

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 64MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                           |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                                 |
| Number of I/O              | 35                                                                          |
| Program Memory Size        | 64KB (32K x 16)                                                             |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 1K x 8                                                                      |
| RAM Size                   | 3.8K x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 5.5V                                                                 |
| Data Converters            | A/D 30x10b                                                                  |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 44-TQFP                                                                     |
| Supplier Device Package    | 44-TQFP (10x10)                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k22t-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

#### **Most Current Data Sheet**

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

#### http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

#### Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

#### **Customer Notification System**

Register on our website at www.microchip.com to receive the most current information on all of our products.

#### 2.13 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the CONFIG1H Configuration register. The FSCM is applicable to all external oscillator modes (LP, XT, HS, EC, RC and RCIO).

FIGURE 2-10: FSCM BLOCK DIAGRAM



#### 2.13.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64 (see Figure 2-10). Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the primary clock goes low.

#### 2.13.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSCFIF of the PIR2 register. The OSCFIF flag will generate an interrupt if the OSCFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation. An automatic transition back to the failed clock source will not occur.

The internal clock source chosen by the FSCM is determined by the IRCF<2:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

#### 2.13.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared by either one of the following:

- Any Reset
- · By toggling the SCS1 bit of the OSCCON register

Both of these conditions restart the OST. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared and the device automatically switches over to the external clock source. The Fail-Safe condition need not be cleared before the OSCFIF flag is cleared.

### 2.13.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed.

| Note: | Due to the wide range of oscillator start-up    |
|-------|-------------------------------------------------|
|       | times, the Fail-Safe circuit is not active      |
|       | during oscillator start-up (i.e., after exiting |
|       | Reset or Sleep). After an appropriate           |
|       | amount of time, the user should check the       |
|       | OSTS bit of the OSCCON register to verify       |
|       | the oscillator start-up and that the system     |
|       | clock switchover has successfully               |
|       | completed.                                      |

**Note:** When the device is configured for Fail-Safe clock monitoring in either HS, XT, or LS Oscillator modes then the IESO configuration bit should also be set so that the clock will automatically switch from the internal clock to the external oscillator when the OST times out.



#### 9.4 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

#### 9.5 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are five Peripheral Interrupt Request Flag registers (PIR1, PIR2, PIR3, PIR4 and PIR5).

### 9.6 **PIE Registers**

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are five Peripheral Interrupt Enable registers (PIE1, PIE2, PIE3, PIE4 and PIE5). When IPEN = 0, the PEIE/GIEL bit must be set to enable any of these peripheral interrupts.

### 9.7 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are five Peripheral Interrupt Priority registers (IPR1, IPR2, IPR3, IPR4 and IPR5). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

| Pin Name          | Function                 | TRIS<br>Setting | ANSEL setting | Pin<br>Type | Buffer<br>Type | Description                                              |
|-------------------|--------------------------|-----------------|---------------|-------------|----------------|----------------------------------------------------------|
| RC5/SDO1/AN17     | RC5                      | 0               | 0             | 0           | DIG            | LATC<5> data output; not affected by analog input.       |
|                   |                          | 1               | 0             | I           | ST             | PORTC<5> data input; disabled when analog input enabled. |
|                   | SDO1                     | 0               | 0             | 0           | DIG            | MSSP1 SPI data output.                                   |
|                   | AN17                     | 1               | 1             | I           | AN             | Analog input 17.                                         |
| RC6/P3A/CCP3/TX1/ | RC6                      | 0               | 0             | 0           | DIG            | LATC<6> data output; not affected by analog input.       |
| CK1/AN18          |                          | 1               | 0             | Ι           | ST             | PORTC<6> data input; disabled when analog input enabled. |
|                   | P3A <sup>(2), (3)</sup>  | 0               | 0             | 0           | CMOS           | Enhanced CCP3 PWM output 1.                              |
|                   | CCP3 <sup>(2), (3)</sup> | 0               | 0             | 0           | DIG            | Compare 3 output/PWM 3 output.                           |
|                   |                          | 1               | 0             | I           | ST             | Capture 3 input.                                         |
|                   | TX1                      | 1               | 0             | 0           | DIG            | EUSART asynchronous transmit data output.                |
|                   | CK1                      | 1               | 0             | 0           | DIG            | EUSART synchronous serial clock output.                  |
|                   |                          | 1               | 0             | I           | ST             | EUSART synchronous serial clock input.                   |
|                   | AN18                     | 1               | 1             | I           | AN             | Analog input 18.                                         |
| RC7/P3B/RX1/DT1/  | RC7                      | 0               | 0             | 0           | DIG            | LATC<7> data output; not affected by analog input.       |
| AN19              |                          | 1               | 0             | Ι           | ST             | PORTC<7> data input; disabled when analog input enabled. |
|                   | P3B                      | 0               | 0             | 0           | CMOS           | Enhanced CCP3 PWM output 2.                              |
|                   | RX1                      | 1               | 0             | I           | ST             | EUSART asynchronous receive data in.                     |
|                   | DT1                      | 1               | 0             | 0           | DIG            | EUSART synchronous serial data output.                   |
|                   |                          | 1               | 0             | I           | ST             | EUSART synchronous serial data input.                    |
|                   | AN19                     | 1               | 1             | I           | AN             | Analog input 19.                                         |

## TABLE 10-8: PORTC I/O SUMMARY (CONTINUED)

Legend:AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =<br/>CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels;  $I^2C$  = Schmitt Trigger input with  $I^2C$ .

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

3: Function on PORTD and PORTE for PIC18FXXK22 devices.

### 12.3 Timer1/3/5 Prescaler

Timer1/3/5 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The TxCKPS bits of the TxCON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMRxH or TMRxL.

### 12.4 Secondary Oscillator

A dedicated secondary low-power 32.768 kHz oscillator circuit is built-in between pins SOSCI (input) and SOSCO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the TxSOSCEN bit of the TxCON register, the SOSCGO bit of the OSCCON2 register or by selecting the secondary oscillator as the system clock by setting SCS<1:0> = 01 in the OSCCON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, TxSOSCEN should be set and a suitable delay observed prior to enabling Timer1/3/5.

#### 12.5 Timer1/3/5 Operation in Asynchronous Counter Mode

If control bit TxSYNC of the TxCON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 12.5.1 "Reading and Writing Timer1/3/5 in Asynchronous Counter Mode").

Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

#### 12.5.1 READING AND WRITING TIMER1/3/5 IN ASYNCHRONOUS COUNTER MODE

Reading TMRxH or TMRxL while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads. For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMRxH:TMRxL register pair.

#### 12.6 Timer1/3/5 16-Bit Read/Write Mode

Timer1/3/5 can be configured to read and write all 16 bits of data, to and from, the 8-bit TMRxL and TMRxH registers, simultaneously. The 16-bit read and write operations are enabled by setting the RD16 bit of the TxCON register.

To accomplish this function, the TMRxH register value is mapped to a buffer register called the TMRxH buffer register. While in 16-Bit mode, the TMRxH register is not directly readable or writable and all read and write operations take place through the use of this TMRxH buffer register.

When a read from the TMRxL register is requested, the value of the TMRxH register is simultaneously loaded into the TMRxH buffer register. When a read from the TMRxH register is requested, the value is provided from the TMRxH buffer register instead. This provides the user with the ability to accurately read all 16 bits of the Timer1/3/5 value from a single instance in time.

In contrast, when not in 16-Bit mode, the user must read each register separately and determine if the values have become invalid due to a rollover that may have occurred between the read operations.

When a write request of the TMRxL register is requested, the TMRxH buffer register is simultaneously updated with the contents of the TMRxH register. The value of TMRxH must be preloaded into the TMRxH buffer register prior to the write request for the TMRxL register. This provides the user with the ability to write all 16 bits to the TMRxL:TMRxH register pair at the same time.

Any requests to write to the TMRxH directly does not clear the Timer1/3/5 prescaler value. The prescaler value is only cleared through write requests to the TMRxL register.

#### FIGURE 12-2:

### TIMER1/3/5 16-BIT READ/WRITE MODE

BLOCK DIAGRAM



### 12.7 Timer1/3/5 Gate

Timer1/3/5 can be configured to count freely or the count can be enabled and disabled using Timer1/3/5 Gate circuitry. This is also referred to as Timer1/3/5 Gate Enable.

Timer1/3/5 Gate can also be driven by multiple selectable sources.

#### 12.7.1 TIMER1/3/5 GATE ENABLE

The Timer1/3/5 Gate Enable mode is enabled by setting the TMRxGE bit of the TxGCON register. The polarity of the Timer1/3/5 Gate Enable mode is configured using the TxGPOL bit of the TxGCON register.

When Timer1/3/5 Gate Enable mode is enabled, Timer1/3/5 will increment on the rising edge of the Timer1/3/5 clock source. When Timer1/3/5 Gate Enable mode is disabled, no incrementing will occur and Timer1/3/5 will hold the current count. See Figure 12-4 for timing details.

# TABLE 12-3:TIMER1/3/5 GATE ENABLESELECTIONS

| TxCLK      | TxGPOL | TxG | Timer1/3/5<br>Operation |
|------------|--------|-----|-------------------------|
| $\uparrow$ | 0      | 0   | Counts                  |
| $\uparrow$ | 0      | 1   | Holds Count             |
| $\uparrow$ | 1      | 0   | Holds Count             |
| $\uparrow$ | 1      | 1   | Counts                  |

#### 12.7.2 TIMER1/3/5 GATE SOURCE SELECTION

The Timer1/3/5 Gate source can be selected from one of four different sources. Source selection is controlled by the TxGSS bits of the TxGCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the TxGPOL bit of the TxGCON register.

| TARI E 12-1. | TIMER1/3/5 | GATE | SOURCES |
|--------------|------------|------|---------|
| IADLE 12-4:  |            | GAIE | SUURCES |

| TxGSS | Timer1/3/5 Gate Source                                                             |
|-------|------------------------------------------------------------------------------------|
| 00    | Timer1/3/5 Gate Pin                                                                |
| 01    | Timer2/4/6 Match to PR2/4/6<br>(TMR2/4/6 increments to match PR2/4/6)              |
| 10    | Comparator 1 Output sync_C1OUT<br>(optionally Timer1/3/5 synchronized out-<br>put) |
| 11    | Comparator 2 Output sync_C2OUT<br>(optionally Timer1/3/5 synchronized out-<br>put) |

The Gate resource, Timer2 Match to PR2, changes between Timer2, Timer4 and Timer6 depending on which of the three 16-bit Timers, Timer1, Timer3 or Timer5, is selected. See Table 12-5 to determine which Timer2/4/6 Match to PR2/4/6 combination is available for the 16-bit timer being used.

#### TABLE 12-5: GATE RESOURCES FOR TIMER2/4/6 MATCH TO PR2/4/6

| Timer1/3/5 Resource | Timer1/3/5 Gate Match<br>Selection |
|---------------------|------------------------------------|
| Timer1              | TMR2 Match to PR2                  |
| Timer3              | TMR4 Match to PR4                  |
| Timer5              | TMR6 Match to PR6                  |

#### 12.7.2.1 TxG Pin Gate Operation

The TxG pin is one source for Timer1/3/5 Gate Control. It can be used to supply an external source to the Timer1/3/5 Gate circuitry.

### 12.7.2.2 Timer2/4/6 Match Gate Operation

The TMR2/4/6 register will increment until it matches the value in the PR2/4/6 register. On the very next increment cycle, TMR2/4/6 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timer1/3/5 Gate circuitry. When both TMR2/4/6 and Timer 1/3/5 use FOSC/4 as the clock source then Timer 1/3/5 will increment once during the TMR2/4/6 overflow pulse. This concatenation creates a 24-bit timer. When used in conjunction with the CCP special event trigger very long periodic interrupts can be generated.

#### 14.1 Capture Mode

The Capture mode function described in this section is identical for all CCP and ECCP modules available on this device family.

Capture mode makes use of the 16-bit Timer resources, Timer1, Timer3 and Timer5. The timer resources for each CCP capture function are independent and are selected using the CCPTMRS0 and CCPTMRS1 registers. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMRxH:TMRxL register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

When a capture is made, the corresponding Interrupt Request Flag bit CCPxIF of the PIR1, PIR2 or PIR4 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH:CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

#### TABLE 14-2: CCP PIN MULTIPLEXING

Figure 14-1 shows a simplified diagram of the Capture operation.

FIGURE 14-1:

## CAPTURE MODE OPERATION BLOCK



#### 14.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Some CCPx outputs are multiplexed on a couple of pins. Table 14-2 shows the CCP output pin multiplexing. Selection of the output pin is determined by the CCPxMX bits in Configuration register 3H (CONFIG3H). Refer to Register 24-4 for more details.

**Note:** If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

| CCP OUTPUT | CONFIG 3H Control Bit | Bit Value | PIC18(L)F2XK22 I/O pin | PIC18(L)F4XK22 I/O pin |
|------------|-----------------------|-----------|------------------------|------------------------|
| 0002       | CCD2MX                | 0         | RB3                    | RB3                    |
| CCP2       | CCPZIVIA              | 1(*)      | RC1                    | RC1                    |
| 0002       | CCD2MX                | 0(*)      | RC6                    | RE0                    |
| CCP3       | CCF3IVIA              | 1         | RB5                    | RB5                    |

Legend: \* = Default

#### 14.1.2 TIMER1 MODE RESOURCE

The 16-bit Timer resource must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 12.0 "Timer1/3/5 Module with Gate Control" for more information on configuring the 16-bit Timers.

#### 14.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIE1, PIE2 or PIE4 register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIR1, PIR2 or PIR4 register following any change in Operating mode.

Note: Clocking the 16-bit Timer resource from the system clock (Fosc) should not be used in Capture mode. In order for Capture mode to recognize the trigger event on the CCPx pin, the Timer resource must be clocked from the instruction clock (Fosc/4) or from an external clock source.

| Name                  | Bit 7                                  | Bit 6                                  | Bit 5  | Bit 4     | Bit 3       | Bit 2   | Bit 1         | Bit 0   | Register |
|-----------------------|----------------------------------------|----------------------------------------|--------|-----------|-------------|---------|---------------|---------|----------|
|                       |                                        |                                        |        |           |             |         |               |         | on Page  |
| BAUDCON1              | ABDOVF                                 | RCIDL                                  | DTRXP  | CKTXP     | BRG16       | _       | WUE           | ABDEN   | 271      |
| BAUDCON2              | ABDOVF                                 | RCIDL                                  | DTRXP  | CKTXP     | BRG16       | —       | WUE           | ABDEN   | 271      |
| INTCON                | GIE/GIEH                               | PEIE/GIEL                              | TMR0IE | INT0IE    | RBIE        | TMR0IF  | <b>INT0IF</b> | RBIF    | 109      |
| IPR1                  | —                                      | ADIP                                   | RC1IP  | TX1IP     | SSP1IP      | CCP1IP  | TMR2IP        | TMR1IP  | 121      |
| IPR3                  | SSP2IP                                 | BCL2IP                                 | RC2IP  | TX2IP     | CTMUIP      | TMR5GIP | TMR3GIP       | TMR1GIP | 123      |
| PIE1                  | —                                      | ADIE                                   | RC1IE  | TX1IE     | SSP1IE      | CCP1IE  | TMR2IE        | TMR1IE  | 117      |
| PIE3                  | SSP2IE                                 | BCL2IE                                 | RC2IE  | TX2IE     | CTMUIE      | TMR5GIE | TMR3GIE       | TMR1GIE | 119      |
| PIR1                  | —                                      | ADIF                                   | RC1IF  | TX1IF     | SSP1IF      | CCP1IF  | TMR2IF        | TMR1IF  | 112      |
| PIR3                  | SSP2IF                                 | BCL2IF                                 | RC2IF  | TX2IF     | CTMUIF      | TMR5GIF | TMR3GIF       | TMR1GIF | 114      |
| PMD0                  | UART2MD                                | UART1MD                                | TMR6MD | TMR5MD    | TMR4MD      | TMR3MD  | TMR2MD        | TMR1MD  | 52       |
| RCSTA1                | SPEN                                   | RX9                                    | SREN   | CREN      | ADDEN       | FERR    | OERR          | RX9D    | 270      |
| RCSTA2                | SPEN                                   | RX9                                    | SREN   | CREN      | ADDEN       | FERR    | OERR          | RX9D    | 270      |
| SPBRG1                | EUSART1 Baud Rate Generator, Low Byte  |                                        |        |           |             |         |               | —       |          |
| SPBRGH1               | EUSART1 Baud Rate Generator, High Byte |                                        |        |           |             |         | —             |         |          |
| SPBRG2                | EUSART2 Baud Rate Generator, Low Byte  |                                        |        |           |             |         | —             |         |          |
| SPBRGH2               |                                        | EUSART2 Baud Rate Generator, High Byte |        |           |             |         | —             |         |          |
| ANSELC                | ANSC7                                  | ANSC6                                  | ANSC5  | ANSC4     | ANSC3       | ANSC2   | -             |         | 150      |
| ANSELD <sup>(1)</sup> | ANSD7                                  | ANSD6                                  | ANSD5  | ANSD4     | ANSD3       | ANSD2   | ANSD1         | ANSD0   | 150      |
| TRISB <sup>(2)</sup>  | TRISB7                                 | TRISB6                                 | TRISB5 | TRISB4    | TRISB3      | TRISB2  | TRISB1        | TRISB0  | 151      |
| TRISC                 | TRISC7                                 | TRISC6                                 | TRISC5 | TRISC4    | TRISC3      | TRISC2  | TRISC1        | TRISC0  | 151      |
| TRISD <sup>(1)</sup>  | TRISD7                                 | TRISD6                                 | TRISD5 | TRISD4    | TRISD3      | TRISD2  | TRISD1        | TRISD0  | 151      |
| TXREG1                |                                        |                                        | EU     | SART1 Tra | nsmit Regis | ster    |               |         | —        |
| TXSTA1                | CSRC                                   | TX9                                    | TXEN   | SYNC      | SENDB       | BRGH    | TRMT          | TX9D    | 269      |
| TXREG2                |                                        |                                        | EU     | SART2 Tra | nsmit Regis | ster    |               |         | —        |
| TXSTA2                | CSRC                                   | TX9                                    | TXEN   | SYNC      | SENDB       | BRGH    | TRMT          | TX9D    | 269      |

#### TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for synchronous slave transmission.

Note 1: PIC18(L)F4XK22 devices.

2: PIC18(L)F2XK22 devices.

# 20.5 Register Definitions: SR Latch Control

| R/W-0      | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R/W-0                                  | R/W-0         | R/W-0             | R/W-0            | R/W-0                    | R/W-0      |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|-------------------|------------------|--------------------------|------------|
| SRLEN      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SRCLK<2:0>                             |               | SRQEN             | SRNQEN           | SRPS                     | SRPR       |
| bit 7      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |               |                   |                  |                          | bit 0      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |               |                   |                  |                          |            |
| Legend:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |               |                   |                  |                          |            |
| R = Reada  | ble bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W = Writable I                         | bit           | U = Unimple       | mented           | C = Clearable            | e only bit |
| -n = Value | at POR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | '1' = Bit is set                       |               | '0' = Bit is cle  | eared            | x = Bit is unk           | nown       |
| bit 7      | SRLEN: SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Latch Enable bi                        | t(1)          |                   |                  |                          |            |
|            | 0 = SR late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n is disabled                          |               |                   |                  |                          |            |
| bit 6-4    | SRCLK<2:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )>: SR Latch Clo                       | ck Divider Bi | ts                |                  |                          |            |
| bit 3      | <ul> <li>010 = Generates a 2 Tosc wide pulse on DIVSRCLK every 16 peripheral clock cycles</li> <li>011 = Generates a 2 Tosc wide pulse on DIVSRCLK every 32 peripheral clock cycles</li> <li>100 = Generates a 2 Tosc wide pulse on DIVSRCLK every 64 peripheral clock cycles</li> <li>101 = Generates a 2 Tosc wide pulse on DIVSRCLK every 128 peripheral clock cycles</li> <li>101 = Generates a 2 Tosc wide pulse on DIVSRCLK every 256 peripheral clock cycles</li> <li>110 = Generates a 2 Tosc wide pulse on DIVSRCLK every 512 peripheral clock cycles</li> <li>111 = Generates a 2 Tosc wide pulse on DIVSRCLK every 512 peripheral clock cycles</li> <li>112 = SROEN: SR Latch Q Output Enable bit</li> </ul> |                                        |               |                   |                  | s<br>s<br>es<br>es<br>es |            |
|            | $1 = \mathbf{Q}$ is pre<br>$0 = \mathbf{Q}$ is int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ernal on the SRC                       | Q pin         |                   |                  |                          |            |
| bit 2      | SRNQEN: S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SR Latch Q Outp                        | ut Enable bit |                   |                  |                          |            |
|            | $1 = \overline{Q}$ is present on the SRNQ pin<br>0 = $\overline{Q}$ is internal only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |               |                   |                  |                          |            |
| bit 1      | SRPS: Puls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e Set Input of the                     | e SR Latch b  | it <sup>(2)</sup> |                  |                          |            |
|            | <ul> <li>1 = Pulse set input for two Tosc clock cycles</li> <li>0 = No effect on set input</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |               |                   |                  |                          |            |
| bit 0      | SRPR: Puls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e Reset Input of                       | the SR Latch  | n bit <b>(2)</b>  |                  |                          |            |
|            | 1 = Pulse r<br>0 = No effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eset input for two<br>ct on Reset inpu | TOSC Clock    | cycles            |                  |                          |            |
| Note 1:    | Changing the SF inputs of the latc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ₹CLK bits while tl<br>h.               | he SR latch i | s enabled may o   | cause false trig | gers to the set          | and Reset  |
| 2:         | Set only, always                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | reads back '0'.                        |               |                   |                  |                          |            |

#### 23.3 HLVD Setup

To set up the HLVD module:

- 1. Select the desired HLVD trip point by writing the value to the HLVDL<3:0> bits.
- 2. Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0).
- 3. Enable the HLVD module by setting the HLVDEN bit.
- 4. Clear the HLVD interrupt flag (PIR2<2>), which may have been set from a previous interrupt.
- If interrupts are desired, enable the HLVD interrupt by setting the HLVDIE and GIE/GIEH bits (PIE2<2> and INTCON<7>, respectively).

An interrupt will not be generated until the IRVST bit is set.

**Note:** Before changing any module settings (VDIRMAG, HLVDL<3:0>), first disable the module (HLVDEN = 0), make the changes and re-enable the module. This prevents the generation of false HLVD events.

### 23.4 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and consume static current. The total current consumption, when enabled, is specified in **Section 27.0** "**Electrical Specifications**". Depending on the application, the HLVD module does not need to operate constantly. To reduce current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After such a check, the module could be disabled.

### 23.5 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in **Section 27.0 "Electrical Specifications"**, may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed.

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (see Figure 23-2 or Figure 23-3).

| Field           | Description                                                                                                    |
|-----------------|----------------------------------------------------------------------------------------------------------------|
| a               | RAM access bit                                                                                                 |
|                 | a = 0: RAM location in Access RAM (BSR register is ignored)                                                    |
|                 | a = 1: RAM bank is specified by BSR register                                                                   |
| bbb             | Bit address within an 8-bit file register (0 to 7).                                                            |
| BSR             | Bank Select Register. Used to select the current RAM bank.                                                     |
| C, DC, Z, OV, N | ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.                                                 |
| d               | Destination select bit                                                                                         |
|                 | d = 0: store result in WREG                                                                                    |
| dogt            | u = 1. Store result in the register 1                                                                          |
| f               | B-bit Register file address (00b to EEb) or 2-bit ESP designator (0b to 3b)                                    |
| f               | 12-bit Register file address (000 to FFFh). This is the source address                                         |
| f.              | 12-bit Register file address (000h to FFFh). This is the destination address                                   |
| -d<br>CIF       | Global Interrupt Enable bit                                                                                    |
| k k             | Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)                       |
| label           | Label name                                                                                                     |
| mm              | The mode of the TBLPTR register for the table read and table write instructions.                               |
|                 | Only used with table read and table write instructions:                                                        |
| *               | No change to register (such as TBLPTR with table reads and writes)                                             |
| *+              | Post-Increment register (such as TBLPTR with table reads and writes)                                           |
| * _             | Post-Decrement register (such as TBLPTR with table reads and writes)                                           |
| +*              | Pre-Increment register (such as TBLPTR with table reads and writes)                                            |
| n               | The relative address (2's complement number) for relative branch instructions or the direct address for        |
|                 | CALL/BRANCH and RETURN instructions.                                                                           |
| PC              | Program Counter.                                                                                               |
| PCL             | Program Counter Low Byte.                                                                                      |
| PCH             | Program Counter High Byte.                                                                                     |
| PCLATH          | Program Counter High Byte Latch.                                                                               |
| PCLATU          | Program Counter Upper Byte Latch.                                                                              |
| PD              | Power-down bit.                                                                                                |
| PRODH           | Product of Multiply High Byte.                                                                                 |
| PRODL           | Product of Multiply Low Byte.                                                                                  |
| S               | Fast Call/Return mode select bit                                                                               |
|                 | s = 0: do not update into/from shadow registers                                                                |
| מיית זמיי       | 21-bit Table Pointer (points to a Program Memory location)                                                     |
|                 | 2 Polit Table Latch                                                                                            |
|                 |                                                                                                                |
| TOS             | Ton-of-Stack                                                                                                   |
| 105             |                                                                                                                |
| WDT             | Watchdog Timer                                                                                                 |
| WREG            | Working register (accumulator)                                                                                 |
| x               | Don't care ('0' or '1'). The assembler will generate code with $x = 0$ . It is the recommended form of use for |
|                 | compatibility with all Microchip software tools.                                                               |
| Zs              | 7-bit offset value for indirect addressing of register files (source).                                         |
| zd              | 7-bit offset value for indirect addressing of register files (destination).                                    |
| { }             | Optional argument.                                                                                             |
| [text]          | Indicates an indexed address.                                                                                  |
| (text)          | The contents of text.                                                                                          |
| [expr] <n></n>  | Specifies bit n of the register indicated by the pointer expr.                                                 |
| $\rightarrow$   | Assigned to.                                                                                                   |
| < >             | Register bit field.                                                                                            |
| E               | In the set of.                                                                                                 |
| italics         | User defined term (font is Courier).                                                                           |

TABLE 25-1: OPCODE FIELD DESCRIPTIONS

| CPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SGT                                   | Compare                                      | Compare f with W, skip if f > W                                                |           |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------|-----------|--|--|--|
| Synta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ax:                                   | CPFSGT                                       | f {,a}                                                                         |           |  |  |  |
| Oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ands:                                 | 0 ≤ f ≤ 255<br>a ∈ [0,1]                     | 0 ≤ f ≤ 255<br>a ∈ [0,1]                                                       |           |  |  |  |
| Oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ation:                                | (f) – (W),<br>skip if (f) > (<br>(unsigned c | (W)<br>comparison)                                                             |           |  |  |  |
| Statu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | is Affected:                          | None                                         |                                                                                |           |  |  |  |
| Enco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oding:                                | 0110                                         | 010a fff                                                                       | f ffff    |  |  |  |
| Description:       0110       0100       1111       1111         Description:       Compares the contents of data memor<br>location 'f' to the contents of the W by<br>performing an unsigned subtraction.<br>If the contents of 'f' are greater than the<br>contents of WREG, then the fetched<br>instruction is discarded and a NOP is<br>executed instead, making this a<br>2-cycle instruction.<br>If 'a' is '0', the Access Bank is selected<br>If 'a' is '1', the BSR is used to select th<br>GPR bank.<br>If 'a' is '0' and the extended instruction<br>set is enabled, this instruction operates<br>in Indexed Literal Offset Addressing<br>mode whenever f ≤ 95 (5Fh). See<br>Section 25.2.3 "Byte-Oriented and<br>Bit-Oriented Instructions in Indexed<br>Literal Offset Mode" for details. |                                       |                                              |                                                                                |           |  |  |  |
| Word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ls:                                   | 1                                            |                                                                                |           |  |  |  |
| Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es:                                   | 1(2)<br><b>Note:</b> 3 cy<br>by a            | 1(2)<br><b>Note:</b> 3 cycles if skip and followed<br>by a 2-word instruction. |           |  |  |  |
| QU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 02                                           | 03                                                                             | 04        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Decode                                | Read                                         | Process                                                                        | No        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | register 'f'                                 | Data                                                                           | operation |  |  |  |
| lf sk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ip:                                   |                                              |                                                                                |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q1                                    | Q2                                           | Q3                                                                             | Q4        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No                                    | No                                           | No                                                                             | No        |  |  |  |
| lfek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in and follower                       | d by 2-word in                               | operation:                                                                     | operation |  |  |  |
| 11 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q1                                    | 02                                           | 03                                                                             | 04        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No                                    | No                                           | No                                                                             | No        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | operation                             | operation                                    | operation                                                                      | operation |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No                                    | No                                           | No                                                                             | No        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | operation                             | operation                                    | operation                                                                      | operation |  |  |  |
| <u>Exan</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G, 0                                  |                                              |                                                                                |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Before Instruction                    |                                              |                                                                                |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PC                                    | = Ad                                         | dress (HERE                                                                    | )         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W                                     | = ?                                          |                                                                                |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | After Instruction                     | n                                            |                                                                                |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | If REG > W;<br>PC = Address (GREATER) |                                              |                                                                                |           |  |  |  |

| CPFSLT                                                                                                                                                                                                                                                                                                                                                                                                      | Compare                                    | Compare f with W, skip if f < W                                        |                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------|-----------------|--|--|--|
| Syntax:                                                                                                                                                                                                                                                                                                                                                                                                     | CPFSLT f                                   | CPFSLT f {,a}                                                          |                 |  |  |  |
| Operands:                                                                                                                                                                                                                                                                                                                                                                                                   | 0 ≤ f ≤ 255<br>a ∈ [0,1]                   | 0 ≤ f ≤ 255<br>a ∈ [0,1]                                               |                 |  |  |  |
| Operation:                                                                                                                                                                                                                                                                                                                                                                                                  | (f) – (W),<br>skip if (f) <<br>(unsigned c | (W)<br>comparison)                                                     |                 |  |  |  |
| Status Affected:                                                                                                                                                                                                                                                                                                                                                                                            | None                                       |                                                                        |                 |  |  |  |
| Encoding:                                                                                                                                                                                                                                                                                                                                                                                                   | 0110                                       | 000a ffi                                                               | f ffff          |  |  |  |
| Description:<br>Compares the contents of data mem<br>location 'f' to the contents of W by<br>performing an unsigned subtraction.<br>If the contents of 'f' are less than the<br>contents of W, then the fetched<br>instruction is discarded and a NOP is<br>executed instead, making this a<br>2-cycle instruction.<br>If 'a' is '0', the Access Bank is select<br>If 'a' is '1', the BSR is used to select |                                            |                                                                        |                 |  |  |  |
| Words:                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                          |                                                                        |                 |  |  |  |
| Cycles:                                                                                                                                                                                                                                                                                                                                                                                                     | 1(2)<br>Note: 3 c<br>by                    | 1(2)<br>Note: 3 cycles if skip and followed<br>by a 2-word instruction |                 |  |  |  |
| Q Cycle Activity:                                                                                                                                                                                                                                                                                                                                                                                           |                                            |                                                                        |                 |  |  |  |
| Q1                                                                                                                                                                                                                                                                                                                                                                                                          | Q2                                         | Q3                                                                     | Q4              |  |  |  |
| Decode                                                                                                                                                                                                                                                                                                                                                                                                      | Read                                       | Process                                                                | No              |  |  |  |
| lf skip:                                                                                                                                                                                                                                                                                                                                                                                                    | register i                                 | Data                                                                   | operation       |  |  |  |
| Q1                                                                                                                                                                                                                                                                                                                                                                                                          | Q2                                         | Q3                                                                     | Q4              |  |  |  |
| No                                                                                                                                                                                                                                                                                                                                                                                                          | No                                         | No                                                                     | No              |  |  |  |
| operation                                                                                                                                                                                                                                                                                                                                                                                                   | operation                                  | operation                                                              | operation       |  |  |  |
| If skip and followe                                                                                                                                                                                                                                                                                                                                                                                         | d by 2-word in                             | struction:                                                             | _               |  |  |  |
| Q1                                                                                                                                                                                                                                                                                                                                                                                                          | Q2                                         | Q3                                                                     | Q4              |  |  |  |
| NO<br>operation                                                                                                                                                                                                                                                                                                                                                                                             | NO<br>operation                            | NO<br>operation                                                        | NO<br>operation |  |  |  |
| No                                                                                                                                                                                                                                                                                                                                                                                                          | No                                         | No                                                                     | No              |  |  |  |
| operation                                                                                                                                                                                                                                                                                                                                                                                                   | operation                                  | operation                                                              | operation       |  |  |  |
| Example:                                                                                                                                                                                                                                                                                                                                                                                                    | HERE (<br>NLESS<br>LESS                    | CPFSLT REG,<br>:                                                       | 1               |  |  |  |
| Before Instruc                                                                                                                                                                                                                                                                                                                                                                                              | ction                                      |                                                                        |                 |  |  |  |
| PC                                                                                                                                                                                                                                                                                                                                                                                                          | = Ad                                       | dress (HERE                                                            | )               |  |  |  |
| After Instruction                                                                                                                                                                                                                                                                                                                                                                                           |                                            |                                                                        |                 |  |  |  |
| If REG < W;                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                                                        |                 |  |  |  |
| PC                                                                                                                                                                                                                                                                                                                                                                                                          | = Ad                                       | dress (LESS                                                            | )               |  |  |  |
| If REG                                                                                                                                                                                                                                                                                                                                                                                                      | $\geq$ W;                                  |                                                                        |                 |  |  |  |
| PC                                                                                                                                                                                                                                                                                                                                                                                                          | = Ad                                       | aress (NLES                                                            | S)              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |                                                                        |                 |  |  |  |

If REG

PC

≤ W;

= Address (NGREATER)

| SUBWFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUBWFB Subtract W from f with Borrow |                                 |                                    |                         |             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|------------------------------------|-------------------------|-------------|--|
| Syntax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SI                                   | JBWFB                           | f {,d {,a                          | n}}                     |             |  |
| Operands:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 :<br>d<br>a                        | ≤ f ≤ 255<br>∈ [0,1]<br>∈ [0,1] |                                    |                         |             |  |
| Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (f)                                  | – (W) –                         | $(\overline{C}) \rightarrow de$    | st                      |             |  |
| Status Affected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N,                                   | OV, C, E                        | DC, Z                              |                         |             |  |
| Encoding:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | 0101                            | 10da                               | fff                     | f ffff      |  |
| Description:<br>Subtract W and the CARRY flag<br>(borrow) from register 'f' (2's comple-<br>ment method). If 'd' is '0', the result is<br>stored in W. If 'd' is '1', the result is<br>stored back in register 'f' (default).<br>If 'a' is '0', the Access Bank is selected<br>If 'a' is '1', the BSR is used to select th<br>GPR bank.<br>If 'a' is '0' and the extended instruction<br>set is enabled, this instruction operate<br>in Indexed Literal Offset Addressing<br>mode whenever f ≤ 95 (5Fh). See<br>Section 25.2.3 "Byte-Oriented and<br>Bit-Oriented Instructions in Indexed<br>Literal Offset Mode" for details |                                      |                                 |                                    |                         |             |  |
| Words:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                    |                                 |                                    |                         |             |  |
| Cvcles:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                    |                                 |                                    |                         |             |  |
| Q Cycle Activity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                                 |                                    |                         |             |  |
| Q1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | Q2                              | Q                                  | 3                       | Q4          |  |
| Decode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      | Read                            | Proce                              | ess                     | Write to    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | re                                   | gister 'f'                      | Dat                                | a                       | destination |  |
| Example 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                    | SUBWFB                          | REG, 1                             | , 0                     |             |  |
| Before Instruc<br>REG<br>W<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion<br>=<br>=<br>=                  | 19h<br>0Dh<br>1                 | (000)                              | 1 100<br>0 110          | 01)<br>01)  |  |
| After Instructio<br>REG<br>W<br>C<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n<br>=<br>=<br>=                     | 0Ch<br>0Dh<br>1<br>0            | (0000 1100)<br>(0000 1101)         |                         |             |  |
| Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =                                    | 0                               | ; resu                             | lt is po                | sitive      |  |
| Example 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S                                    | SUBWFB                          | REG, 0                             | , 0                     |             |  |
| Before Instruc<br>REG<br>W<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion<br>=<br>=<br>=                  | 1Bh<br>1Ah<br>0                 | (000)                              | 1 101<br>1 101          | .1)<br>.0)  |  |
| After Instructic<br>REG<br>W<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n<br>=<br>=                          | 1Bh<br>00h<br>1                 | (0001 1011)                        |                         |             |  |
| Ž<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =<br>=                               | = 1 ; result is zero<br>= 0     |                                    | ro                      |             |  |
| Example 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                    | SUBWFB                          | REG, 1                             | , 0                     |             |  |
| Before Instruc<br>REG<br>W<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion<br>=<br>=<br>=                  | 03h<br>0Eh<br>1                 | (000)                              | 0 001<br>0 111          | .1)<br>.0)  |  |
| After Instructio<br>REG<br>W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n<br>=<br>=                          | F5h<br>0Eh                      | (111);<br>; <b>[2's (</b><br>(000) | 1 010<br>comp]<br>0 111 | 01)         |  |
| C<br>Z<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =<br>=<br>=                          | 0<br>0<br>1                     | ; resu                             | lt is ne                | egative     |  |

| SWAPF             | Swap f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |           |      |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|------|--|
| Syntax:           | SWAPF 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | {,d {,a}}                |           |      |  |
| Operands:         | 0 ≤ f ≤ 255<br>d ∈ [0,1]<br>a ∈ [0,1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                        |           |      |  |
| Operation:        | (f<3:0>) →<br>(f<7:4>) →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | → dest<7:4<br>→ dest<3:0 | l>,<br>)> |      |  |
| Status Affected:  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |           |      |  |
| Encoding:         | 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10da                     | ffff      | ffff |  |
|                   | The upper and lower nibbles of register<br>'f' are exchanged. If 'd' is '0', the result<br>is placed in W. If 'd' is '1', the result is<br>placed in register 'f' (default).<br>If 'a' is '0', the Access Bank is selected.<br>If 'a' is '1', the BSR is used to select the<br>GPR bank.<br>If 'a' is '0' and the extended instruction<br>set is enabled, this instruction operates<br>in Indexed Literal Offset Addressing<br>mode whenever $f \le 95$ (5Fh). See<br>Section 25.2.3 "Byte-Oriented and<br>Bit-Oriented Instructions in Indexed<br>Literal Offset Mode" for details |                          |           |      |  |
| Words:            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |           |      |  |
| Cycles:           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |           |      |  |
| Q Cycle Activity: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |           |      |  |
| Q1                | Q2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q3                       | 3         | Q4   |  |

| Decode | Read         | Process | Write to    |
|--------|--------------|---------|-------------|
|        | register 'f' | Data    | destination |
|        |              |         |             |

REG, 1, 0

Example:

SWAPF

Before Instruction REG = 53h After Instruction REG = 35h

| тѕт                                              | FSZ              | Test f, ski                                                                                                                                                                                                                        | Test f, skip if 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |  |  |  |
|--------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|
| Synta                                            | ax:              | TSTFSZ f {                                                                                                                                                                                                                         | TSTFSZ f {,a}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |  |  |  |
| Oper                                             | ands:            | 0 ≤ f ≤ 255<br>a ∈ [0,1]                                                                                                                                                                                                           | $\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |  |  |  |
| Oper                                             | ation:           | skip if f = 0                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |  |  |  |
| Statu                                            | is Affected:     | None                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |  |  |  |
| Enco                                             | oding:           | 0110                                                                                                                                                                                                                               | 011a fff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f ffff               |  |  |  |
| Desc                                             | ription:         | If 'f' = 0, the<br>during the c<br>is discarded<br>making this<br>If 'a' is '0', tl<br>If 'a' is '1', tl<br>GPR bank.<br>If 'a' is '0' a<br>set is enabl<br>in Indexed I<br>mode when<br>Section 25<br>Bit-Oriente<br>Literal Offs | If 'f' = 0, the next instruction fetched<br>during the current instruction execution<br>is discarded and a NOP is executed,<br>making this a 2-cycle instruction.<br>If 'a' is '0', the Access Bank is selected.<br>If 'a' is '1', the BSR is used to select the<br>GPR bank.<br>If 'a' is '0' and the extended instruction<br>set is enabled, this instruction operates<br>in Indexed Literal Offset Addressing<br>mode whenever $f \le 95$ (5Fh). See<br>Section 25.2.3 "Byte-Oriented and<br>Bit-Oriented Instructions in Indexed<br>Literal Offset Addressing |                      |  |  |  |
| Word                                             | ls:              | 1                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |  |  |  |
| Cycle                                            | es:              | 1(2)<br><b>Note:</b> 3 cy<br>by a                                                                                                                                                                                                  | rcles if skip and<br>a 2-word instru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d followed<br>ction. |  |  |  |
| QC                                               | ycle Activity:   |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |  |  |  |
|                                                  | Q1               | Q2                                                                                                                                                                                                                                 | Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q4                   |  |  |  |
|                                                  | Decode           | Read                                                                                                                                                                                                                               | Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                   |  |  |  |
| lf ck                                            | in:              | register 'f'                                                                                                                                                                                                                       | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | operation            |  |  |  |
| 11 51                                            | .ιρ.<br>Ω1       | 02                                                                                                                                                                                                                                 | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04                   |  |  |  |
|                                                  | No               | No                                                                                                                                                                                                                                 | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No                   |  |  |  |
|                                                  | operation        | operation                                                                                                                                                                                                                          | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | operation            |  |  |  |
| lf sk                                            | ip and followed  | d by 2-word in                                                                                                                                                                                                                     | struction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |  |  |  |
|                                                  | Q1               | Q2                                                                                                                                                                                                                                 | Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q4                   |  |  |  |
|                                                  | No               | No                                                                                                                                                                                                                                 | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No                   |  |  |  |
|                                                  | operation        | operation                                                                                                                                                                                                                          | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | operation            |  |  |  |
|                                                  | N0<br>operation  | N0<br>operation                                                                                                                                                                                                                    | N0<br>operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N0<br>operation      |  |  |  |
|                                                  | operation        | operation                                                                                                                                                                                                                          | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | operation            |  |  |  |
| Example: HERE TSTFSZ CNT, 1<br>NZERO :<br>ZERO : |                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , 1                  |  |  |  |
|                                                  |                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |  |  |  |
|                                                  | After Instructio | on<br>= 00                                                                                                                                                                                                                         | h,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                    |  |  |  |
|                                                  | PC<br>If CNT     | = Ad<br>≠ 00                                                                                                                                                                                                                       | <pre>= Address (ZERO) ≠ 00h.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |  |  |
|                                                  | PC               | = Address (NZERO)                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |  |  |  |

| XORLW             | eral wit                           | h W                        |                      |                      |  |
|-------------------|------------------------------------|----------------------------|----------------------|----------------------|--|
| Syntax:           | XORLW                              | k                          |                      |                      |  |
| Operands:         | $0 \le k \le 25$                   | 5                          |                      |                      |  |
| Operation:        | (W) .XOR                           | $k \rightarrow W$          |                      |                      |  |
| Status Affected:  | N, Z                               |                            |                      |                      |  |
| Encoding:         | 0000                               | 1010                       | kkkk                 | kkkk                 |  |
| Description:      | The conte<br>the 8-bit li<br>in W. | ents of W<br>iteral 'k'. T | are XOR<br>he result | ed with<br>is placed |  |
| Words:            | 1                                  |                            |                      |                      |  |
| Cycles:           | 1                                  |                            |                      |                      |  |
| Q Cycle Activity: |                                    |                            |                      |                      |  |
| Q1                | Q2                                 | Q3                         |                      | Q4                   |  |
| Decode            | Read<br>literal 'k'                | Proce<br>Data              | ess V<br>a           | Write to W           |  |
| Example:          | XORLW                              | 0AFh                       |                      |                      |  |
| Before Instruc    | ction                              |                            |                      |                      |  |
| W                 | = B5h                              |                            |                      |                      |  |
| After Instruction | on                                 |                            |                      |                      |  |

| W | = | 1Ah |
|---|---|-----|
|   |   |     |

### 26.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

#### 26.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

#### 26.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

### 26.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>).

#### 26.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.



#### TABLE 27-19: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

| Param.<br>No. | Symbol   | Characteristic                                             | Min | Max | Units | Conditions |
|---------------|----------|------------------------------------------------------------|-----|-----|-------|------------|
| 120           | TckH2dtV | SYNC XMIT (MASTER & SLAVE)<br>Clock High to Data Out Valid | _   | 40  | ns    |            |
| 121           | Tckrf    | Clock Out Rise Time and Fall Time (Master mode)            | —   | 20  | ns    |            |
| 122           | Tdtrf    | Data Out Rise Time and Fall Time                           | _   | 20  | ns    |            |

#### FIGURE 27-22: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING



#### TABLE 27-20: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

| Param.<br>No. | Symbol   | Characteristic                                                                 | Min | Max | Units | Conditions |
|---------------|----------|--------------------------------------------------------------------------------|-----|-----|-------|------------|
| 125           | TdtV2ckl | SYNC RCV (MASTER & SLAVE)<br>Data Setup before CK $\downarrow$ (DT setup time) | 10  | _   | ns    |            |
| 126           | TckL2dtl | Data Hold after CK $\downarrow$ (DT hold time)                                 | 15  | _   | ns    |            |









© 2010-2016 Microchip Technology Inc.



#### FIGURE 28-24: PIC18LF2X/4XK22 IDD: RC\_RUN MF-INTOSC 500 kHz













© 2010-2016 Microchip Technology Inc.