

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf23k22-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-6: SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)

FIGURE 4-7: TIME-OUT SEQUENCE ON POR W/PLL ENABLED (MCLR TIED TO VDD)

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FD7h	TMR0H	FAFh	SPBRG1	F87h	(2)	F5Fh	CCPR3H
FFEh	TOSH	FD6h	TMR0L	FAEh	RCREG1	F86h	(2)	F5Eh	CCPR3L
FFDh	TOSL	FD5h	TOCON	FADh	TXREG1	F85h	(2)	F5Dh	CCP3CON
FFCh	STKPTR	FD4h	(2)	FACh	TXSTA1	F84h	PORTE	F5Ch	PWM3CON
FFBh	PCLATU	FD3h	OSCCON	FABh	RCSTA1	F83h	PORTD ⁽³⁾	F5Bh	ECCP3AS
FFAh	PCLATH	FD2h	OSCCON2	FAAh	EEADRH ⁽⁴⁾	F82h	PORTC	F5Ah	PSTR3CON
FF9h	PCL	FD1h	WDTCON	FA9h	EEADR	F81h	PORTB	F59h	CCPR4H
FF8h	TBLPTRU	FD0h	RCON	FA8h	EEDATA	F80h	PORTA	F58h	CCPR4L
FF7h	TBLPTRH	FCFh	TMR1H	FA7h	EECON2 ⁽¹⁾	F7Fh	IPR5	F57h	CCP4CON
FF6h	TBLPTRL	FCEh	TMR1L	FA6h	EECON1	F7Eh	PIR5	F56h	CCPR5H
FF5h	TABLAT	FCDh	T1CON	FA5h	IPR3	F7Dh	PIE5	F55h	CCPR5L
FF4h	PRODH	FCCh	T1GCON	FA4h	PIR3	F7Ch	IPR4	F54h	CCP5CON
FF3h	PRODL	FCBh	SSP1CON3	FA3h	PIE3	F7Bh	PIR4	F53h	TMR4
FF2h	INTCON	FCAh	SSP1MSK	FA2h	IPR2	F7Ah	PIE4	F52h	PR4
FF1h	INTCON2	FC9h	SSP1BUF	FA1h	PIR2	F79h	CM1CON0	F51h	T4CON
FF0h	INTCON3	FC8h	SSP1ADD	FA0h	PIE2	F78h	CM2CON0	F50h	TMR5H
FEFh	INDF0 ⁽¹⁾	FC7h	SSP1STAT	F9Fh	IPR1	F77h	CM2CON1	F4Fh	TMR5L
FEEh	POSTINC0 ⁽¹⁾	FC6h	SSP1CON1	F9Eh	PIR1	F76h	SPBRGH2	F4Eh	T5CON
FEDh	POSTDEC0 ⁽¹⁾	FC5h	SSP1CON2	F9Dh	PIE1	F75h	SPBRG2	F4Dh	T5GCON
FECh	PREINC0 ⁽¹⁾	FC4h	ADRESH	F9Ch	HLVDCON	F74h	RCREG2	F4Ch	TMR6
FEBh	PLUSW0 ⁽¹⁾	FC3h	ADRESL	F9Bh	OSCTUNE	F73h	TXREG2	F4Bh	PR6
FEAh	FSR0H	FC2h	ADCON0	F9Ah	(2)	F72h	TXSTA2	F4Ah	T6CON
FE9h	FSR0L	FC1h	ADCON1	F99h	(2)	F71h	RCSTA2	F49h	CCPTMRS0
FE8h	WREG	FC0h	ADCON2	F98h	(2)	F70h	BAUDCON2	F48h	CCPTMRS1
FE7h	INDF1 ⁽¹⁾	FBFh	CCPR1H	F97h	(2)	F6Fh	SSP2BUF	F47h	SRCON0
FE6h	POSTINC1 ⁽¹⁾	FBEh	CCPR1L	F96h	TRISE	F6Eh	SSP2ADD	F46h	SRCON1
FE5h	POSTDEC1 ⁽¹⁾	FBDh	CCP1CON	F95h	TRISD ⁽³⁾	F6Dh	SSP2STAT	F45h	CTMUCONH
FE4h	PREINC1 ⁽¹⁾	FBCh	TMR2	F94h	TRISC	F6Ch	SSP2CON1	F44h	CTMUCONL
FE3h	PLUSW1 ⁽¹⁾	FBBh	PR2	F93h	TRISB	F6Bh	SSP2CON2	F43h	CTMUICON
FE2h	FSR1H	FBAh	T2CON	F92h	TRISA	F6Ah	SSP2MSK	F42h	VREFCON0
FE1h	FSR1L	FB9h	PSTR1CON	F91h	(2)	F69h	SSP2CON3	F41h	VREFCON1
FE0h	BSR	FB8h	BAUDCON1	F90h	(2)	F68h	CCPR2H	F40h	VREFCON2
FDFh	INDF2 ⁽¹⁾	FB7h	PWM1CON	F8Fh	(2)	F67h	CCPR2L	F3Fh	PMD0
FDEh	POSTINC2 ⁽¹⁾	FB6h	ECCP1AS	F8Eh	(2)	F66h	CCP2CON	F3Eh	PMD1
FDDh	POSTDEC2 ⁽¹⁾	FB5h	(2)	F8Dh	LATE ⁽³⁾	F65h	PWM2CON	F3Dh	PMD2
FDCh	PREINC2 ⁽¹⁾	FB4h	T3GCON	F8Ch	LATD ⁽³⁾	F64h	ECCP2AS	F3Ch	ANSELE
FDBh	PLUSW2 ⁽¹⁾	FB3h	TMR3H	F8Bh	LATC	F63h	PSTR2CON	F3Bh	ANSELD
FDAh	FSR2H	FB2h	TMR3L	F8Ah	LATB	F62h	IOCB	F3Ah	ANSELC
FD9h	FSR2L	FB1h	T3CON	F89h	LATA	F61h	WPUB	F39h	ANSELB
FD8h	STATUS	FB0h	SPBRGH1	F88h	(2)	F60h	SLRCON	F38h	ANSELA

TABLE 5-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F2X/4XK22 DEVICES

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: PIC18(L)F4XK22 devices only.

4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

5.6 Data Addressing Modes

Note: The execution of some instructions in the core PIC18 instruction set are changed when the PIC18 extended instruction set is enabled. See Section 5.7 "Data Memory and the Extended Instruction Set" for more information.

While the program memory can be addressed in only one way – through the program counter – information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in **Section 5.7.1** "**Indexed Addressing with Literal Offset**".

5.6.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode. This is known as Literal Addressing mode because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

5.6.2 DIRECT ADDRESSING

Direct addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byteoriented instructions use some version of direct addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (**Section 5.4.3 "General** **Purpose Register File**") or a location in the Access Bank (Section 5.4.2 "Access Bank") as the data source for the instruction.

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 5.4.1 "Bank Select Register (BSR)") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

5.6.3 INDIRECT ADDRESSING

Indirect addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations which are to be read or written. Since the FSRs are themselves located in RAM as Special File Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables and arrays in data memory.

The registers for indirect addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code, using loops, such as the example of clearing an entire RAM bank in Example 5-5.

EXAMPLE 5-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0,	100h ;	;	
NEXT	CLRF	POSTINC	20 ;	;	Clear INDF
			;	;	register then
			;	;	inc pointer
	BTFSS	FSROH,	1 ;	;	All done with
			;	;	Bank1?
	BRA	NEXT	;	;	NO, clear next
CONTINU	Έ		;	;	YES, continue

A mismatch condition will continue to set the RBIF flag bit. Reading or writing PORTB will end the mismatch condition and allow the RBIF bit to be cleared. The latch holding the last read value is not affected by a MCLR nor Brown-out Reset. After either one of these Resets, the RBIF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set. Furthermore, since a read or write on a port affects all bits of that port, care must be taken when using multiple pins in Interrupt-on-change mode. Changes on one pin may not be seen while servicing changes on another pin.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

10.3.3 ALTERNATE FUNCTIONS

PORTB is multiplexed with several peripheral functions (Table 10-5). The pins have TTL input buffers. Some of these pin functions can be relocated to alternate pins using the Control fuse bits in CONFIG3H. RB5 is the default pin for P2B (28-pin devices). Clearing the P2BMX bit moves the pin function to RC0. RB5 is also the default pin for the CCP3/P3A peripheral pin. Clearing the CCP3MX bit moves the pin function to the RC6 pin (28-pin devices) or RE0 (40/44-pin devices).

Two other pin functions, T3CKI and CCP2/P2A, can be relocated from their default pins to PORTB pins by clearing the control fuses in CONFIG3H. Clearing T3CMX and CCP2MX moves the pin functions to RB5 and RB3, respectively.

Pin	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RB0/INT0/CCP4/	RB0	0	0	0	DIG	LATB<0> data output; not affected by analog input.
FLT0/SRI/SS2/ AN12		1	0	I	TTL	PORTB<0> data input; disabled when analog input enabled.
	INT0	1	0	I	ST	External interrupt 0.
	CCP4 ⁽³⁾	0	0	0	DIG	Compare 4 output/PWM 4 output.
		1	0	I	ST	Capture 4 input.
	FLT0	1	0	I	ST	PWM Fault input for ECCP auto-shutdown.
	SRI	1	0	I	ST	SR latch input.
	SS2 ⁽³⁾	1	0	I	TTL	SPI slave select input (MSSP2).
	AN12	1	1	I	AN	Analog input 12.
RB1/INT1/P1C/	RB1	0	0	0	DIG	LATB<1> data output; not affected by analog input.
SCK2/SCL2/ C12IN3-/AN10		1	0	Ι	TTL	PORTB<1> data input; disabled when analog input enabled.
	INT1	1	0	I	ST	External Interrupt 1.
	P1C ⁽³⁾	0	0	0	DIG	Enhanced CCP1 PWM output 3.
	SCK2 ⁽³⁾	0	0	0	DIG	MSSP2 SPI Clock output.
		1	0	I	ST	MSSP2 SPI Clock input.
	SCL2 ⁽³⁾	0	0	0	DIG	MSSP2 I ² C Clock output.
		1	0	I	l ² C	MSSP2 I ² C Clock input.
	C12IN3-	1	1	Ι	AN	Comparators C1 and C2 inverting input.
	AN10	1	1	Ι	AN	Analog input 10.

TABLE 10-5	PORTB I/O SUMMARY

Legend: AN = Analog input or output; TTL = TTL compatible input; $HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; <math>I^2C = Schmitt Trigger input with I^2C$.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

3: Function on PORTD and PORTE for PIC18(L)F4XK22 devices.

	-2. I OKI		LOISTEN				
U-0	U-0	U-0	U-0	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x
	—	—	—	RE3 ⁽¹⁾	RE2 ^{(2), (3)}	RE1 ^{(2), (3)}	RE0 ^{(2), (3)}
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
-n/n = Value at	POR and BOF	R/Value at all o	ther Resets				

REGISTER 10-2: PORTE: PORTE REGISTER

bit 7-4	Unimplemented: Read as '0'
---------	----------------------------

bit 3 **RE3:** PORTE Input bit value⁽¹⁾

bit 2-0 **RE<2:0>:** PORTE I/O bit values^{(2), (3)}

Note 1: Port is available as input only when MCLRE = 0.

- 2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.
- 3: Available on PIC18(L)F4XK22 devices.

REGISTER 10-3: ANSELA – PORTA ANALOG SELECT REGISTER

U-0	U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5	ANSA5: RA5 Analog Select bit
	 1 = Digital input buffer disabled 0 = Digital input buffer enabled
bit 4	Unimplemented: Read as '0'
bit 3-0	ANSA<3:0>: RA<3:0> Analog Select bit
	1 = Digital input buffer disabled

0 = Digital input buffer enabled

11.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- · Readable and writable registers
- Dedicated 8-bit, software programmable prescaler
- Selectable clock source (internal or external)
- Edge select for external clock
- Interrupt-on-overflow

The T0CON register (Register 11-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

A simplified block diagram of the Timer0 module in 8-bit mode is shown in Figure 11-1. Figure 11-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

11.1 Register Definitions: Timer0 Control

REGISTER 11-1: TOCON: TIMERO CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR0ON	T08BIT	TOCS	TOSE	PSA		TOPS<2:0>	
bit 7							bit 0

Legend:				
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value a	n = Value at POR '1' = Bit is set		'0' = Bit is cleared	x = Bit is unknown
bit 7	TMR0ON	I: Timer0 On/Off Control bit		
	1 = Enab	les Timer0		
	0 = Stops	s Timer0		
bit 6	T08BIT:	Timer0 8-bit/16-bit Control bi	t	
	1 = Time	r0 is configured as an 8-bit ti	mer/counter	
	0 = Time	r0 is configured as a 16-bit ti	mer/counter	
bit 5	TOCS: Ti	mer0 Clock Source Select bi	t	
	1 = Trans	sition on T0CKI pin		
	0 = Interr	nal instruction cycle clock (C	LKOUT)	
bit 4	TOSE: Ti	mer0 Source Edge Select bit	t	
	1 = Incre	ment on high-to-low transitio	n on T0CKI pin	
	0 = Incre	ment on low-to-high transitio	n on T0CKI pin	
bit 3	PSA: Tim	ner0 Prescaler Assignment b	it	
	1 = TIme	r0 prescaler is NOT assigne	d. Timer0 clock input bypasse	es prescaler.
	0 = Time	r0 prescaler is assigned. Tim	ner0 clock input comes from p	rescaler output.
bit 2-0	T0PS<2:	0>: Timer0 Prescaler Select	bits	
	111 = 1 :2	256 prescale value		
	110 = 1 :	128 prescale value		
	101 = 1:6	64 prescale value		
	100 = 1:3	32 prescale value		
	011 = 1	rescale value		
	$0 \pm 0 = 1.0$	1 prescale value		
	000 = 12	prescale value		

15.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCKx. When the last bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCKx pin. The Idle state is determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCKx pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCKx pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake up from Sleep.

15.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a daisychain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisychain feature only requires a single Slave Select line from the master device.

Figure 15-7 shows the block diagram of a typical daisy-chain connection when operating in SPI Mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPxCON3 register will enable writes to the SSPxBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

15.2.5 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission (Figure 15-8).

The \overline{SSx} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SSx} pin control enabled (SSPxCON1<3:0> = 0100).

When the \overline{SSx} pin is low, transmission and reception are enabled and the SDOx pin is driven.

When the \overline{SSx} pin goes high, the SDOx pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

- Note 1: When the SPI is in Slave mode with SSx pin control enabled (SSPxCON1<3:0> = 0100), the SPI module will reset if the SSx pin is set to VDD.
 - 2: When the SPI is used in Slave mode with CKE set; the user must enable SSx pin control.
 - **3:** While operated in SPI Slave mode the SMP bit of the SSPxSTAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SSx pin to a high level or clearing the SSPxEN bit.

15.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN, of the SSPxCON2 register. When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSPx module then goes into Idle mode (Figure 15-30).

15.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

15.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN, of the SSPxCON2 register. At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 15-31).

15.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 15-30: ACKNOWLEDGE SEQUENCE WAVEFORM

16.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RXx signal, the RXx signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCONx register starts the auto-baud calibration sequence (Section 16.4.2 "Auto-baud Overflow"). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRGx begins counting up using the BRG counter clock as shown in Table 16-6. The fifth rising edge will occur on the RXx/ DTx pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGHx:SPBRGx register pair, the ABDEN bit is automatically cleared, and the RCxIF interrupt flag is set. A read operation on the RCREGx needs to be performed to clear the RCxIF interrupt. RCREGx content should be discarded. When calibrating for modes that do not use the SPBRGHx register the user can verify that the SPBRGx register did not overflow by checking for 00h in the SPBRGHx register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 16-6. During ABD, both the SPBRGHx and SPBRGx registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGHx and SPBRGx registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte <u>following</u> the Break character (see Section 16.4.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the autobaud counter starts counting at one. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract one from the SPBRGHx:SPBRGx register pair.

TABLE 16-6:	BRG COUNTER CLOCK
	RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGx and SPBRGHx registers are both used as a 16-bit counter, independent of BRG16 setting.

BRG Value	XXXXh	0000h		001Ch
RXx/DTx pin		Start	Edge #1 Edge #2 Edge #3 Edge #4	it 7 Stop bit
BRG Clock		huuuuuu		
	Set by User —	I I		Auto Cleared
ABDEN bit	·			
RCIDL		' ' '		
RCxIF bit		1 – – – – – – – – – – – – – – – – – – –		
(Interrupt)		1	1	
Read		1 		
RCREGX		1	1	
SPBRGx		 	XXh	(1Ch
SPBRGHx		1	XXh) 00h
Note	I: The ABD sequ	ence requires the EUSA	RT module to be configured in Asynchronous mode.	

FIGURE 16-6: AUTOMATIC BAUD RATE CALIBRATION

17.1.7 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON2 register controls the output format.

Figure 17-2 shows the two output formats.

FIGURE 17-2: 10-BIT A/D CONVERSION RESULT FORMAT

BRA	۱.	Unconditional Branch			
Synta	ax:	BRA n			
Oper	ands:	-1024 \leq n \leq	1023		
Oper	ation:	(PC) + 2 + 2	$2n \rightarrow PC$		
Statu	s Affected:	None			
Enco	ding:	1101	0nnn	nnnn	nnnn
		the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.			
Word	ls:	1			
Cycle	es:	2			
QC	ycle Activity:				
	Q1	Q2	C	23	Q4
	Decode	Read litera	al Pro	cess ata	Write to PC
	No	No	١	lo	No
	operation	operation	oper	ration	operation

Example:	HERE	BRA	Jump
Before Instruction	on		
PC	=	address	(HERE)
After Instruction	I		
PC	=	address	(Jump)

BSF	Bit Set f				
Syntax:	BSF f, b {	,a}			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]			
Operation:	$1 \rightarrow f < b >$				
Status Affected:	None				
Encoding:	1000	bbba	ffff	ffff	
	If 'a' is '0', tl If 'a' is '1', tl GPR bank. If 'a' is '0' au set is enabl in Indexed I mode when Section 25 Bit-Oriente Literal Offs	he Acces he BSR i ed, this i Literal O ever f ≤ .2.3 "By d Instru set Mode	ss Bank is is used to ktended in nstruction ffset Addre 95 (5Fh). te-Oriente ctions in e " for deta	selected. select the struction operates essing See ed and Indexed ils.	
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	3	Q4	
Decode	Read register 'f'	Proce Dat	ess a re	Write gister 'f'	
Example:	BSF F	'LAG_RE	G, 7, 1		

FLAG_REG = 0Ah After Instruction FLAG_REG = 8Ah

DS40001412G-page 372

тѕт	FSZ	Test f, ski	Test f, skip if 0				
Synta	ax:	TSTFSZ f {	TSTFSZ f {,a}				
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Oper	ation:	skip if f = 0					
Statu	is Affected:	None					
Enco	oding:	0110	011a fff	f ffff			
Description: If 'f' = 0, the next instruction fetched during the current instruction execut is discarded and a NOP is executed, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is select If 'a' is '1', the BSR is used to select GPR bank. If 'a' is '0' and the extended instructi set is enabled, this instruction opera in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Index Literal Offset Mode" for details.			on fetched ion execution executed, ruction. hk is selected. d to select the ed instruction rition operates uddressing Th). See ented and s in Indexed details.				
Word	ls:	1					
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.				d followed ction.			
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read	Process	No			
lf ck	in:	register 'f'	Data	operation			
11 51	.ιρ. Ω1	02	03	04			
	No	No	No	No			
	operation	operation	operation	operation			
lf sk	ip and followe	d by 2-word in	struction:				
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
	N0 operation	N0 operation	N0 operation	N0 operation			
	operation	operation	operation	operation			
<u>Exan</u>	nple:	HERE T NZERO : ZERO :	ISTFSZ CNT : :	, 1			
	Before Instruc	tion <u>–</u> Ad	dress (ਮੁਸ਼ੁਸ਼)			
	After Instructio	on = 00	h,	,			
	PC If CNT	= Ad ≠ 00	dress (ZERO h.)			
	PC	= Ad	dress (NZERO)			

XORLW	Exclusiv	Exclusive OR literal with W			
Syntax:	XORLW	XORLW k			
Operands:	$0 \le k \le 25$	5			
Operation:	(W) .XOR	$k \rightarrow W$			
Status Affected:	N, Z				
Encoding:	0000	1010	kkkk	kkkk	
Description:	The conte the 8-bit li in W.	ents of W iteral 'k'. T	are XOR he resul	ed with t is placed	
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read literal 'k'	Proce Data	ess V a	Vrite to W	
Example:	XORLW	0AFh			
Before Instruc	tion				
W	= B5h				
After Instruction	on				

W	=	1Ah

25.2.2 EXTENDED INSTRUCTION SET

ADD	DFSR	Add Lite	Add Literal to FSR			
Synta	ax:	ADDFSR	ADDFSR f, k			
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$			
		f ∈ [0, 1, 1	f ∈ [0, 1, 2]			
Oper	ation:	FSR(f) + k	$s \rightarrow FSR($	f)		
Statu	is Affected:	None				
Enco	oding:	1110 1000 ffkk kkkk				kkkk
Description:		The 6-bit I	The 6-bit literal 'k' is added to the			
	1-	contents c				
vvorc	IS:	.I				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3			Q4
	Decode	Read	Proce	SS	۷	Vrite to
		literal 'k'	Data	a		FSR

Example:	ADDFSR	2,	23h

Before Instru	ction	
FSR2	=	03FFh
After Instruct		
FSR2	=	0422h

ADDULNK	Add Literal to FSR2 and Return					
Syntax:	ADDULNK k					
Operands:	$0 \le k \le 63$	3				
Operation:	$FSR2 + k \rightarrow FSR2$,					
	$(TOS) \rightarrow$	PC				
Status Affected:	None					
Encoding:	1110	1000	11kk	kkkk		
Description:	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.					
Words:	1					
Cycles:	2					

Q Cycle Activity:

_	Q1	Q2	Q3	Q4
	Decode	Read	Process	Write to
		literal 'k'	Data	FSR
	No	No	No	No
	Operation	Operation	Operation	Operation

0422h

(TOS)

Example: ADDULNK 23h

=

=

Before Instru	ction	
FSR2	=	03FFh
PC	=	0100h
After Instruct	ion	

FSR2

PC

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

Param. No.	Sym	Characteristic	Min	Max	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	5	MHz	VDD < 2.7V, -40°C to +85°C
			4	4	MHz	VDD < 2.7V, +85°C to +125°C
			4	16	MHz	$2.7V \le VDD$, -40°C to +85°C
			4	12	MHz	2.7V ≤ VDD, +85°C to +125°C
F11	Fsys	On-Chip VCO System Frequency	16	20	MHz	VDD < 2.7V, -40°C to +85°C
			16	16	MHz	VDD < 2.7V, +85°C to +125°C
			16	64	MHz	$2.7V \le VDD$, -40°C to +85°C
			16	48	MHz	2.7V ≤ VDD, +85°C to +125°C
F12	t _{rc}	PLL Start-up Time (Lock Time)	_	2	ms	

TABLE 27-8: PLL CLOCK TIMING SPECIFICATIONS

TABLE 27-9: AC CHARACTERISTICS:INTERNAL OSCILLATORS ACCURACY PIC18(L)F46K22

Standard Operating Conditions (unless otherwise stated)							
Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							

Param. No.	Characteristics	Freq. Tolerance	Min	Тур†	Max	Units	Conditions
OA1	OA1 Internal Calibrated	± 2%	_	16.0	—	MHz	$0^{\circ}C \leq \text{Ta} \leq \textbf{+60}^{\circ}C, \; \text{Vdd} \geq 2.5 \text{V}$
HFINTOSC Frequency ⁽¹⁾	\pm 3%	—	16.0	—	MHz	+60°C \leq TA \leq +85°C, VDD \geq 2.5V	
		\pm 5%	—	16.0	—	MHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$
OA2 Internal Calibrated MFINTOSC Frequency ⁽¹⁾	Internal Calibrated	± 2%	_	500	—	kHz	$0^{\circ}C \leq \text{Ta} \leq \textbf{+60^{\circ}C}, \ \text{Vdd} \geq 2.5 \text{V}$
	\pm 3%	—	500	—	kHz	+60°C \leq Ta \leq +85°C, Vdd \geq 2.5V	
		\pm 5%	—	500	—	kHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$
OA3	Internal Calibrated LFINTOSC Frequency ⁽¹⁾	± 20%	_	31	_	kHz	$-40^{\circ}C \leq \text{Ta} \leq +125^{\circ}C$

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

© 2010-2016 Microchip Technology Inc.

FIGURE 28-84: PIC18(L)F2X/4XK22 PIN INPUT LEAKAGE

FIGURE 28-95: PIC18(L)F2X/4XK22 TYPICAL FIXED VOLTAGE REFERENCE 1x OUTPUT

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Leads	N	44			
Lead Pitch	е	0.80 BSC			
Overall Height	A	1.20			
Standoff	A1	0.05 - 0.15			
Molded Package Thickness	A2	0.95 1.00 1.05			
Overall Width	E	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Width	b	0.30 0.37 0.45			
Lead Thickness	С	0.09 - 0.20			
Lead Length	L	0.45 0.60 0.75			
Footprint	L1	1.00 REF			
Foot Angle	θ	0° 3.5° 7°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support