

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf23k22-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

2.12.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- 2. Instructions begin executing by the internal oscillator at the frequency set in the IRCF<2:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 external clock cycles.
- 4. OST timed out. External clock is ready.
- 5. OSTS is set.
- 6. Clock switch finishes according to Figure 2-9

2.12.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCCON register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in CONFIG1H Configuration register, or the internal oscillator. OSTS = 0 when the external oscillator is not ready, which indicates that the system is running from the internal oscillator.

Old Clock						
	Enal-ob Jané _{i 8}	Crock -	<u> Syna</u>		Bares	<u>oğ</u>
New Clock				·····		····
Rew Cik Ready 🛄						
IRCF <2:0>	ien Oist 🗴 - Beien Gew					
System Clock						
Low Speed Sig	y Sibood					
Low Spind Hig Old Clock	8 8peed 8en-oo Time9	Clock Sync				
		Ciccix Sync				<u>`````````````````````````````````````</u>
Old Oock		Clock Syno			Rumi	N9
Gis Clock		Cieck Syno				¥2

FIGURE 2-9: CLOCK SWITCH TIMING

EXAMPLE 5-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR
	;SAVED IN FAST REGISTER
	; STACK
•	
•	
SUB1 •	
•	
RETURN, FAST	
	;IN FAST REGISTER STACK

5.2.2 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

5.2.2.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 5-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of two (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 5-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF	OFFSET,	W
	CALL	TABLE	
ORG	nn00h		
TABLE	ADDWF	PCL	
	RETLW	nnh	
	RETLW	nnh	
	RETLW	nnh	
	•		
	•		
	•		

5.2.2.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 6.1 "Table Reads and Table Writes".

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE		
bit 7							bit 0		
									
Legend:									
R = Readable		W = Writable bit		-	nented bit, read				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN		
bit 7	SSP2IE: Mas	ster Synchrono	us Serial Port	2 Interrupt Ena	able bit				
		the MSSP2 inte		opt					
		the MSSP2 int							
bit 6	BCL2IE: Bus	Collision Interi	upt Enable bi	it					
	1 = Enabled 0 = Disabled								
bit 5		ART2 Receive	ntorrunt Engl	olo hit					
DIL 5	1 = Enabled								
	0 = Disabled								
bit 4	TX2IE: EUSA	ART2 Transmit	Interrupt Enal	ble bit					
	1 = Enabled								
	0 = Disabled	1							
bit 3		MU Interrupt E	nable bit						
	1 = Enabled								
h 11 O	0 = Disabled			:.					
bit 2	1 = Enabled	MR5 Gate Inter	rupt Enable b	DIT					
	0 = Disabled								
bit 1	TMR3GIE: T	MR3 Gate Inter	rupt Enable b	bit					
	TMR3GIE: TMR3 Gate Interrupt Enable bit 1 = Enabled								
	0 = Disabled	1							
bit 0	TMR1GIE: T	MR1 Gate Inter	rupt Enable b	oit					
	1 = Enabled								
	0 = Disabled	1							

REGISTER 9-11: PIE3: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 3

Name	Bit 7	Bit 6		Bit 4		Bit 2		Bit 0	Register
Name	Bit /	BIT 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit U	on Page
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIE4	_	—	_	—	—	CCP5IE	CCP4IE	CCP3IE	120
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIR4	—	—	_	—	—	CCP5IF	CCP4IF	CCP3IF	115
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
PMD1	MSSP2MD	MSSP1MD	_	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	53
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1SOSCEN	T1SYNC	T1RD16	TMR10N	166
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS	<1:0>	167
T3CON	TMR3C	S<1:0>	T3CKP	S<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	166
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GSS	<1:0>	167
T5CON	TMR5C	S<1:0>	T5CKP	S<1:0>	T5SOSCEN	T5SYNC	T5RD16	TMR5ON	166
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GSS	<1:0>	167
TMR1H		Holding	Register for th	e Most Signifi	cant Byte of the 10	6-bit TMR1 Re	egister		_
TMR1L			Least Sign	ificant Byte of	the 16-bit TMR1 I	Register			_
TMR3H		Holding	Register for th	e Most Signifi	cant Byte of the 10	6-bit TMR3 Re	egister		—
TMR3L			Least Sign	ificant Byte of	the 16-bit TMR3 I	Register			—
TMR5H		Holding	Register for th	e Most Signifi	cant Byte of the 10	6-bit TMR5 Re	egister		—
TMR5L			Least Sign	ificant Byte of	the 16-bit TMR5 I	Register			—
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
TRISE	WPUE3	—	—	—	—	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	151

TABLE 14-3: REGISTERS ASSOCIATED WITH CAPTURE (CONTINUED)

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Capture mode.

Note 1: These registers/bits are available on PIC18(L)F4XK22 devices.

TABLE 14-4: CONFIGURATION REGISTERS ASSOCIATED WITH CAPTURE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Capture mode.

14.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 14-4.

EQUATION 14-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 14-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 32 MHz)

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 14-8: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

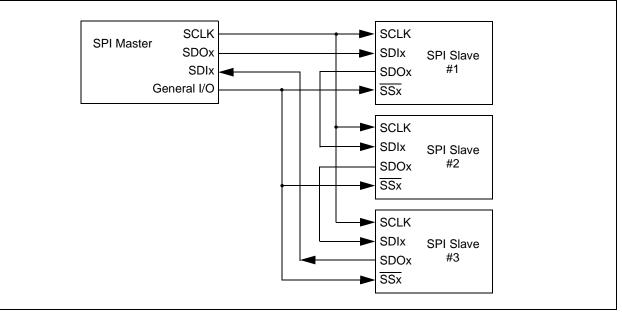
PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 14-9: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

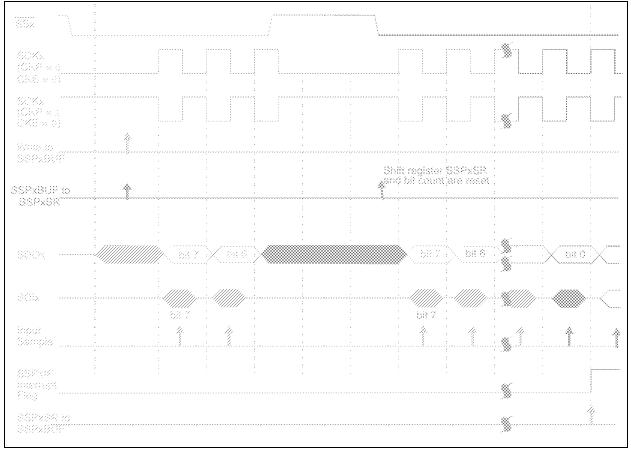
PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

14.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMRx register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMRx will continue from its previous state.


14.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 2.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.


14.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

FIGURE 15-7: SPI DAISY-CHAIN CONNECTION

FIGURE 15-8: SLAVE SELECT SYNCHRONOUS WAVEFORM

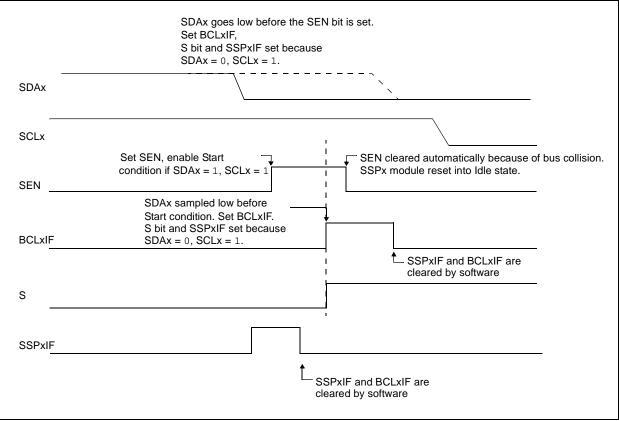
15.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDAx or SCLx are sampled low at the beginning of the Start condition (Figure 15-33).
- b) SCLx is sampled low before SDAx is asserted low (Figure 15-34).

During a Start condition, both the SDAx and the SCLx pins are monitored.

If the SDAx pin is already low, or the SCLx pin is already low, then all of the following occur:


- · the Start condition is aborted,
- the BCLxIF flag is set and
- the MSSPx module is reset to its Idle state (Figure 15-33).

The Start condition begins with the SDAx and SCLx pins deasserted. When the SDAx pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCLx pin is sampled low while SDAx is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

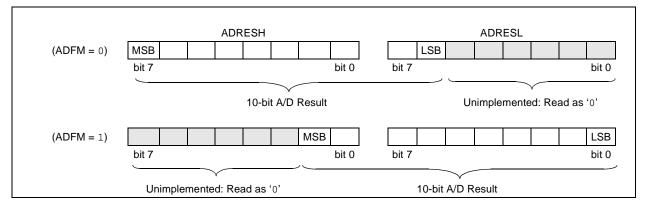
If the SDAx pin is sampled low during this count, the BRG is reset and the SDAx line is asserted early (Figure 15-35). If, however, a '1' is sampled on the SDAx pin, the SDAx pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCLx pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCLx pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDAx before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 15-33: BUS COLLISION DURING START CONDITION (SDAx ONLY)

16.3 Register Definitions: EUSART Control

REGISTER 16-1: TxSTAx: TRANSMIT STATUS AND CONTROL REGISTER


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0				
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D				
pit 7							bit (
L egend: R = Readable	hit	W = Writable b	i+	II – Unimplem	ented bit, read as	· 'O'					
-n = Value at I		'1' = Bit is set	it.	'0' = Bit is clea		x = Bit is unkno	WD				
-ii – value al i	OR				ieu						
bit 7	CSRC: Clock	Source Select bit									
	Asynchronous										
	Don't care										
	Synchronous r	<u>mode</u> :									
	1 = Master m	node (clock gene	rated internally	from BRG)							
	0 = Slave mo	ode (clock from e	xternal source)								
oit 6	TX9: 9-bit Trar	nsmit Enable bit									
		-bit transmission									
		3-bit transmission									
oit 5	TXEN: Transm										
		1 = Transmit enabled 0 = Transmit disabled									
bit 4		SYNC: EUSART Mode Select bit									
		1 = Synchronous mode 0 = Asynchronous mode									
oit 3	,	Break Character	- bit								
UIL S	Asynchronous		DI								
			transmission (c	leared by bardwa	are upon complet	ion)					
	,	ak transmission of	•								
	Synchronous r		·								
	Don't care										
oit 2	BRGH: High B	aud Rate Select	bit								
	<u>Asynchronous</u>	mode:									
	1 = High spee										
	0 = Low spee										
		Synchronous mode:									
	Unused in this		.								
bit 1		hit Shift Register	Status bit								
	1 = TSR emp 0 = TSR full	ty									
hit 0		it of Transmit Dat	2								
bit 0		it of fransmit Dat	a								
	Can be addres	s/data bit or a pa	rity bit								

17.1.7 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON2 register controls the output format.

Figure 17-2 shows the two output formats.

FIGURE 17-2: 10-BIT A/D CONVERSION RESULT FORMAT

17.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 17-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 17-5. The maximum recommended impedance for analog sources is $3 \ k\Omega$. As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D

acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 17-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 17-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 50°C and external impedance of 10k
$$\Omega$$
 3.0V VDD

$$TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
= TAMP + TC + TCOFF
= 5µs + TC + [(Temperature - 25°C)(0.05µs/°C)]
The value for TC can be approximated with the following equations:
$$V_{APPLIED}\left(1 - \frac{1}{2047}\right) = V_{CHOLD} \qquad :[1] V_{CHOLD} charged to within 1/2 lsb
$$V_{APPLIED}\left(1 - e^{-\frac{TC}{RC}}\right) = V_{CHOLD} \qquad :[2] V_{CHOLD} charge response to VAPPLIED
$$V_{APPLIED}\left(1 - e^{-\frac{TC}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{2047}\right) \qquad :combining [1] and [2]$$
Solving for Tc:

$$T_{C} = -CHOLD(RIC + RSS + RS) ln(1/2047)$$

$$= -13.5pF(Ik\Omega + 700\Omega + 10k\Omega) ln(0.0004885)$$

$$= 1.20\mu s$$$$$$$$

 $TACQ = 5\mu s + 1.20\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$ = 7.45\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.

CNT Z C DC

After Instruction

CNT Z C DC

FFh 0 ? ?

00h

= = = =

= = = 1 1 1

GOTO	Uncondit	ional Bran	ch		INCF	Incremen	t f	
Syntax:	GOTO k				Syntax:	INCF f{,c	d {,a}}	
Operands:	$0 \le k \le 104$	8575			Operands:	$0 \leq f \leq 255$		
Operation:	$k \rightarrow PC < 20$):1>				d ∈ [0,1] a ∈ [0,1]		
Status Affected:	None	None			Operation:	$a \in [0, 1]$ (f) + 1 \rightarrow de	act	
Encoding:					Status Affected:	$(1) \neq 1 \rightarrow 0$ C, DC, N,		
1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111		7kkk kkk	kkkk ₀ kkkk ₈	Encoding:	0010	10da ff	ff ffff
Description:	n: GOTO allows an unconditional branch Description: anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction.	Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selecter If 'a' is '1', the BSR is used to select th					
Words:	2					GPR bank.		
Cycles:	2						and the extend	
Q Cycle Activity:						in Indexed	Literal Offset A	Addressing
Q1	Q2	Q3		Q4			never f ≤ 95 (5 5 .2.3 "Byte-Or	
Decode	Read literal 'k'<7:0>,	No operation	'k'	ad literal 2<19:8>, rite to PC		Bit-Oriente	ed Instruction set Mode" for	s in Indexed
No	No	No		No	Words:	1		
operation	operation	operation	op	peration	Cycles:	1		
					Q Cycle Activity:			
Example:	GOTO THE	RE			Q1	Q2	Q3	Q4
After Instruction PC =	After Instruction PC = Address (THERE)		Decode	Read register 'f'	Process Data	Write to destination		
					Example:	INCF	CNT, 1, 0	
				Before Instruc	ction			

		•				
		RLNCF f {,d {,a}}				
$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$						
$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$						
N, Z						
0100 01da ffff ffff						
The contents of register 'f' are rotated one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
1						
1						
02	03		Q4			
Read egister 'f'	Proce		Write to estination			
Example:RLNCFREG, 1, 0Before InstructionREG=REG=10101011After InstructionREG=REG=01010111						
	$f(<7>) \rightarrow 0$ N, Z 0100 The content one bit to the splaced in stored back f 'a' is '0', f 'a' is '1', GPR bank f 'a' is '1', f 'a'	$(f<7>) \rightarrow dest<0>$ N, Z 0100 01da The contents of regises one bit to the left. If s placed in W. If 'd' stored back in regises f 'a' is '0', the Access f 'a' is '0', the Access f 'a' is '0', the Access f 'a' is '0' and the en- set is enabled, this if n Indexed Literal O mode whenever $f \leq$ Section 25.2.3 "By Bit-Oriented Instru- Literal Offset Mode end gister 'f' Data Read Proce end register 'f' Data	f(<7>) → dest<0> N, Z 0100 01da ffff The contents of register 'f' ar one bit to the left. If 'd' is '0', s placed in W. If 'd' is '1', the stored back in register 'f' (de f 'a' is '0', the Access Bank is f 'a' is '1', the BSR is used to GPR bank. f 'a' is '0' and the extended is set is enabled, this instruction n Indexed Literal Offset Add mode whenever f ≤ 95 (5Fh) Section 25.2.3 "Byte-Orien Bit-Oriented Instructions in Literal Offset Mode" for det Q2 Q3 Read Process register 'f' Data de RLINCF REG, 1, 0 1010 1011			

Syntax:		ght f throu	
	RRCF f{	,d {,a}}	
Operands:	$0 \leq f \leq 255$		
	d ∈ [0,1]		
o <i>i</i> :	a ∈ [0,1]		
Operation:	$(f < n >) \rightarrow dr$ $(f < 0 >) \rightarrow C$ $(C) \rightarrow dest$		
Status Affected:	C, N, Z		
Encoding:	0011	00da f	fff fff:
Description:	one bit to th flag. If 'd' is If 'd' is '1', 1 register 'f' (If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a	he right throu '0', the result the result is p default). the Access B the BSR is us and the exten led, this instr	"f' are rotated igh the CARF It is placed in " blaced back in ank is selected sed to select the ruction operate Addression
	Section 25 Bit-Oriente	never f ≤ 95 (5. 2.3 "Byte-0	(5Fh). See Driented and ons in Indexe or details.
Words:	Section 25 Bit-Oriente Literal Off	never f ≤ 95 (5.2.3 "Byte-C ed Instructio set Mode" fo	(5Fh). See Driented and ons in Indexe or details.
	Section 25 Bit-Oriente Literal Offs	never f ≤ 95 (5.2.3 "Byte-C ed Instructio set Mode" fo	(5Fh). See Driented and ons in Indexe or details.
Cycles:	Section 25 Bit-Oriente Literal Offs	never f ≤ 95 (5.2.3 "Byte-C ed Instructio set Mode" fo	(5Fh). See Driented and ons in Indexe or details.
Cycles: Q Cycle Activity:	Section 25 Bit-Oriente Literal Off C	never f ≤ 95 (5.2.3 "Byte-C ed Instruction set Mode" for regis	(5Fh). See Oriented and ons in Indexe or details. ter f
Cycles:	Section 25 Bit-Oriente Literal Offs	never f ≤ 95 (5.2.3 "Byte-C ed Instructio set Mode" fo	(5Fh). See Driented and ons in Indexe or details.
Cycles: Q Cycle Activity: Q1	Section 25 Bit-Oriente Literal Offs C 1 1 2 2	never f ≤ 95 (5.2.3 "Byte-C ed Instruction set Mode" fo regis	(5Fh). See Oriented and ons in Indexe or details. ter f
Cycles: Q Cycle Activity: Q1 Decode	Section 25 Bit-Oriente Literal Offs C 1 1 1 Q2 Read register 'f'	Q3 Process Data	Q4 Q4 Write to destinatio
Q1 Decode Example:	Section 25 Bit-Oriente Literal Offs C 1 1 1 2 Q2 Read register 'f' RRCF	Q3 Process	Q4 Q4 Write to destinatio
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct	Section 25 Bit-Oriente Literal Offs 1 1 1 Q2 Read register 'f' RRCF	Q3 Process Data REG, 0,	Q4 Q4 Write to destinatio
Cycles: Q Cycle Activity: Q1 Decode Example:	Section 25 Bit-Oriente Literal Offs C 1 1 1 2 Q2 Read register 'f' RRCF	Q3 Process Data REG, 0,	Q4 Q4 Write to destinatio
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instructi	Section 25 Bit-Oriente Literal Offs C 1 1 1 2 Q2 Read register 'f' RRCF ction = 1110 (= 0	Q3 Process Data REG, 0,	Q4 Q4 Write to destinatio
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C	Section 25 Bit-Oriente Literal Offs C 1 1 1 Q2 Read register 'f' RRCF Ction = 1110 (on = 1110 (Q3 Process Data REG, 0,	Q4 Q4 Write to destinatio

27.9 Memory Programming Requirements

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Sym	Characteristic	Min Typ†		Мах	Units	Conditions	
		Internal Program Memory Programming Specifications ⁽¹⁾						
D170	Vpp	Voltage on MCLR/VPP pin	8	_	9	V	(Note 3), (Note 4)	
D171	IDDP	Supply Current during Programming	—	—	10	mA		
		Data EEPROM Memory						
D172	ED	Byte Endurance	100K	—	_	E/W	-40°C to +85°C	
D173	Vdrw	VDD for Read/Write	Vddmin	—	VDDMAX	V	Using EECON to read/ write	
D175	TDEW	Erase/Write Cycle Time	—	3	4	ms		
D176	Tretd	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	
D177	Tref	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C	
		Program Flash Memory						
D178	Еρ	Cell Endurance	10K	—	_	E/W	-40°C to +85°C (Note 5)	
D179	Vpr	VDD for Read	VDDMIN	—	VDDMAX	V		
D181	Viw	VDD for Row Erase or Write	2.2	—	VDDMAX	V	PIC18LF24K22	
D182	Viw		VDDMIN	—	VDDMAX	V	PIC18(L)F26K22	
D183	Tiw	Self-timed Write Cycle Time	—	2	-	ms		
D184	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: Refer to Section 7.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the MPLAB ICD 2 VPP voltage must be placed between the MPLAB ICD 2 and target system when programming or debugging with the MPLAB ICD 2.

5: Self-write and Block Erase.

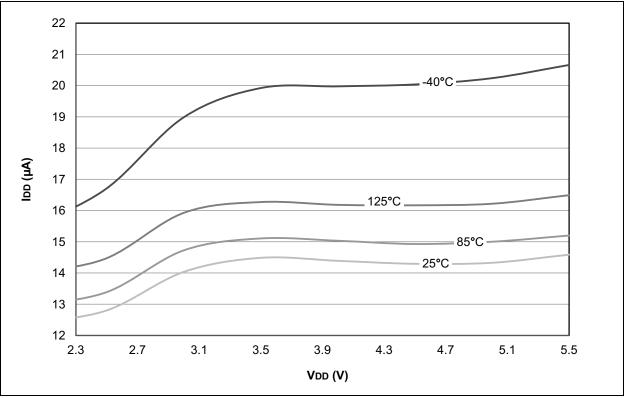
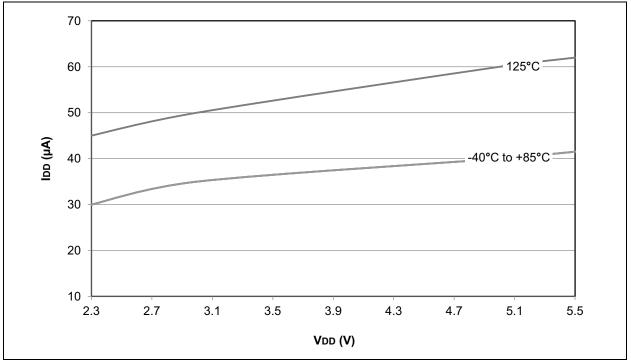
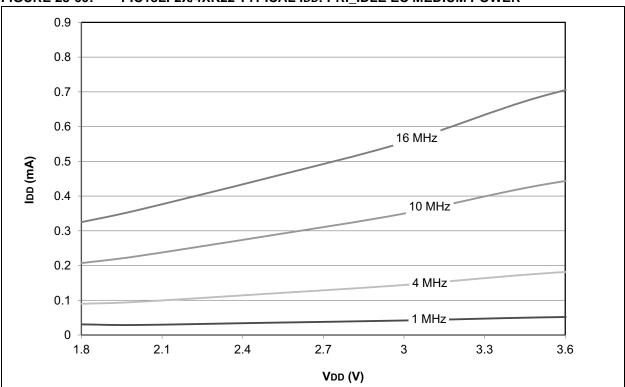
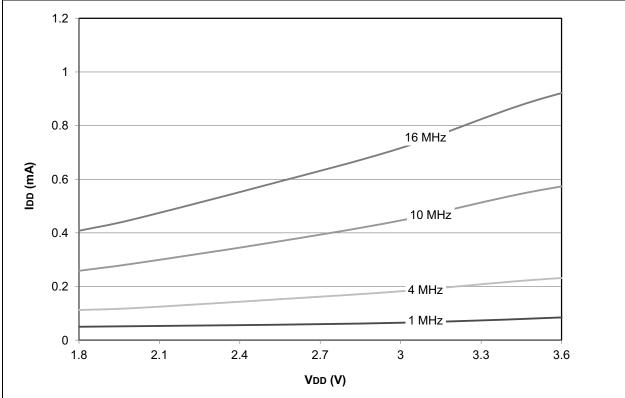
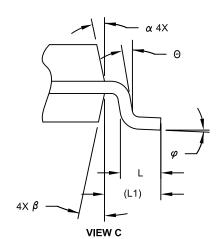
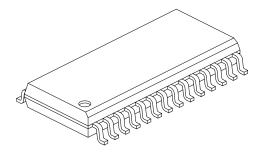



FIGURE 28-37: PIC18F2X/4XK22 MAXIMUM IDD: RC_IDLE LF-INTOSC 31 kHz

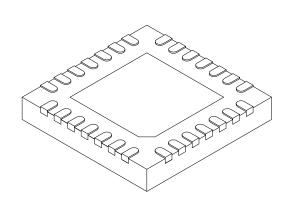

FIGURE 28-60: PIC18LF2X/4XK22 TYPICAL IDD: PRI_IDLE EC MEDIUM POWER



28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	1.27 BSC		
Overall Height	A	2.65		
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5° - 15°		
Mold Draft Angle Bottom	β	5°	-	15°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

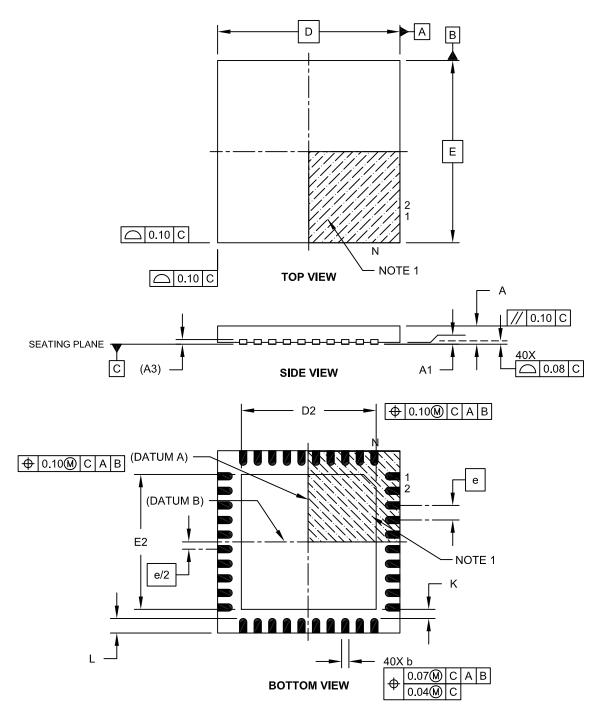
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Z	28		
Pitch	е	0.65 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	Ш	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.50	0.55	0.70
Terminal-to-Exposed Pad	K	0.20	-	-

Notes:

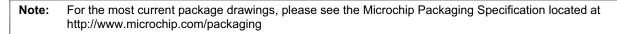
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

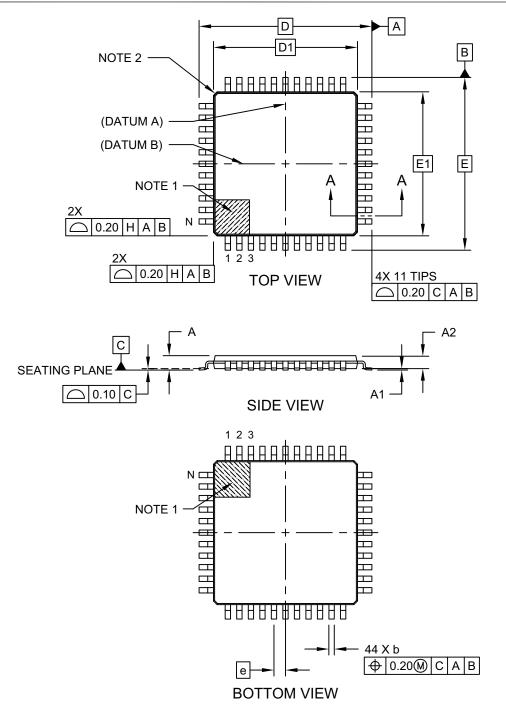
2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2


40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Microchip Technology Drawing C04-076C Sheet 1 of 2