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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC18(L)F2X/4XK22
FIGURE 2-2: INTERNAL OSCILLATOR 
MUX BLOCK DIAGRAM

FIGURE 2-3: PLL_SELECT BLOCK 
DIAGRAM
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TABLE 2-1: PLL_SELECT TRUTH TABLE

Primary Clock MUX Source FOSC<3:0> PLLCFG PLLEN PLL_Select

FOSC (any source) 0000-1111 0 0 0

OSC1/OSC2 (external source) 0000-0111
1010-1111

1 x 1

0 1 1

INTOSC (internal source) 1000-1001 x 0 0

x 1 1
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PIC18(L)F2X/4XK22
4.0 RESET

The PIC18(L)F2X/4XK22 devices differentiate between
various kinds of Reset: 

a) Power-on Reset (POR) 

b) MCLR Reset during normal operation

c) MCLR Reset during power-managed modes 

d) Watchdog Timer (WDT) Reset (during 
execution)

e) Programmable Brown-out Reset (BOR) 

f) RESET Instruction

g) Stack Full Reset

h) Stack Underflow Reset

This section discusses Resets generated by MCLR,
POR and BOR and covers the operation of the various
start-up timers. Stack Reset events are covered in
Section 5.2.0.1 “Stack Full and Underflow Resets”.
WDT Resets are covered in Section 24.3 “Watchdog
Timer (WDT)”.

A simplified block diagram of the On-Chip Reset Circuit
is shown in Figure 4-1.

4.1 RCON Register

Device Reset events are tracked through the RCON
register (Register 4-1). The lower five bits of the
register indicate that a specific Reset event has
occurred. In most cases, these bits can only be cleared
by the event and must be set by the application after
the event. The state of these flag bits, taken together,
can be read to indicate the type of Reset that just
occurred. This is described in more detail in
Section 4.7 “Reset State of Registers”.

The RCON register also has control bits for setting
interrupt priority (IPEN) and software control of the
BOR (SBOREN). Interrupt priority is discussed in
Section 9.0 “Interrupts”. BOR is covered in
Section 4.5 “Brown-out Reset (BOR)”.

FIGURE 4-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT
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PIC18(L)F2X/4XK22
FIGURE 5-1: PROGRAM MEMORY MAP AND STACK FOR PIC18(L)F2X/4XK22 DEVICES

5.1.1 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the
instruction to fetch for execution. The PC is 21 bits wide
and is contained in three separate 8-bit registers. The
low byte, known as the PCL register, is both readable
and writable. The high byte, or PCH register, contains
the PC<15:8> bits; it is not directly readable or writable.
Updates to the PCH register are performed through the
PCLATH register. The upper byte is called PCU. This
register contains the PC<20:16> bits; it is also not
directly readable or writable. Updates to the PCU
register are performed through the PCLATU register. 

The contents of PCLATH and PCLATU are transferred
to the program counter by any operation that writes
PCL. Similarly, the upper two bytes of the program
counter are transferred to PCLATH and PCLATU by an
operation that reads PCL. This is useful for computed
offsets to the PC (see Section 5.2.2.1 “Computed
GOTO”).

The PC addresses bytes in the program memory. To
prevent the PC from becoming misaligned with word
instructions, the Least Significant bit of PCL is fixed to
a value of ‘0’. 

The PC increments by two to address sequential
instructions in the program memory.

The CALL, RCALL, GOTO and program branch
instructions write to the program counter directly. For
these instructions, the contents of PCLATH and
PCLATU are not transferred to the program counter.

5.1.2 RETURN ADDRESS STACK

The return address stack allows any combination of up
to 31 program calls and interrupts to occur. The PC is
pushed onto the stack when a CALL or RCALL
instruction is executed or an interrupt is Acknowledged.
The PC value is pulled off the stack on a RETURN,
RETLW or a RETFIE instruction. PCLATU and PCLATH
are not affected by any of the RETURN or CALL
instructions.

The stack operates as a 31-word by 21-bit RAM and a
5-bit Stack Pointer, STKPTR. The stack space is not
part of either program or data space. 
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PIC18(L)F2X/4XK22
5.3 PIC18 Instruction Cycle

5.3.1 CLOCKING SCHEME

The microcontroller clock input, whether from an
internal or external source, is internally divided by four
to generate four non-overlapping quadrature clocks
(Q1, Q2, Q3 and Q4). Internally, the program counter is
incremented on every Q1; the instruction is fetched
from the program memory and latched into the
instruction register during Q4. The instruction is
decoded and executed during the following Q1 through
Q4. The clocks and instruction execution flow are
shown in Figure 5-3. 

5.3.2 INSTRUCTION FLOW/PIPELINING

An “Instruction Cycle” consists of four Q cycles: Q1
through Q4. The instruction fetch and execute are
pipelined in such a manner that a fetch takes one
instruction cycle, while the decode and execute take
another instruction cycle. However, due to the
pipelining, each instruction effectively executes in one
cycle. If an instruction causes the program counter to
change (e.g., GOTO), then two cycles are required to
complete the instruction (Example 5-3).

A fetch cycle begins with the Program Counter (PC)
incrementing in Q1.

In the execution cycle, the fetched instruction is latched
into the Instruction Register (IR) in cycle Q1. This
instruction is then decoded and executed during the
Q2, Q3 and Q4 cycles. Data memory is read during Q2
(operand read) and written during Q4 (destination
write).

FIGURE 5-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 5-3: INSTRUCTION PIPELINE FLOW

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

Q1

Q2

Q3

Q4

PC

OSC2/CLKOUT
(RC mode)

PC PC + 2 PC + 4

Fetch INST (PC)
Execute INST (PC – 2)

Fetch INST (PC + 2)
Execute INST (PC)

Fetch INST (PC + 4)
Execute INST (PC + 2)

Internal
Phase
Clock

Note: All instructions are single cycle, except for any program branches. These take two cycles since the
fetch instruction is “flushed” from the pipeline while the new instruction is being fetched and then
executed. 

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5

1. MOVLW 55h Fetch 1 Execute 1

2. MOVWF PORTB Fetch 2 Execute 2

3. BRA  SUB_1 Fetch 3 Execute 3

4. BSF   PORTA, BIT3 (Forced NOP) Fetch 4 Flush (NOP)

5. Instruction @ address SUB_1 Fetch SUB_1 Execute SUB_1
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REGISTER 7-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

R/W-x R/W-x U-0 R/W-0 R/W-x R/W-0 R/S-0 R/S-0

EEPGD CFGS — FREE WRERR WREN WR RD

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit

S = Bit can be set by software, but not cleared U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 EEPGD: Flash Program or Data EEPROM Memory Select bit

1 = Access Flash program memory
0 = Access data EEPROM memory

bit 6 CFGS: Flash Program/Data EEPROM or Configuration Select bit

1 = Access Configuration registers
0 = Access Flash program or data EEPROM memory

bit 5 Unimplemented: Read as ‘0’

bit 4 FREE: Flash Row (Block) Erase Enable bit

1 = Erase the program memory block addressed by TBLPTR on the next WR command 
(cleared by completion of erase operation)

0 = Perform write-only

bit 3 WRERR: Flash Program/Data EEPROM Error Flag bit(1)

1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal
operation, or an improper write attempt)

0 = The write operation completed

bit 2 WREN: Flash Program/Data EEPROM Write Enable bit

1 = Allows write cycles to Flash program/data EEPROM
0 = Inhibits write cycles to Flash program/data EEPROM

bit 1 WR: Write Control bit

1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle. 
(The operation is self-timed and the bit is cleared by hardware once write is complete. 
The WR bit can only be set (not cleared) by software.)

0 = Write cycle to the EEPROM is complete

bit 0 RD: Read Control bit

1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared by hardware. The RD bit can only
be set (not cleared) by software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.)

0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the
error condition.
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PIC18(L)F2X/4XK22
Example 8-3 shows the sequence to do a 16 x 16
unsigned multiplication. Equation 8-1 shows the
algorithm that is used. The 32-bit result is stored in four
registers (RES<3:0>).

EQUATION 8-1: 16 x 16 UNSIGNED 
MULTIPLICATION 
ALGORITHM 

EXAMPLE 8-3: 16 x 16 UNSIGNED 
MULTIPLY ROUTINE 

Example 8-4 shows the sequence to do a 16 x 16
signed multiply. Equation 8-2 shows the algorithm
used. The 32-bit result is stored in four registers
(RES<3:0>). To account for the sign bits of the argu-
ments, the MSb for each argument pair is tested and
the appropriate subtractions are done.

EQUATION 8-2: 16 x 16 SIGNED 
MULTIPLICATION 
ALGORITHM 

EXAMPLE 8-4: 16 x 16 SIGNED 
MULTIPLY ROUTINE 

RES3:RES0 = ARG1H:ARG1L  ARG2H:ARG2L
= (ARG1H  ARG2H  216) +

(ARG1H  ARG2L  28) +
(ARG1L  ARG2H  28) +
(ARG1L  ARG2L)

MOVF ARG1L, W
MULWF ARG2L ; ARG1L * ARG2L-> 

; PRODH:PRODL 
MOVFF PRODH, RES1 ; 
MOVFF PRODL, RES0 ; 

; 
MOVF ARG1H, W 
MULWF ARG2H ; ARG1H * ARG2H-> 

; PRODH:PRODL 
MOVFF PRODH, RES3 ; 
MOVFF PRODL, RES2 ; 

; 
MOVF ARG1L, W 
MULWF ARG2H ; ARG1L * ARG2H-> 

; PRODH:PRODL 
MOVF PRODL, W ; 
ADDWF RES1, F ; Add cross 
MOVF PRODH, W ; products 
ADDWFC RES2, F ; 
CLRF WREG ; 
ADDWFC RES3, F ; 

; 
MOVF ARG1H, W ; 
MULWF ARG2L ; ARG1H * ARG2L-> 

; PRODH:PRODL 
MOVF PRODL, W ; 
ADDWF RES1, F ; Add cross 
MOVF PRODH, W ; products 
ADDWFC RES2, F ; 
CLRF WREG ; 
ADDWFC RES3, F ; 

RES3:RES0 = ARG1H:ARG1L  ARG2H:ARG2L
= (ARG1H  ARG2H  216) +

(ARG1H  ARG2L  28) +
(ARG1L  ARG2H  28) +
(ARG1L  ARG2L) +
(-1  ARG2H<7>  ARG1H:ARG1L  216) +
(-1  ARG1H<7>  ARG2H:ARG2L  216)

MOVF ARG1L, W 
MULWF ARG2L ; ARG1L * ARG2L -> 

; PRODH:PRODL 
MOVFF PRODH, RES1 ; 
MOVFF PRODL, RES0 ; 

; 
MOVF ARG1H, W 
MULWF ARG2H ; ARG1H * ARG2H -> 

; PRODH:PRODL 
MOVFF PRODH, RES3 ; 
MOVFF PRODL, RES2 ; 

; 
MOVF ARG1L, W 
MULWF ARG2H ; ARG1L * ARG2H -> 

; PRODH:PRODL 
MOVF PRODL, W ; 
ADDWF RES1, F ; Add cross 
MOVF PRODH, W ; products 
ADDWFC RES2, F ; 
CLRF WREG ; 
ADDWFC RES3, F ; 

; 
MOVF ARG1H, W ; 
MULWF ARG2L ; ARG1H * ARG2L -> 

; PRODH:PRODL 
MOVF PRODL, W ; 
ADDWF RES1, F ; Add cross 
MOVF PRODH, W ; products 
ADDWFC RES2, F ; 
CLRF WREG ; 
ADDWFC RES3, F ; 

; 
BTFSS ARG2H, 7 ; ARG2H:ARG2L neg? 
BRA SIGN_ARG1 ; no, check ARG1 
MOVF ARG1L, W ; 
SUBWF RES2 ; 
MOVF ARG1H, W ; 
SUBWFB RES3 

; 
SIGN_ARG1 

BTFSS ARG1H, 7 ; ARG1H:ARG1L neg? 
BRA CONT_CODE ; no, done 
MOVF ARG2L, W ; 
SUBWF RES2 ; 
MOVF ARG2H, W ; 
SUBWFB RES3 

; 
CONT_CODE 

:
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REGISTER 9-3: INTCON3: INTERRUPT CONTROL 3 REGISTER

R/W-1 R/W-1 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0

INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 INT2IP: INT2 External Interrupt Priority bit

1 = High priority 
0 = Low priority

bit 6 INT1IP: INT1 External Interrupt Priority bit

1 = High priority 
0 = Low priority

bit 5 Unimplemented: Read as ‘0’

bit 4 INT2IE: INT2 External Interrupt Enable bit

1 = Enables the INT2 external interrupt 
0 = Disables the INT2 external interrupt 

bit 3 INT1IE: INT1 External Interrupt Enable bit 

1 = Enables the INT1 external interrupt 
0 = Disables the INT1 external interrupt 

bit 2 Unimplemented: Read as ‘0’

bit 1 INT2IF: INT2 External Interrupt Flag bit

1 = The INT2 external interrupt occurred (must be cleared by software) 
0 = The INT2 external interrupt did not occur

bit 0 INT1IF: INT1 External Interrupt Flag bit 

1 = The INT1 external interrupt occurred (must be cleared by software) 
0 = The INT1 external interrupt did not occur 

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit. User software should ensure
the appropriate interrupt flag bits are clear
prior to enabling an interrupt. This feature
allows for software polling.
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REGISTER 10-2: PORTE: PORTE REGISTER

U-0 U-0 U-0 U-0 R/W-u/x R/W-u/x R/W-u/x R/W-u/x

— — — — RE3(1) RE2(2), (3) RE1(2), (3) RE0(2), (3)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

-n/n = Value at POR and BOR/Value at all other Resets

bit 7-4 Unimplemented: Read as ‘0’

bit 3 RE3: PORTE Input bit value(1)

bit 2-0 RE<2:0>: PORTE I/O bit values(2), (3)

Note 1: Port is available as input only when MCLRE = 0.

2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O 
pin values.

3: Available on PIC18(L)F4XK22 devices. 

REGISTER 10-3: ANSELA – PORTA ANALOG SELECT REGISTER

U-0 U-0 R/W-1 U-0 R/W-1 R/W-1 R/W-1 R/W-1

— — ANSA5 — ANSA3 ANSA2 ANSA1 ANSA0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 Unimplemented: Read as ‘0’

bit 5 ANSA5: RA5 Analog Select bit

1 = Digital input buffer disabled
0 = Digital input buffer enabled

bit 4 Unimplemented: Read as ‘0’

bit 3-0 ANSA<3:0>: RA<3:0> Analog Select bit

1 = Digital input buffer disabled
0 = Digital input buffer enabled
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14.1.4 CCP PRESCALER

There are four prescaler settings specified by the
CCPxM<3:0> bits of the CCPxCON register. Whenever
the CCP module is turned off, or the CCP module is not
in Capture mode, the prescaler counter is cleared. Any
Reset will clear the prescaler counter.

Switching from one capture prescaler to another does
not clear the prescaler and may generate a false
interrupt. To avoid this unexpected operation, turn the
module off by clearing the CCPxCON register before
changing the prescaler. Example 14-1 demonstrates
the code to perform this function.

EXAMPLE 14-1: CHANGING BETWEEN 
CAPTURE PRESCALERS

14.1.5 CAPTURE DURING SLEEP

Capture mode requires a 16-bit TimerX module for use
as a time base. There are four options for driving the
16-bit TimerX module in Capture mode. It can be driven
by the system clock (FOSC), the instruction clock (FOSC/
4), or by the external clock sources, the Secondary
Oscillator (SOSC), or the TxCKI clock input. When the
16-bit TimerX resource is clocked by FOSC or FOSC/4,
TimerX will not increment during Sleep. When the
device wakes from Sleep, TimerX will continue from its
previous state. Capture mode will operate during Sleep
when the 16-bit TimerX resource is clocked by one of
the external clock sources (SOSC or the TxCKI pin).

 

#define NEW_CAPT_PS 0x06 //Capture
// Prescale 4th

... // rising edge
CCPxCON = 0; // Turn the CCP

// Module Off
CCPxCON = NEW_CAPT_PS; // Turn CCP module 

// on with new 
// prescale value

TABLE 14-3: REGISTERS ASSOCIATED WITH CAPTURE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

CCP1CON P1M<1:0> DC1B<1:0> CCP1M<3:0> 198

CCP2CON P2M<1:0> DC2B<1:0> CCP2M<3:0> 198

CCP3CON P3M<1:0> DC3B<1:0> CCP3M<3:0> 198

CCP4CON — — DC4B<1:0> CCP4M<3:0> 198

CCP5CON — — DC5B<1:0> CCP5M<3:0> 198

CCPR1H Capture/Compare/PWM Register 1 High Byte (MSB) —

CCPR1L Capture/Compare/PWM Register 1 Low Byte (LSB) —

CCPR2H Capture/Compare/PWM Register 2 High Byte (MSB) —

CCPR2L Capture/Compare/PWM Register 2 Low Byte (LSB) —

CCPR3H Capture/Compare/PWM Register 3 High Byte (MSB) —

CCPR3L Capture/Compare/PWM Register 3 Low Byte (LSB) —

CCPR4H Capture/Compare/PWM Register 4 High Byte (MSB) —

CCPR4L Capture/Compare/PWM Register 4 Low Byte (LSB) —

CCPR5H Capture/Compare/PWM Register 5 High Byte (MSB) —

CCPR5L Capture/Compare/PWM Register 5 Low Byte (LSB) —

CCPTMRS0 C3TSEL<1:0> — C2TSEL<1:0> — C1TSEL<1:0> 201

CCPTMRS1 — — — — C5TSEL<1:0> C4TSEL<1:0> 201

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 109

IPR1 — ADIP RC1IP TX1IP SSP1IP CCP1IP TMR2IP TMR1IP 121

IPR2 OSCFIP C1IP C2IP EEIP BCL1IP HLVDIP TMR3IP CCP2IP 122

IPR4 — — — — — CCP5IP CCP4IP CCP3IP 124

PIE1 — ADIE RC1IE TX1IE SSP1IE CCP1IE TMR2IE TMR1IE 117

Legend:  — = Unimplemented location, read as ‘0’. Shaded bits are not used by Capture mode.

Note 1: These registers/bits are available on PIC18(L)F4XK22 devices.
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15.5.3.3 7-bit Transmission with Address 
Hold Enabled

Setting the AHEN bit of the SSPxCON3 register
enables additional clock stretching and interrupt
generation after the 8th falling edge of a received
matching address. Once a matching address has
been clocked in, CKP is cleared and the SSPxIF
interrupt is set.

Figure 15-19 displays a standard waveform of a 7-bit
Address Slave Transmission with AHEN enabled.

1. Bus starts Idle.

2. Master sends Start condition; the S bit of
SSPxSTAT is set; SSPxIF is set if interrupt on
Start detect is enabled.

3. Master sends matching address with R/W bit
set. After the 8th falling edge of the SCLx line the
CKP bit is cleared and SSPxIF interrupt is
generated.

4. Slave software clears SSPxIF.

5. Slave software reads ACKTIM bit of SSPxCON3
register, and R/W and D/A of the SSPxSTAT
register to determine the source of the interrupt.

6. Slave reads the address value from the SSPxBUF
register clearing the BF bit.

7. Slave software decides from this information if it
wishes to ACK or not ACK and sets ACKDT bit
of the SSPxCON2 register accordingly.

8. Slave sets the CKP bit releasing SCLx.

9. Master clocks in the ACK value from the slave.

10. Slave hardware automatically clears the CKP bit
and sets SSPxIF after the ACK if the R/W bit is
set.

11. Slave software clears SSPxIF.

12. Slave loads value to transmit to the master into
SSPxBUF setting the BF bit.

13. Slave sets CKP bit releasing the clock.

14. Master clocks out the data from the slave and
sends an ACK value on the 9th SCLx pulse.

15. Slave hardware copies the ACK value into the
ACKSTAT bit of the SSPxCON2 register.

16. Steps 10-15 are repeated for each byte
transmitted to the master from the slave.

17. If the master sends a not ACK the slave
releases the bus allowing the master to send a
Stop and end the communication.

Note: SSPxBUF cannot be loaded until after the
ACK.

Note: Master must send a not ACK on the last byte
to ensure that the slave releases the SCLx
line to receive a Stop.
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15.6.8 ACKNOWLEDGE SEQUENCE 
TIMING

An Acknowledge sequence is enabled by setting the
Acknowledge Sequence Enable bit, ACKEN, of the
SSPxCON2 register. When this bit is set, the SCLx pin is
pulled low and the contents of the Acknowledge data bit
are presented on the SDAx pin. If the user wishes to
generate an Acknowledge, then the ACKDT bit should
be cleared. If not, the user should set the ACKDT bit
before starting an Acknowledge sequence. The Baud
Rate Generator then counts for one rollover period
(TBRG) and the SCLx pin is deasserted (pulled high).
When the SCLx pin is sampled high (clock arbitration),
the Baud Rate Generator counts for TBRG. The SCLx pin
is then pulled low. Following this, the ACKEN bit is auto-
matically cleared, the Baud Rate Generator is turned off
and the MSSPx module then goes into Idle mode
(Figure 15-30).

15.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge
sequence is in progress, then WCOL is set and the
contents of the buffer are unchanged (the write does
not occur).

15.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a
receive/transmit by setting the Stop Sequence Enable
bit, PEN, of the SSPxCON2 register. At the end of a
receive/transmit, the SCLx line is held low after the
falling edge of the ninth clock. When the PEN bit is set,
the master will assert the SDAx line low. When the
SDAx line is sampled low, the Baud Rate Generator is
reloaded and counts down to ‘0’. When the Baud Rate
Generator times out, the SCLx pin will be brought high
and one TBRG (Baud Rate Generator rollover count)
later, the SDAx pin will be deasserted. When the SDAx
pin is sampled high while SCLx is high, the P bit of the
SSPxSTAT register is set. A TBRG later, the PEN bit is
cleared and the SSPxIF bit is set (Figure 15-31).

15.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence
is in progress, then the WCOL bit is set and the
contents of the buffer are unchanged (the write does
not occur).

FIGURE 15-30: ACKNOWLEDGE SEQUENCE WAVEFORM         

Note: TBRG = one Baud Rate Generator period.

SDAx

SCLx

SSPxIF set at 

Acknowledge sequence starts here,
write to SSPxCON2

ACKEN automatically cleared

Cleared in

TBRG TBRG

the end of receive

8

ACKEN = 1, ACKDT = 0

D0

9

SSPxIF

software SSPxIF set at the end
of Acknowledge sequence

Cleared in
software

ACK
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FIGURE 16-2: EUSART RECEIVE BLOCK DIAGRAM     

The operation of the EUSART module is controlled
through three registers:

• Transmit Status and Control (TXSTAx)

• Receive Status and Control (RCSTAx)

• Baud Rate Control (BAUDCONx)

These registers are detailed in Register 16-1,
Register 16-2 and Register 16-3, respectively.

For all modes of EUSART operation, the TRIS control
bits corresponding to the RXx/DTx and TXx/CKx pins
should be set to ‘1’. The EUSART control will
automatically reconfigure the pin from input to output, as
needed.

When the receiver or transmitter section is not enabled
then the corresponding RXx/DTx or TXx/CKx pin may be
used for general purpose input and output.

RXx/DTx pin

Pin Buffer
and Control

Data
Recovery

CREN OERR

FERR

RSR RegisterMSb LSb

RX9D RCREGx Register
FIFO

InterruptRCxIF
RCxIE

Data Bus
8

Stop START(8) 7 1 0

RX9

 • • •

SPBRGxSPBRGHx

BRG16

RCIDL

FOSC
÷ n

n+ 1 Multiplier x4 x16 x64

SYNC 1 X 0 0 0

BRGH X 1 1 0 0

BRG16 X 1 0 1 0

Baud Rate Generator
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16.1.2.9 Asynchronous Reception Setup:

1. Initialize the SPBRGHx:SPBRGx register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 16.4 “EUSART
Baud Rate Generator (BRG)”).

2. Set the RXx/DTx and TXx/CKx TRIS controls to
‘1’.

3. Enable the serial port by setting the SPEN bit
and the RXx/DTx pin TRIS bit. The SYNC bit
must be clear for asynchronous operation.

4. If interrupts are desired, set the RCxIE interrupt
enable bit and set the GIE/GIEH and PEIE/GIEL
bits of the INTCON register.

5. If 9-bit reception is desired, set the RX9 bit.

6. Set the DTRXP if inverted receive polarity is
desired.

7. Enable reception by setting the CREN bit.

8. The RCxIF interrupt flag bit will be set when a
character is transferred from the RSR to the
receive buffer. An interrupt will be generated if
the RCxIE interrupt enable bit was also set.

9. Read the RCSTAx register to get the error flags
and, if 9-bit data reception is enabled, the ninth
data bit.

10. Get the received eight Least Significant data bits
from the receive buffer by reading the RCREGx
register.

11. If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.

16.1.2.10 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems.
To set up an Asynchronous Reception with Address
Detect Enable:

1. Initialize the SPBRGHx, SPBRGx register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 16.4 “EUSART
Baud Rate Generator (BRG)”).

2. Set the RXx/DTx and TXx/CKx TRIS controls to
‘1’.

3. Enable the serial port by setting the SPEN bit.
The SYNC bit must be clear for asynchronous
operation.

4. If interrupts are desired, set the RCxIE interrupt
enable bit and set the GIE/GIEH and PEIE/GIEL
bits of the INTCON register.

5. Enable 9-bit reception by setting the RX9 bit.

6. Enable address detection by setting the ADDEN
bit.

7. Set the DTRXP if inverted receive polarity is
desired.

8. Enable reception by setting the CREN bit.

9. The RCxIF interrupt flag bit will be set when a
character with the ninth bit set is transferred
from the RSR to the receive buffer. An interrupt
will be generated if the RCxIE interrupt enable
bit was also set.

10. Read the RCSTAx register to get the error flags.
The ninth data bit will always be set.

11. Get the received eight Least Significant data bits
from the receive buffer by reading the RCREGx
register. Software determines if this is the
device’s address.

12. If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.

13. If the device has been addressed, clear the
ADDEN bit to allow all received data into the
receive buffer and generate interrupts. 
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REGISTER 17-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0 
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ADRES<9:2>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 ADRES<9:2>: ADC Result Register bits
Upper eight bits of 10-bit conversion result

REGISTER 17-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0 

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ADRES<1:0> — — — — — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 ADRES<1:0>: ADC Result Register bits
Lower two bits of 10-bit conversion result

bit 5-0 Reserved: Do not use.

REGISTER 17-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1 
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

— — — — — — ADRES<9:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits
Upper two bits of 10-bit conversion result

REGISTER 17-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1 

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ADRES<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 ADRES<7:0>: ADC Result Register bits
Lower eight bits of 10-bit conversion result
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22.0 DIGITAL-TO-ANALOG 
CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable
voltage reference, ratiometric with the input source,
with 32 selectable output levels. 

The input of the DAC can be connected to:

• External VREF pins

• VDD supply voltage

• FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a
reference voltage to the following:

• Comparator positive input

• ADC input channel

• DACOUT pin

The Digital-to-Analog Converter (DAC) can be enabled
by setting the DACEN bit of the VREFCON1 register.

22.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels
are set with the DACR<4:0> bits of the VREFCON2
register.

The DAC output voltage is determined by the following
equations:

EQUATION 22-1: DAC OUTPUT VOLTAGE

22.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder
with each end of the ladder tied to a positive and
negative voltage reference input source. If the voltage
of either input source fluctuates, a similar fluctuation will
result in the DAC output value.

The value of the individual resistors within the ladder
can be found in Section 27.0 “Electrical
Specifications”.

22.3 Low-Power Voltage State

In order for the DAC module to consume the least
amount of power, one of the two voltage reference input
sources to the resistor ladder must be disconnected.
Either the positive voltage source, (VSRC+), or the
negative voltage source, (VSRC-) can be disabled.

The negative voltage source is disabled by setting the
DACLPS bit in the VREFCON1 register. Clearing the
DACLPS bit in the VREFCON1 register disables the
positive voltage source.

22.4 Output Clamped to Positive 
Voltage Source

The DAC output voltage can be set to VSRC+ with the
least amount of power consumption by performing the
following:

• Clearing the DACEN bit in the VREFCON1 
register.

• Setting the DACLPS bit in the VREFCON1 
register.

• Configuring the DACPSS bits to the proper 
positive source. 

• Configuring the DACRx bits to ‘11111’ in the 
VREFCON2 register.

This is also the method used to output the voltage level
from the FVR to an output pin. See Section 22.6 “DAC
Voltage Reference Output” for more information.

22.5 Output Clamped to Negative 
Voltage Source

The DAC output voltage can be set to VSRC- with the
least amount of power consumption by performing the
following:

• Clearing the DACEN bit in the VREFCON1 
register.

• Clearing the DACLPS bit in the VREFCON1 
register.

• Configuring the DACPSS bits to the proper 
negative source. 

• Configuring the DACRx bits to ‘00000’ in the 
VREFCON2 register.

This allows the comparator to detect a zero-crossing
while not consuming additional current through the DAC
module.

22.6 DAC Voltage Reference Output

The DAC can be output to the DACOUT pin by setting
the DACOE bit of the VREFCON1 register to ‘1’.
Selecting the DAC reference voltage for output on the
DACOUT pin automatically overrides the digital output
buffer and digital input threshold detector functions of
that pin. Reading the DACOUT pin when it has been
configured for DAC reference voltage output will always
return a ‘0’.

Due to the limited current drive capability, a buffer must
be used on the DAC voltage reference output for
external connections to DACOUT. Figure 22-2 shows
an example buffering technique.

VOUT VSRC+ VSRC-–  DACR<4:0>

25
-------------------------------¥ 

 = + VSRC-

VSRC+  =  VDD, VREF+ or FVR1

VSRC-  =  VSS or VREF-
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REGISTER 24-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH

U-0 U-0 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1

— — WDTPS<3:0> WDTEN<1:0>

bit 7 bit 0

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

-n = Value when device is unprogrammed x = Bit is unknown

bit 7-6 Unimplemented: Read as ‘0’

bit 5-2 WDTPS<3:0>: Watchdog Timer Postscale Select bits
1111 = 1:32,768
1110 = 1:16,384
1101 = 1:8,192
1100 = 1:4,096
1011 = 1:2,048
1010 = 1:1,024
1001 = 1:512
1000 = 1:256
0111 = 1:128
0110 = 1:64
0101 = 1:32
0100 = 1:16
0011 = 1:8
0010 = 1:4
0001 = 1:2
0000 = 1:1

bit 1-0 WDTEN<1:0>: Watchdog Timer Enable bits
11 = WDT enabled in hardware; SWDTEN bit disabled
10 = WDT controlled by the SWDTEN bit 
01 = WDT enabled when device is active, disabled when device is in Sleep; SWDTEN bit disabled
00 = WDT disabled in hardware; SWDTEN bit disabled
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SLEEP Enter Sleep mode

Syntax:  SLEEP

Operands: None

Operation: 00h  WDT,
0  WDT postscaler,
1  TO,
0  PD

Status Affected: TO, PD

Encoding: 0000 0000 0000 0011

Description: The Power-down Status bit (PD) is 
cleared. The Time-out Status bit (TO) 
is set. Watchdog Timer and its posts-
caler are cleared.
The processor is put into Sleep mode 
with the oscillator stopped.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No 
operation

Process 
Data

Go to
Sleep

Example: SLEEP

Before Instruction
TO = ?
PD = ?

After Instruction
TO = 1 †
PD = 0 

†   If WDT causes wake-up, this bit is cleared.

SUBFWB Subtract f from W with borrow

Syntax:  SUBFWB    f {,d {,a}}

Operands: 0 f 255
d  [0,1]
a  [0,1]

Operation: (W) – (f) – (C) dest

Status Affected: N, OV, C, DC, Z

Encoding: 0101 01da ffff ffff

Description: Subtract register ‘f’ and CARRY flag 
(borrow) from W (2’s complement 
method). If ‘d’ is ‘0’, the result is stored 
in W. If ‘d’ is ‘1’, the result is stored in 
register ‘f’ (default). 
If ‘a’ is ‘0’, the Access Bank is 
selected. If ‘a’ is ‘1’, the BSR is used 
to select the GPR bank.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction 
operates in Indexed Literal Offset 
Addressing mode whenever 
f 95 (5Fh). See Section 25.2.3 
“Byte-Oriented and Bit-Oriented 
Instructions in Indexed Literal Offset 
Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

Example 1: SUBFWB   REG, 1, 0

Before Instruction
REG = 3
W = 2
C = 1

After Instruction
REG = FF
W = 2
C = 0
Z = 0
N = 1     ; result is negative

Example 2: SUBFWB   REG, 0, 0
Before Instruction

REG = 2
W = 5
C = 1

After Instruction
REG = 2
W = 3
C = 1
Z = 0
N = 0     ; result is positive

Example 3: SUBFWB   REG, 1, 0

Before Instruction
REG = 1
W = 2
C = 0

After Instruction
REG = 0
W = 2
C = 1
Z = 1     ; result is zero
N = 0
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FIGURE 27-23: A/D CONVERSION TIMING   

TABLE 27-21: A/D CONVERTER CHARACTERISTICS:PIC18(L)F2X/4XK22

PIC18(L)F2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature Tested at +25°C

Param.
No.

Symbol Characteristic Min Typ Max Units Conditions

A01 NR Resolution — — 10 bits VREF  3.0V

A03 EIL Integral Linearity Error — ±0.5 ±1 LSb VREF = 3.0V

A04 EDL Differential Linearity Error — ±0.5 ±1 LSb VREF  3.0V

A06 EOFF Offset Error — ±0.7 ±2 LSb VREF  3.0V

A07 EGN Gain Error — ±0.7 ±2 LSb VREF  3.0V

A08 ETOTL Total Error — ±0.8 ±3 LSb VREF  3.0V

A20 VREF Reference Voltage Range
(VREFH – VREFL)

2 — VDD V

A21 VREFH Reference Voltage High VDD/2 — VDD + 0.3 V

A22 VREFL Reference Voltage Low VSS – 0.3V — VDD/2 V

A25 VAIN Analog Input Voltage VREFL — VREFH V

A30 ZAIN Recommended Impedance of 
Analog Voltage Source

— — 3 k

Note: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

131

130

132

BSF ADCON0, GO

Q4

A/D CLK

A/D DATA

ADRES

ADIF

GO

SAMPLE

OLD_DATA

SAMPLING STOPPED

DONE

NEW_DATA

(Note 2)

9 8 7 2 1 0

Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. 
This allows the SLEEP instruction to be executed. 

2: This is a minimal RC delay (0.5TAD), which also disconnects the holding capacitor from the analog input.

. . . . . .
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FIGURE 28-34: PIC18LF2X/4XK22 TYPICAL IDD: RC_IDLE LF-INTOSC 31 kHz

FIGURE 28-35: PIC18LF2X/4XK22 MAXIMUM IDD: RC_IDLE LF-INTOSC 31 kHz
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FIGURE 28-48: PIC18LF2X/4XK22 TYPICAL IDD: PRI_RUN EC MEDIUM POWER

FIGURE 28-49: PIC18LF2X/4XK22 MAXIMUM IDD: PRI_RUN EC MEDIUM POWER
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