

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf23k22-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18(L)F2X/4XK22

FIGURE 2-3: PLL_SELECT BLOCK DIAGRAM

TABLE 2-1: PLL_SELECT TRUTH TABLE

Primary Clock MUX Source	FOSC<3:0>	PLLCFG	PLLEN	PLL_Select
FOSC (any source)	0000-1111	0	0	0
OSC1/OSC2 (external source)	0000-0111	1	х	1
	1010-1111	0	1	1
INTOSC (internal source)	1000-1001	x	0	0
		x	1	1

4.0 RESET

The PIC18(L)F2X/4XK22 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR and covers the operation of the various start-up timers. Stack Reset events are covered in Section 5.2.0.1 "Stack Full and Underflow Resets". WDT Resets are covered in Section 24.3 "Watchdog Timer (WDT)". A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 4-1.

4.1 RCON Register

Device Reset events are tracked through the RCON register (Register 4-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 4.7 "Reset State of Registers"**.

The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 9.0 "Interrupts". BOR is covered in Section 4.5 "Brown-out Reset (BOR)".

FIGURE 5-1: PROGRAM MEMORY MAP AND STACK FOR PIC18(L)F2X/4XK22 DEVICES

5.1.1 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide and is contained in three separate 8-bit registers. The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits; it is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCH register. Updates to the PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCU

The contents of PCLATH and PCLATU are transferred to the program counter by any operation that writes PCL. Similarly, the upper two bytes of the program counter are transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see **Section 5.2.2.1 "Computed GOTO**").

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit of PCL is fixed to a value of '0'.

The PC increments by two to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

5.1.2 RETURN ADDRESS STACK

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC is pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer, STKPTR. The stack space is not part of either program or data space.

5.3 PIC18 Instruction Cycle

5.3.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the program counter is incremented on every Q1; the instruction is fetched from the program memory and latched into the instruction register during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 5-3.

5.3.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles: Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 5-3).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 5-3: INSTRUCTION PIPELINE FLOW

	Тсү0	TCY1	Tcy2	Тсү3	TCY4	TCY5	
1. MOVLW 55h	Fetch 1	Execute 1					
2. MOVWF PORTB		Fetch 2	Execute 2		_		
3. BRA SUB_1			Fetch 3	Execute 3			
4. BSF PORTA, BIT3		Fetch 4	Flush (NOP)				
5. Instruction @ add			Fetch SUB_1	Execute SUB_1			

Note: All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0	
EEPGE	D CFGS	_	FREE	WRERR	WREN	WR	RD	
bit 7							bit 0	
Legend:								
R = Reada	able bit	W = Writable	bit					
S = Bit ca	n be set by software	e, but not clear	ed	U = Unimplei	mented bit, rea	ad as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown								
hit 7	EEPCD: Elas	h Program or F		Momory Solo	ot hit			
	1 – Access F	ll Flograffi of L	nemory	I Memory Sele				
	0 = Access d	ata EEPROM I	memory					
bit 6	CFGS: Flash	Program/Data	EEPROM or	Configuration S	Select bit			
	1 = Access C	Configuration re	gisters					
	0 = Access F	lash program o	or data EEPR	OM memory				
bit 5	Unimplemen	ted: Read as '	0'					
bit 4	FREE: Flash	Row (Block) Ei	rase Enable b	it				
	1 = Erase the	e program men	nory block add	fressed by TBL	PIR on the ne	ext WR commai	nd	
	0 = Perform	write-only						
bit 3	WRERR: Flas	sh Program/Da	ta EEPROM E	Error Flag bit ⁽¹⁾				
	1 = A write or	peration is prer	maturely termi	nated (any Res	set during self-	timed programr	ming in normal	
	operation	, or an improp	er write attem	pt)				
	0 = The write operation completed							
bit 2	WREN: Flash	Program/Data	EEPROM W	rite Enable bit				
	1 = Allows with 0 = Inhibits with 0 = Inhibits with 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	rite cycles to Fi	lash program/ lash program/	data EEPROM /data EEPROM	1			
bit 1	WR: Write Co	ntrol bit	J J					
	1 = Initiates a	data EEPRON	/l erase/write c	cycle or a progra	am memory er	ase cycle or writ	te cycle.	
	(The ope	ration is self-tir	ned and the b	it is cleared by	hardware onc	e write is compl	lete.	
	0 = Write cvc	bit can only be le to the FFPR	set (not clear	ed) by software	e.)			
bit 0	RD: Read Co	ntrol bit						
	1 = Initiates a	IN EEPROM rea	ad (Read take	s one cycle. RD) is cleared by	hardware. The F	RD bit can only	
	be set (no	ot cleared) by s	oftware. RD b	it cannot be set	when EEPGD	= 1 or CFGS =	1.)	
	0 = Does not	initiate an EEF	PROM read					
Note 1:	When a WRERR of	occurs, the EEF	PGD and CFG	S bits are not o	cleared. This a	llows tracing of	the	

REGISTER 7-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

error condition.

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES<3:0>).

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L • ARG2H:ARG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		(ARG1L • ARG2L)

EXAMPLE 8-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L->
			; PRODH:PRODL
	MOVFF	PRODH, RES	;
	MOVFF	PRODL, RES	;
;			
	MOVF	ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H->
			; PRODH:PRODL
	MOVFF	PRODH, RES	;
	MOVFF	PRODL, RES	;
;			
	MOVF	ARG1L, W	
	MULWF	ARG2H	; ARG1L * ARG2H->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;			
	MOVF	ARG1H, W	;
	MULWF	ARG2L	; ARG1H * ARG2L->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;

Example 8-4 shows the sequence to do a 16 x 16 signed multiply. Equation 8-2 shows the algorithm used. The 32-bit result is stored in four registers (RES<3:0>). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 8-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0 = ARG1H:A	RG1L • ARG2H:ARG2L
= (ARG1H •	ARG2H • 2^{16}) +
(ARG1H •	$ARG2L \bullet 2^8) +$
(ARG1L •	$ARG2H \bullet 2^8) +$
(ARG1L •	ARG2L) +
(-1 • ARG	$2H < 7 > \bullet ARG1H: ARG1L \bullet 2^{16}) +$
(-1 • ARG	$1H < 7 > \bullet ARG2H:ARG2L \bullet 2^{16}$

EXAMPLE 8-4:

16 x 16 SIGNED MULTIPLY ROUTINE

MOVF	ARG1L, W	
MULWF	ARG2L	; ARG1L * ARG2L ->
		; PRODH:PRODL
MOVFF	PRODH, RES1	;
MOVFF	PRODL, RESO	;
;		
MOVF	ARG1H, W	
MULWF	ARG2H	; ARG1H * ARG2H ->
		; PRODH:PRODL
MOVFF	PRODH, RES3	;
MOVFF	PRODL, RES2	;
;		
MOVE	ARGIL, W	
MULWF	ARG2H	; ARGIL * ARG2H ->
MOVIE		, PRODH PRODL
MOVE	PRODL, W	·
ADDWF	RESI, F	, Add Cross
ADDWEC	PRODE, W	, products
CLPE	MDFC	;
ADDWFC	RESS F	;
;	RESS, I	,
MOVE	ARG1H W	;
MULWE	ARG2L	, ; ARG1H * ARG2L ->
1102111	Intobe	; PRODH:PRODL
MOVF	PRODL, W	i
ADDWF	RES1, F	; Add cross
MOVF	PRODH, W	; products
ADDWFC	RES2, F	;
CLRF	WREG	;
ADDWFC	RES3, F	;
;		
BTFSS	ARG2H, 7	; ARG2H:ARG2L neg?
BRA	SIGN_ARG1	; no, check ARG1
MOVF	ARG1L, W	;
SUBWF	RES2	;
MOVF	ARG1H, W	;
SUBWFB	RES3	
;		
SIGN_ARG1		
BTFSS	ARGIH, 7	; ARGIH:ARGIL neg?
BRA	CONT_CODE	, no, aone
MOVE	AKGZL, W	:
DURME	REGZ NDCJU W	:
SIIBMED	ARGZA, W RF93	1
;	1000	
, CONT CODF		
:		

R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	INT2IP: INT2	External Interr	upt Priority bi	t			
	1 = High prio	rity					
L'HO	0 = Low prior	ity Easterne et lasterne					
DIT 6	INTTIP: INTT	External Interr	upt Priority bi	τ			
	1 = High pho 0 = Low prior	itv					
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	INT2IE: INT2	External Interr	upt Enable bi	t			
	1 = Enables t	the INT2 extern	nal interrupt				
	0 = Disables	the INT2 exter	nal interrupt				
bit 3	INT1IE: INT1	External Interr	upt Enable bi	t			
	1 = Enables t 0 = Disables	the INT1 extern the INT1 extern	nal interrupt				
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	INT2IF: INT2	External Interr	upt Flag bit				
	1 = The INT2	external inter	upt occurred	(must be clear	ed bv software)		
	0 = The INT2	external inter	rupt did not o	ccur	,		
bit 0	INT1IF: INT1	External Interr	upt Flag bit				
	1 = The INT1	external interi	upt occurred	(must be clear	ed by software)		
	0 = The INT1	external inter	rupt did not o	ccur			
Note:	Interrupt flag bits a	re set when an	interrupt				
	condition occurs, re	egardless of the	e state of				
	its corresponding e	enable bit or the	ne global				
	the appropriate inte	errupt flag bits	are clear				
	prior to enabling a	n interrupt. Thi	s feature				
	allows for software	polling.					

REGISTER 9-3: INTCON3: INTERRUPT CONTROL 3 REGISTER

	-2. I OKI		LOISTEN				
U-0	U-0	U-0	U-0	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x
	—	—	—	RE3 ⁽¹⁾	RE2 ^{(2), (3)}	RE1 ^{(2), (3)}	RE0 ^{(2), (3)}
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown		
-n/n = Value at	POR and BOF	R/Value at all o	ther Resets				

REGISTER 10-2: PORTE: PORTE REGISTER

bit 7-4	Unimplemented: Read as '0'
---------	----------------------------

bit 3 **RE3:** PORTE Input bit value⁽¹⁾

bit 2-0 **RE<2:0>:** PORTE I/O bit values^{(2), (3)}

Note 1: Port is available as input only when MCLRE = 0.

- 2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.
- 3: Available on PIC18(L)F4XK22 devices.

REGISTER 10-3: ANSELA – PORTA ANALOG SELECT REGISTER

U-0	U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-6	Unimplemented: Read as '0'
bit 5	ANSA5: RA5 Analog Select bit
	 1 = Digital input buffer disabled 0 = Digital input buffer enabled
bit 4	Unimplemented: Read as '0'
bit 3-0	ANSA<3:0>: RA<3:0> Analog Select bit
	1 = Digital input buffer disabled

0 = Digital input buffer enabled

14.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 14-1 demonstrates the code to perform this function.

EXAMPLE 14-1: CHANGING BETWEEN CAPTURE PRESCALERS

#define NEW_CAPT_PS 0x06	//Capture
	// Prescale 4th
	// rising edge
CCPxCON = 0;	// Turn the CCP
	// Module Off
CCPxCON = NEW_CAPT_PS;	// Turn CCP module
	// on with new
	<pre>// prescale value</pre>

14.1.5 CAPTURE DURING SLEEP

Capture mode requires a 16-bit TimerX module for use as a time base. There are four options for driving the 16-bit TimerX module in Capture mode. It can be driven by the system clock (Fosc), the instruction clock (Fosc/ 4), or by the external clock sources, the Secondary Oscillator (Sosc), or the TxCKI clock input. When the 16-bit TimerX resource is clocked by Fosc or Fosc/4, TimerX will not increment during Sleep. When the device wakes from Sleep, TimerX will continue from its previous state. Capture mode will operate during Sleep when the 16-bit TimerX resource is clocked by one of the external clock sources (Sosc or the TxCKI pin).

TABLE 14-3: REGISTERS ASSOCIATED WITH CAPTURE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	P1M-	<1:0>	DC1B-	<1:0>		CCP1M<	3:0>		198
CCP2CON	P2M-	<1:0>	DC2B	<1:0>		CCP2M<	3:0>		198
CCP3CON	P3M-	<1:0>	DC3B	<1:0>		CCP3M<	3:0>		198
CCP4CON	—	—	DC4B	<1:0>		CCP4M<	3:0>		198
CCP5CON	_	_	DC5B-	<1:0>		CCP5M<	3:0>		198
CCPR1H			Capture/Co	mpare/PWM F	Register 1 High By	te (MSB)			_
CCPR1L			Capture/Co	mpare/PWM	Register 1 Low By	rte (LSB)			_
CCPR2H			Capture/Co	mpare/PWM F	Register 2 High By	te (MSB)			—
CCPR2L			Capture/Co	mpare/PWM	Register 2 Low By	rte (LSB)			—
CCPR3H			Capture/Co	mpare/PWM F	Register 3 High By	te (MSB)			—
CCPR3L			Capture/Co	mpare/PWM	Register 3 Low By	rte (LSB)			_
CCPR4H			Capture/Co	mpare/PWM F	Register 4 High By	te (MSB)			—
CCPR4L			Capture/Co	mpare/PWM	Register 4 Low By	rte (LSB)			—
CCPR5H			Capture/Co	mpare/PWM F	Register 5 High By	te (MSB)			—
CCPR5L			Capture/Co	mpare/PWM	Register 5 Low By	rte (LSB)			—
CCPTMRS0	C3TSE	L<1:0>	_	C2TS	SEL<1:0>	—	C1TSEL	_<1:0>	201
CCPTMRS1	—	—	_	_	C5TSEL∢	<1:0>	C4TSEL	_<1:0>	201
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	109
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
IPR4	_	—	—	—	_	CCP5IP	CCP4IP	CCP3IP	124
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Capture mode.

Note 1: These registers/bits are available on PIC18(L)F4XK22 devices.

15.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the 8th falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 15-19 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the 8th falling edge of the SCLx line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCLx.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: <u>SSPxBUF</u> cannot be loaded until after the ACK.

- 13. Slave sets CKP bit releasing the clock.
- 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCLx pulse.
- 15. Slave hardware copies the \overline{ACK} value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCLx line to receive a Stop.

15.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN, of the SSPxCON2 register. When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSPx module then goes into Idle mode (Figure 15-30).

15.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

15.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN, of the SSPxCON2 register. At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 15-31).

15.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 15-30: ACKNOWLEDGE SEQUENCE WAVEFORM

PIC18(L)F2X/4XK22

FIGURE 16-2: EUSART RECEIVE BLOCK DIAGRAM

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTAx)
- Receive Status and Control (RCSTAx)
- Baud Rate Control (BAUDCONx)

These registers are detailed in Register 16-1, Register 16-2 and Register 16-3, respectively.

For all modes of EUSART operation, the TRIS control bits corresponding to the RXx/DTx and TXx/CKx pins should be set to '1'. The EUSART control will automatically reconfigure the pin from input to output, as needed.

When the receiver or transmitter section is not enabled then the corresponding RXx/DTx or TXx/CKx pin may be used for general purpose input and output.

- 16.1.2.9 Asynchronous Reception Setup:
- Initialize the SPBRGHx:SPBRGx register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 16.4 "EUSART Baud Rate Generator (BRG)").
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- 3. Enable the serial port by setting the SPEN bit and the RXx/DTx pin TRIS bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCxIE interrupt enable bit and set the GIE/GIEH and PEIE/GIEL bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Set the DTRXP if inverted receive polarity is desired.
- 7. Enable reception by setting the CREN bit.
- 8. The RCxIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCxIE interrupt enable bit was also set.
- 9. Read the RCSTAx register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREGx register.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

16.1.2.10 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRGHx, SPBRGx register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 16.4 "EUSART Baud Rate Generator (BRG)").
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCxIE interrupt enable bit and set the GIE/GIEH and PEIE/GIEL bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Set the DTRXP if inverted receive polarity is desired.
- 8. Enable reception by setting the CREN bit.
- The RCxIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCxIE interrupt enable bit was also set.
- 10. Read the RCSTAx register to get the error flags. The ninth data bit will always be set.
- 11. Get the received eight Least Significant data bits from the receive buffer by reading the RCREGx register. Software determines if this is the device's address.
- 12. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 13. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

REGISTER 17-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
ADRES<9:2>								
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POF	र	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unknown		

bit 7-0 ADRES<9:2>: ADC Result Register bits

Upper eight bits of 10-bit conversion result

REGISTER 17-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
ADRES	S<1:0>	—	—	—	—	—	—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-6	ADRES<1:0>: ADC Result Register bits
	Lower two bits of 10-bit conversion result

bit 5-0 Reserved: Do not use.

REGISTER 17-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x	R/W-x						
—	—	—	—	—	—	ADRES<9:8>	
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits Upper two bits of 10-bit conversion result

REGISTER 17-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
ADRES<7:0>								
bit 7 bit 0								

 Legend:
 R = Readable bit
 W = Writable bit
 U = Unimplemented bit, read as '0'

 -n = Value at POR
 '1' = Bit is set
 '0' = Bit is cleared
 x = Bit is unknown

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result

22.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACOUT pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the VREFCON1 register.

22.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the VREFCON2 register.

The DAC output voltage is determined by the following equations:

EQUATION 22-1: DAC OUTPUT VOLTAGE

$$VOUT = \left((VSRC+ - VSRC-) \neq \frac{DACR < 4:0>}{2^5} \right) + VSRC-$$
$$VSRC+ = VDD, VREF+ or FVR1$$
$$VSRC- = VSS or VREF-$$

22.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in **Section 27.0** "**Electrical Specifications**".

22.3 Low-Power Voltage State

In order for the DAC module to consume the least amount of power, one of the two voltage reference input sources to the resistor ladder must be disconnected. Either the positive voltage source, (VSRC+), or the negative voltage source, (VSRC-) can be disabled. The negative voltage source is disabled by setting the DACLPS bit in the VREFCON1 register. Clearing the DACLPS bit in the VREFCON1 register disables the positive voltage source.

22.4 Output Clamped to Positive Voltage Source

The DAC output voltage can be set to VsRC+ with the least amount of power consumption by performing the following:

- Clearing the DACEN bit in the VREFCON1 register.
- Setting the DACLPS bit in the VREFCON1 register.
- Configuring the DACPSS bits to the proper positive source.
- Configuring the DACRx bits to '11111' in the VREFCON2 register.

This is also the method used to output the voltage level from the FVR to an output pin. See **Section 22.6 "DAC Voltage Reference Output"** for more information.

22.5 Output Clamped to Negative Voltage Source

The DAC output voltage can be set to VSRC- with the least amount of power consumption by performing the following:

- Clearing the DACEN bit in the VREFCON1 register.
- Clearing the DACLPS bit in the VREFCON1 register.
- Configuring the DACPSS bits to the proper negative source.
- Configuring the DACRx bits to '00000' in the VREFCON2 register.

This allows the comparator to detect a zero-crossing while not consuming additional current through the DAC module.

22.6 DAC Voltage Reference Output

The DAC can be output to the DACOUT pin by setting the DACOE bit of the VREFCON1 register to '1'. Selecting the DAC reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to DACOUT. Figure 22-2 shows an example buffering technique.

U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
—	—		WDT	PS<3:0>		WDTEI	N<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	P = Programma	ble bit	U = Unimpleme	ented bit, read as	0'	
-n = Value wh	en device is unprog	Irammed		x = Bit is unkno	wn		
bit 7-6	Unimplemente	ed: Read as '0'					
bit 5-2	WDTPS<3:0>:	Watchdog Timer	Postscale Selec	ct bits			
	1111 = 1:32,76	68					
	1110 = 1:16,3 8	34					
	1101 = 1:8,192	2					
	1100 = 1:4,096	6					
	1011 = 1:2,048	3					
	1010 = 1:1,024	1					
	1001 = 1:512						
	1000 = 1:256						
	0111 = 1:128						
	0110 = 1:64						
	0101 = 1:32						
	0100 = 1:16						
	0011 = 1:8						
	0010 = 1:4						
	0001 = 1:2						
	0000 = 1.1						
bit 1-0	WDTEN<1:0>:	Watchdog Timer	Enable bits				
	11 = WDT ena	bled in hardware;	SWDTEN bit di	sabled			
	10 = WDI cont	trolled by the SWL	DIEN bit				
	01 = WDT ena	bled when device	is active, disab	led when device is	s in Sleep; SWDTI	EN bit disabled	
	00 = WDT disa	bled in hardware;	SWDTEN bit d	isabled			

REGISTER 24-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH

PIC18(L)F2X/4XK22

SLEEP	Enter Sle	Enter Sleep mode					
Syntax:	SLEEP						
Operands:	None						
Operation:	$\begin{array}{l} 00h \rightarrow WE \\ 0 \rightarrow \underline{WDT} \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ postscaler,} \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$					
Status Affected:	TO, PD						
Encoding:	0000	0000 0000 0000 0011					
Description:	The Power cleared. The is set. Wate caler are common The procest with the ost	The Power-down Status bit (PD) is cleared. The Time-out Status bit (TO) is set. Watchdog Timer and its posts- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	No operation	Process Data	Go to Sleep				
Example: Before Instruct TO = PD = After Instructio TO = PD = + If WDT causes w	SLEEP tion ? n 1 † 0 vake-up, this b	it is cleared.					

SUBFWB		Subtrac	t f from W w	ith borrow				
Syntax:		SUBFWE	3 f {,d {,a}}					
Operands:		$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	5					
Operation:		$(W) - (f) - (\overline{C}) \rightarrow dest$						
Status Affected:		N, OV, C,	DC, Z					
Encoding:		0101 01da ffff ffff						
Description: Subtract register 'f' and CARRY flag (borrow) from W (2's complement method). If 'd' is '0', the result is stored in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset								
Words:		1						
Cycles:		1						
Q Cycle Activity:								
Q1		Q2	Q3	Q4				
Decode	re	Read egister 'f'	Process Data	Write to destination				
Example 1:		SUBFWB	REG, 1,	0				
Before Instruct REG W C After Instructio REG W C Z N	ion = = = = = = = = = = = = = = = = = = =	3 2 1 FF 2 0 0 1 ; re	esult is negativ	/e				
Example 2:	_	SUBFWB	REG, 0,	0				
Before Instruct REG W C After Instructio REG W C Z	ion = = = = = = =	2 5 1 2 3 1 0						
N Example 2:	=	0 ; re	esult is positive	e 0				
Example 3: Before Instruct	Example 3: SUBFWB REG, 1, 0							
REG	=	1 2						
ں After Instructio	= n	U						
REG	=	0						
Č Č	=	∠ 1						
Z N	=	1 ; re 0	esult is zero					

PIC18(L)F2X/4XK22			Standard Operating Conditions (unless otherwise stated)Operating temperatureTested at +25°C				
Param. No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
A01	NR	Resolution	—	_	10	bits	$\Delta VREF = 3.0V$
A03	EIL	Integral Linearity Error	—	±0.5	±1	LSb	$\Delta VREF = 3.0V$
A04	Edl	Differential Linearity Error	—	±0.5	±1	LSb	$\Delta \text{VREF} = 3.0\text{V}$
A06	EOFF	Offset Error	—	±0.7	±2	LSb	$\Delta \text{VREF} = 3.0\text{V}$
A07	Egn	Gain Error	—	±0.7	±2	LSb	$\Delta \text{VREF} = 3.0\text{V}$
A08	ETOTL	Total Error	—	±0.8	±3	LSb	$\Delta \text{VREF} = 3.0\text{V}$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	2	_	Vdd	V	
A21	Vrefh	Reference Voltage High	Vdd/2	_	Vdd + 0.3	V	
A22	Vrefl	Reference Voltage Low	Vss - 0.3V	_	Vdd/2	V	
A25	Vain	Analog Input Voltage	Vrefl	_	Vrefh	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	3	kΩ	

TABLE 27-21: A/D CONVERTER CHARACTERISTICS:PIC18(L)F2X/4XK22

Note: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

FIGURE 27-23: A/D CONVERSION TIMING

© 2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22

FIGURE 28-49: PIC18LF2X/4XK22 MAXIMUM IDD: PRI_RUN EC MEDIUM POWER

