

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf23k22-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3: 40-PIN PDIP DIAGRAM

FIGURE 4: 40-PIN UQFN DIAGRAM

Table of Contents

1.0	Device Overview	11					
2.0	Oscillator Module (With Fail-Safe Clock Monitor))	. 25					
3.0	Power-Managed Modes	. 44					
4.0	Reset	. 55					
5.0	Memory Organization	. 64					
6.0	Flash Program Memory	. 90					
7.0	Data EEPROM Memory	. 99					
8.0	8 x 8 Hardware Multiplier	104					
9.0	Interrupts	106					
10.0	I/O Ports	127					
11.0	Timer0 Module	154					
12.0	Timer1/3/5 Module with Gate Control	157					
13.0	Timer2/4/6 Module	169					
14.0	Capture/Compare/PWM Modules	173					
15.0	Master Synchronous Serial Port (MSSP1 and MSSP2) Module	204					
16.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	259					
17.0	Analog-to-Digital Converter (ADC) Module	288					
18.0	Comparator Module	302					
19.0	Charge Time Measurement Unit (CTMU)	311					
20.0	SR LATCH	326					
21.0	Fixed Voltage Reference (FVR)	331					
22.0	Digital-to-Analog Converter (DAC) Module	333					
23.0	High/Low-Voltage Detect (HLVD)	337					
24.0	Special Features of the CPU	343					
25.0	Instruction Set Summary	360					
26.0	Development Support.	410					
27.0	Electrical Specifications	414					
28.0	DC and AC Characteristics Graphs and Tables	453					
29.0	Packaging Information	509					
Appe	ndix A: Revision History	534					
Appe	ndix B: Device Differences	535					
The N	e Microchip Web Site						
Custo	ustomer Change Notification Service						
Custo	Customer Support						
Produ	uct Identification System	537					

R-0/0	R-0/q	U-0	R/W-0/0	R/W-0/u	R/W-1/1	R-x/u	R-0/0
PLLRDY	SOSCRUN	—	MFIOSEL	SOSCGO ⁽¹⁾	PRISD	MFIOFS	LFIOFS
bit 7							bit 0
Legend:							
R = Readable	bit W = W	/ritable bit	U = Unimple	emented bit, rea	ıd as '0' q	= depends on	condition
'1' = Bit is set	'0' = B	it is cleared	x = Bit is un	known			
-n/n = Value at	t POR and BOR	Value at all oth	ner Resets				
bit 7	PLLRDY: PLL	Run Status bit					
	1 = System clo	ock comes fror	n 4xPLL	other then 4vD			
hit 6		CK COMES NO	n an Uscillator,		LL		
bit 0	1 - System cl	ock comes from	n secondary S	090			
	0 = System clo	ock comes from	n an oscillator,	other than SO	SC		
bit 5	Unimplemente	ed: Read as '0					
bit 4	MFIOSEL: MF	INTOSC Selec	t bit				
	1 = MFINTOS	C is used in pla	ace of HFINTC	OSC frequencie	s of 500 kHz, 2	250 kHz and 31	l.25 kHz
bit 3		econdary Osc	illator Start Co	ntrol bit			
Sito	1 = Secondary	/ oscillator is e	nabled.				
	0 = Secondary	oscillator is s	hut off if no oth	ner sources are	requesting it.		
bit 2	PRISD: Primar	y Oscillator Dr	ive Circuit Shu	utdown bit			
	1 = Oscillator	drive circuit on					
1.11.4	0 = Oscillator	drive circuit off	(zero power)				
Dit 1		110SC Freque	ency Stable bit				
	1 = MFINTOS 0 = MFINTOS	C is stable C is not stable					
bit 0	LFIOFS: LFIN	TOSC Frequer	ncv Stable bit				
	1 = LFINTOSC is stable						
	0 = LFINTOSO	C is not stable					
Note 1: The	e SOSCGO bit is	only reset on	a POR Reset.				

REGISTER 2-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads

The POP instruction discards the current TOS by

decrementing the Stack Pointer. The previous value

pushed onto the stack then becomes the TOS value.

the current PC value onto the stack.

5.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack without disturbing normal program execution is a desirable feature. The PIC18 instruction set includes two instructions. PUSH and POP. that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

5.2 **Register Definitions: Stack Pointer**

REGISTER 5-1: STKPTR: STACK POINTER REGISTER

R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾	—			STKPTR<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	C = Clearable only bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	STKFUL: Stack Full Flag bit ⁽¹⁾
	1 = Stack became full or overflowed
	0 = Stack has not become full or overflowed
bit 6	STKUNF: Stack Underflow Flag bit ⁽¹⁾
	1 = Stack Underflow occurred
	0 = Stack Underflow did not occur
bit 5	Unimplemented: Read as '0'

bit 4-0 STKPTR<4:0>: Stack Pointer Location bits

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

Stack Full and Underflow Resets 5.2.0.1

Device Resets on Stack Overflow and Stack Underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

FAST REGISTER STACK 5.2.1

A fast register stack is provided for the Status, WREG and BSR registers, to provide a "fast return" option for interrupts. The stack for each register is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the stack registers. The values in the registers are then loaded back into their associated registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high priority interrupts are enabled, the stack registers cannot be used reliably to return from low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten. In these cases, users must save the key registers by software during a low priority interrupt.

If interrupt priority is not used, all interrupts may use the fast register stack for returns from interrupt. If no interrupts are used, the fast register stack can be used to restore the Status, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a CALL label, FAST instruction must be executed to save the Status, WREG and BSR registers to the fast register stack. A RETURN, FAST instruction is then executed to restore these registers from the fast register stack.

Example 5-1 shows a source code example that uses the fast register stack during a subroutine call and return.

© 2010-2016 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
	—	—	—	—	CCP5IF	CCP4IF	CCP3IF			
bit 7							bit 0			
Legend:	Legend:									
R = Readable I	oit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown			
bit 7-3	Unimplement	ted: Read as '	כ'							
bit 2	CCP5IF: CCP	95 Interrupt Fla	g bits							
	Capture mode	<u>):</u>	. /							
	1 = A TMR res0 = No TMR r	egister capture register captur	occurred (mus e occurred	st de cleared II	n software)					
	Compare mod	<u>le:</u>				,				
	1 = A IMR re	egister compare	e match occur	red (must be c	leared in softwa	are)				
	PWM mode:									
	Unused in PW	/M mode.								
bit 1	CCP4IF: CCP	94 Interrupt Fla	g bits							
	Capture mode	<u>):</u>								
	1 = A TMR re 0 = No TMR	egister capture register capture	occurred (mu: e occurred	st be cleared in	n software)					
	Compare mod	<u>le:</u>								
	1 = A TMR re	egister compare	e match occur	red (must be c	leared in softwa	are)				
	0 = No TMR	register compa	re match occu	urred						
	Unused in PW	/M mode.								
bit 0	CCP3IF: ECC	P3 Interrupt F	ag bits							
	Capture mode	<u>):</u>								
	1 = A TMR re 0 = No TMR	egister capture	occurred (mus	st be cleared in	n software)					
	Compare mod	<u>le:</u>								
	1 = A TMR re	gister compare	e match occur	red (must be c	leared in softwa	are)				
	0 = No TMR	register compa	re match occu	urred						
	<u>PWM mode:</u>	/M mode								

REGISTER 9-7: PIR4: PERIPHERAL INTERRUPT (FLAG) REGISTER 4

REGISTER 1	0-10: LATx:	PORTX OUT	PUT LATCH	REGISTER	")
DAAL				D / A / / .	DAAL

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATx7 | LATx6 | LATx5 | LATx4 | LATx3 | LATx2 | LATx1 | LATx0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

/4\

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 LATx<7:0>: PORTx Output Latch bit value⁽²⁾

Note 1: Register Description for LATA, LATB, LATC and LATD.

2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.

REGISTER 10-11: LATE: PORTE OUTPUT LATCH REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—	—	_	LATE2	LATE1	LATE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3 Unimplemented: Read as '0'

bit 2-0 LATE<2:0>: PORTE Output Latch bit value⁽²⁾

Note 1: Available on PIC18(L)F4XK22 devices only.

2: Writes to PORTE are written to corresponding LATE register. Reads from PORTE register is return of I/O pin values.

REGISTER 10-12: WPUB: WEAK PULL-UP PORTB REGISTER

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Logona.		
R = Readable bit W = Writak	ble bit U = Unimplemente	ed bit, read as '0'
-n = Value at POR '1' = Bit is	set '0' = Bit is cleared	x = Bit is unknown

bit 7-0

WPUB<7:0>: Weak Pull-up Register bits

1 = Pull-up enabled on PORT pin

0 = Pull-up disabled on PORT pin

12.7.2.3 Comparator C1 Gate Operation

The output resulting from a Comparator 1 operation can be selected as a source for Timer1/3/5 Gate Control. The Comparator 1 output (sync_C1OUT) can be synchronized to the Timer1/3/5 clock or left asynchronous. For more information see **Section 18.8.4 "Synchronizing Comparator Output to Timer1"**.

12.7.2.4 Comparator C2 Gate Operation

The output resulting from a Comparator 2 operation can be selected as a source for Timer1/3/5 Gate Control. The Comparator 2 output (sync_C2OUT) can be synchronized to the Timer1/3/5 clock or left asynchronous. For more information see **Section 18.8.4 "Synchronizing Comparator Output to Timer1"**.

12.7.3 TIMER1/3/5 GATE TOGGLE MODE

When Timer1/3/5 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1/3/5 gate signal, as opposed to the duration of a single level pulse.

The Timer1/3/5 Gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 12-5 for timing details.

Timer1/3/5 Gate Toggle mode is enabled by setting the TxGTM bit of the TxGCON register. When the TxGTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note: Enabling Toggle mode at the same time as changing the gate polarity may result in indeterminate operation.

12.7.4 TIMER1/3/5 GATE SINGLE-PULSE MODE

When Timer1/3/5 Gate Single-Pulse mode is enabled, it is possible to capture a single-pulse gate event. Timer1/3/5 Gate Single-Pulse mode is first enabled by setting the TxGSPM bit in the TxGCON register. Next, the TxGGO/DONE bit in the TxGCON register must be set. The Timer1/3/5 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the TxGGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1/3/5 until the TxGGO/DONE bit is once again set in software.

Clearing the TxGSPM <u>bit of the TxGCON</u> register will also clear the TxGGO/DONE bit. See Figure 12-6 for timing details.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1/3/5 Gate source to be measured. See Figure 12-7 for timing details.

12.7.5 TIMER1/3/5 GATE VALUE STATUS

When Timer1/3/5 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the TxGVAL bit in the TxGCON register. The TxGVAL bit is valid even when the Timer1/3/5 Gate is not enabled (TMRxGE bit is cleared).

12.7.6 TIMER1/3/5 GATE EVENT INTERRUPT

When Timer1/3/5 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of TxGVAL occurs, the TMRxGIF flag bit in the PIR3 register will be set. If the TMRxGIE bit in the PIE3 register is set, then an interrupt will be recognized.

The TMRxGIF flag bit operates even when the Timer1/3/5 Gate is not enabled (TMRxGE bit is cleared).

For more information on selecting high or low priority status for the Timer1/3/5 Gate Event Interrupt see **Section 9.0 "Interrupts"**.

16.3 Register Definitions: EUSART Control

REGISTER 16-1: TxSTAx: TRANSMIT STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7		· ·		·			bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimpleme	ented bit, read as	'0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unknow	wn
bit 7	CSRC: Clock Asynchronous Don't care Synchronous I 1 = Master n 0 = Slave m	Source Select bit <u>s mode</u> : mode: node (clock genera ode (clock from ex	ated internally ternal source)	from BRG)			
bit 6	TX9: 9-bit Train 1 = Selects 8 0 = Selects 8	nsmit Enable bit 9-bit transmission 8-bit transmission	····,				
bit 5	TXEN: Transn 1 = Transmit 0 = Transmit	nit Enable bit ⁽¹⁾ enabled disabled					
bit 4	SYNC: EUSA 1 = Synchror 0 = Asynchror	RT Mode Select bi nous mode pnous mode	t				
bit 3	SENDB: Send Asynchronous 1 = Send Syr 0 = Sync Bre Synchronous I Don't care	Break Character <u>a mode</u> : nc Break on next tr ak transmission co <u>mode</u> :	bit ransmission (c ompleted	cleared by hardwa	are upon completi	on)	
bit 2	BRGH: High E Asynchronous 1 = High spe 0 = Low spee Synchronous Unused in this	Baud Rate Select b <u>s mode</u> : ed ed <u>mode:</u> s mode	bit				
bit 1	TRMT: Transn 1 = TSR emp 0 = TSR full	nit Shift Register S oty	tatus bit				
bit 0	TX9D: Ninth b Can be addres	it of Transmit Data ss/data bit or a par	ı ity bit.				
Note 1: S	REN/CREN overri	des TXEN in Sync	mode.				

17.3 Register Definitions: ADC Control

Note: Analog pin control is determined by the ANSELx registers (see Register 10-2)

REGISTER 17-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0

Logond				
Legena:				
R = Reada	ible bit	VV = VVritable bit	U = Unimplemented bit, re	ead as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	Unimple	mented: Read as '0'		
bit 6-2	CHS<4:0	>: Analog Channel Select bits	6	
	00000 =	ANO		
	00001 =	AN1		
	00010 =	AN2		
	00011 =	AN3		
	00100 =	AN4		
	00101 =	AN5(1)		
	00110 =	AN6(1)		
	00111 =	AN7(')		
	01000 =	AN8		
	01001 =	AN9		
	01010 =	AN10		
	01011 =	AN11		
	01100 =	AN12		
	01101 =	AN13		
	01110 =	AN14 AN15		
	10000 -	AN16		
	10000 =	AN17		
	10010 =	AN18		
	10011 =	AN19		
	10100 =	AN20 ⁽¹⁾		
	10101 =	AN21 ⁽¹⁾		
	10110 =	AN22 ⁽¹⁾		
	10111 =	AN23 ⁽¹⁾		
	11000 =	AN24 ⁽¹⁾		
	11001 =	AN25 ⁽¹⁾		
	11010 =	AN26 ⁽¹⁾		
	11011 =	AN27 ⁽¹⁾		
	11100 =	Reserved		
	11101 =	CTMU		
	11110 =	DAC		(2)
	111111 =	FVR BUF2 (1.024V/2.048V/2.0	96V Volt Fixed Voltage Reference)(2)
bit 1	GO/DON	E: A/D Conversion Status bit		
	1 = A/D 0	conversion cycle in progress. Se	etting this bit starts an A/D convers	ion cycle.
	This	bit is automatically cleared by ha	ardware when the A/D conversion	has completed.
	0 = A/D c	conversion completed/not in prog	gress	
bit 0	ADON: A	DC Enable bit		
	1 = ADC	is enabled		
	0 = ADC	is disabled and consumes no o	perating current	
Note 1:	Available on P	IC18(L)F4XK22 devices only.		

2: Allow greater than 15 μs acquisition time when measuring the Fixed Voltage Reference.

18.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparators are very useful mixed signal building blocks because they provide analog functionality independent of the program execution. The analog comparator module includes the following features:

- Independent comparator control
- Programmable input selection
- Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- Wake-up from Sleep
- Programmable Speed/Power optimization
- PWM shutdown
- · Programmable and fixed voltage reference
- Selectable Hysteresis

18.1 Comparator Overview

A single comparator is shown in Figure 18-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

FIGURE 18-1: SINGLE COMPARATOR

24.5 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 Flash devices differs significantly from other PIC microcontroller devices.

The user program memory is divided into three or five blocks, depending on the device. One of these is a Boot Block of 0.5K or 2K bytes, depending on the device. The remainder of the memory is divided into individual blocks on binary boundaries.

Each of the blocks has three code protection bits associated with them. They are:

- Code-Protect bit (CPn)
- Write-Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

Figure 24-2 shows the program memory organization for 8, 16 and 32-Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 24-5.

FIGURE 24-2: CODE-PROTECTED PROGRAM MEMORY FOR PIC18(L)F2X/4XK22

	Plack Code Protection				
8 Kbytes	16 Kbytes	32 Kbytes	64 Kbytes	Controlled By:	
(PIC18(L)FX3K22)	(PIC18(L)FX4K22)	(PIC18(L)FX5K22)	(PIC18(L)FX6K22)		
Boot Block	Boot Block	Boot Block	Boot Block	CPB, WRTB, EBTRB	
(000h-1FFh)	(000h-7FFh)	(000h-7FFh)	(000h-7FFh)		
Block 0	Block 0	Block 0	Block 0	CP0, WRT0, EBTR0	
(200h-FFFh)	(800h-1FFFh)	(800h-1FFFh)	(800h-3FFFh)		
Block 1	Block 1	Block 1	Block 1	CP1, WRT1, EBTR1	
(1000h-1FFFh)	(2000h-3FFFh)	(2000h-3FFFh)	(4000h-7FFFh)		
		Block 2 (4000h-5FFFh)	Block 2 (8000h-BFFFh)	CP2, WRT2, EBTR2	
		Block 3 (6000h-7FFFh)	Block 3 (C000h-FFFFh)	CP3, WRT3, EBTR3	
Unimplemented Read '0's (2000h-1FFFFFh)	Unimplemented Read '0's (4000h-1FFFFFh)	Unimplemented Read '0's (8000h-1FFFFFh)	Unimplemented Read '0's (10000h-1FFFFFh)	(Unimplemented Memory Space)	

TABLE 24-5: CONFIGURATION REGISTERS ASSOCIATED WITH CODE PROTECTION

File Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L					CP3 ⁽¹⁾	CP2 ⁽¹⁾	CP1	CP0
300009h	CONFIG5H	CPD	CPB	_	_	_	_	_	_
30000Ah	CONFIG6L	—	—	—	—	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC ⁽²⁾		—	—	—	
30000Ch	CONFIG7L	-	_	—	-	EBTR3 ⁽¹⁾	EBTR2 ⁽¹⁾	EBTR1	EBTR0
30000Dh	CONFIG7H	_	EBTRB	—	-	—	—	—	

Legend: Shaded bits are unimplemented.

Note 1: Available on PIC18(L)FX5K22 and PIC18(L)FX6K22 devices only.

2: In user mode, this bit is read-only and cannot be self-programmed.

BRA	۱.	Unconditional Branch							
Synta	ax:	BRA n	BRA n						
Oper	ands:	-1024 \leq n \leq	1023						
Oper	ation:	(PC) + 2 + 2	$2n \rightarrow PC$						
Statu	s Affected:	None							
Enco	ding:	1101	0nnn	nnnn	nnnn				
the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.									
Word	ls:	1							
Cycle	es:	2							
QC	ycle Activity:								
	Q1	Q2	C	23	Q4				
	Decode	Read literal Process Write to PC 'n' Data							
	No	No	No No No						
	operation	operation	oper	ration	operation				

Example:	HERE	BRA	Jump
Before Instruction	on		
PC	=	address	(HERE)
After Instruction	I		
PC	=	address	(Jump)

BSF	Bit Set f						
Syntax:	BSF f, b {	BSF f, b {,a}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$					
Operation:	$1 \rightarrow f < b >$						
Status Affected:	None						
Encoding:	1000	bbba	ffff	ffff			
	If 'a' is '0', tl If 'a' is '1', tl GPR bank. If 'a' is '0' au set is enabl in Indexed I mode when Section 25 Bit-Oriente Literal Offs	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			
Decode	Read register 'f'	Proce Dat	ess a re	Write gister 'f'			
Example:	BSF F	'LAG_RE	G, 7, 1				

FLAG_REG = 0Ah After Instruction FLAG_REG = 8Ah

DS40001412G-page 372

27.4 DC Characteristics: RC Idle Supply Current, PIC18(L)F2X/4XK22

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
PIC18F2	X/4XK22	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Device Characteristics	Тур	Max	Units	Conditions				
D045	Supply Current (IDD)(1),(2)	0.5	18	μA	-40°C	VDD = 1.8V	Fosc = 31 kHz		
		0.6	18	μΑ	+25°C		(RC_IDLE mode,		
		0.7	_	μA	+60°C				
		0.75	20	μΑ	+85°C				
		2.3	22	μΑ	+125°C				
D046		1.1	20	μΑ	-40°C	VDD = 3.0V			
		1.2	20	μA	+25°C				
		1.3	—	μA	+60°C				
		1.4	22	μΑ	+85°C				
		3.2	25	μΑ	+125°C				
D047		17	30	μΑ	-40°C	VDD = 2.3V	Fosc = 31 kHz		
		13	30	μΑ	+25°C		(RC_IDLE mode,		
		14	30	μΑ	+85°C				
		15	45	μΑ	+125°C				
D048		19	35	μΑ	-40°C	VDD = 3.0V			
		15	35	μΑ	+25°C				
		16	35	μΑ	+85°C				
		17	50	μA	+125°C				
D049		21	40	μΑ	-40°C	VDD = 5.0V			
		15	40	μA	+25°C				
		16	40	μA	+85°C				
		18	60	μA	+125°C				
D050		0.11	0.20	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 500 kHz		
D051		0.12	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MFINTOSC source)		
D052		0.14	0.21	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 500 kHz		
D053		0.15	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MEINTOSC source)		
D054		0.20	0.31	mA	-40°C to +125°C	VDD = 5.0V			

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

 $\overline{MCLR} = VDD;$

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

TABLE 27-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—		μS	
31	Twdt	Watchdog Timer Time-out Period (no postscaler)	3.5	4.1	4.7	ms	1:1 prescaler
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	_	1024 Tosc	—	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	54.8	64.4	74.1	ms	
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	2	—	μS	
35	TBOR	Brown-out Reset Pulse Width	200 ¹	_	—	μS	$VDD \le BVDD$ (see D005)
36	TIVRST	Internal Reference Voltage Stable	—	25	35	μS	
37	THLVD	High/Low-Voltage Detect Pulse Width	200 ¹	_	—	μS	$VDD \leq VHLVD$
38	TCSD	CPU Start-up Time	5	—	10	μS	
39	TIOBST	Time for HF-INTOSC to Stabilize	—	0.25	1	ms	
40	TIOSC_ST	Time for HF-INTOSC to Start	_	TBD	TBD	μs	

Note 1: Minimum pulse width that will consistently trigger a reset or interrupt. Shorter pulses may intermittently trigger a response.

FIGURE 27-11: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

FIGURE 28-21: PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN LF-INTOSC 31 kHz

FIGURE 28-97: PIC18(L)F2X/4XK22 TYPICAL FIXED VOLTAGE REFERENCE 2x OUTPUT

FIGURE 28-96: PIC18(L)F2X/4XK22 TYPICAL FIXED VOLTAGE REFERENCE 2x OUTPUT

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	s MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	1.27 BSC		
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	_	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-105C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A