Microchip Technology Inc.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	MIN	NOM	MAX				
Number of Pins	N	28					
Pitch	е	0.40 BSC					
Overall Height	A	0.45 0.50 0.55					
Standoff	A1	0.00 0.02 0.09					
Contact Thickness	A3	0.127 REF					
Overall Width	E	4.00 BSC					
Exposed Pad Width	E2	2.55 2.65 2.75					
Overall Length	D	4.00 BSC					
Exposed Pad Length	D2	2.55 2.65 2.75					
Contact Width	b	0.15 0.20 0.25					
Contact Length	L	0.30 0.40 0.50					
Contact-to-Exposed Pad	K	0.20					

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2