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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC18(L)F2X/4XK22
FIGURE 2-1: SIMPLIFIED OSCILLATOR SYSTEM BLOCK DIAGRAM 

Note 1: Details in Figure 2-4.

2: Details in Figure 2-2.

3: Details in Figure 2-3.

4: Details in Table 2-1.

5: The Primary Oscillator MUX uses the INTOSC branch when FOSC<3:0> = 100x.
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PIC18(L)F2X/4XK22
FIGURE 5-7: DATA MEMORY MAP FOR PIC18(L)F25K22 AND PIC18(L)F45K22 DEVICES 
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PIC18(L)F2X/4XK22
6.5 Erasing Flash Program Memory

The minimum erase block is 32 words or 64 bytes. Only
through the use of an external programmer, or through
ICSP™ control, can larger blocks of program memory
be bulk erased. Word erase in the Flash array is not
supported.

When initiating an erase sequence from the
microcontroller itself, a block of 64 bytes of program
memory is erased. The Most Significant 16 bits of the
TBLPTR<21:6> point to the block being erased. The
TBLPTR<5:0> bits are ignored.

The EECON1 register commands the erase operation.
The EEPGD bit must be set to point to the Flash
program memory. The WREN bit must be set to enable
write operations. The FREE bit is set to select an erase
operation.

The write initiate sequence for EECON2, shown as
steps 4 through 6 in Section 6.5.1 “Flash Program
Memory Erase Sequence”, is used to guard against
accidental writes. This is sometimes referred to as a
long write.

A long write is necessary for erasing the internal Flash.
Instruction execution is halted during the long write
cycle. The long write is terminated by the internal
programming timer.

6.5.1 FLASH PROGRAM MEMORY 
ERASE SEQUENCE

The sequence of events for erasing a block of internal
program memory is:

1. Load Table Pointer register with address of
block being erased.

2. Set the EECON1 register for the erase operation:

• set EEPGD bit to point to program memory;

• clear the CFGS bit to access program memory;

• set WREN bit to enable writes; 

• set FREE bit to enable the erase.

3. Disable interrupts.

4. Write 55h to EECON2.

5. Write 0AAh to EECON2.

6. Set the WR bit. This will begin the block erase
cycle.

7. The CPU will stall for duration of the erase
(about 2 ms using internal timer).

8. Re-enable interrupts.

EXAMPLE 6-2: ERASING A FLASH PROGRAM MEMORY BLOCK 

MOVLW CODE_ADDR_UPPER ; load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH 
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL 

ERASE_BLOCK 
BSF EECON1, EEPGD ; point to Flash program memory
BCF EECON1, CFGS ; access Flash program memory
BSF EECON1, WREN ; enable write to memory
BSF EECON1, FREE ; enable block Erase operation
BCF INTCON, GIE ; disable interrupts

Required MOVLW 55h
Sequence MOVWF EECON2 ; write 55h

MOVLW 0AAh
MOVWF EECON2 ; write 0AAh
BSF EECON1, WR ; start erase (CPU stall)
BSF INTCON, GIE ; re-enable interrupts
 2010-2016 Microchip Technology Inc.  DS40001412G-page 95



PIC18(L)F2X/4XK22
7.0 DATA EEPROM MEMORY 

The data EEPROM is a nonvolatile memory array,
separate from the data RAM and program memory,
which is used for long-term storage of program data. It
is not directly mapped in either the register file or
program memory space but is indirectly addressed
through the Special Function Registers (SFRs). The
EEPROM is readable and writable during normal
operation over the entire VDD range. 

Four SFRs are used to read and write to the data
EEPROM as well as the program memory. They are:

• EECON1

• EECON2

• EEDATA

• EEADR

• EEADRH

The data EEPROM allows byte read and write. When
interfacing to the data memory block, EEDATA holds
the 8-bit data for read/write and the EEADR:EEADRH
register pair hold the address of the EEPROM location
being accessed. 

The EEPROM data memory is rated for high erase/write
cycle endurance. A byte write automatically erases the
location and writes the new data (erase-before-write).
The write time is controlled by an on-chip timer; it will
vary with voltage and temperature as well as from chip-
to-chip. Please refer to the Data EEPROM Memory
parameters in Section 27.0 “Electrical Specifica-
tions” for limits.

7.1  EEADR and EEADRH Registers

The EEADR register is used to address the data
EEPROM for read and write operations. The 8-bit
range of the register can address a memory range of
256 bytes (00h to FFh). The EEADRH register expands
the range to 1024 bytes by adding an additional two
address bits.

7.2 EECON1 and EECON2 Registers

Access to the data EEPROM is controlled by two
registers: EECON1 and EECON2. These are the same
registers which control access to the program memory
and are used in a similar manner for the data
EEPROM.

The EECON1 register (Register 7-1) is the control
register for data and program memory access. Control
bit EEPGD determines if the access will be to program
or data EEPROM memory. When the EEPGD bit is
clear, operations will access the data EEPROM
memory. When the EEPGD bit is set, program memory
is accessed.

Control bit, CFGS, determines if the access will be to
the Configuration registers or to program memory/data
EEPROM memory. When the CFGS bit is set,
subsequent operations access Configuration registers.
When the CFGS bit is clear, the EEPGD bit selects
either program Flash or data EEPROM memory.

The WREN bit, when set, will allow a write operation.
On power-up, the WREN bit is clear. 

The WRERR bit is set by hardware when the WR bit is
set and cleared when the internal programming timer
expires and the write operation is complete. 

The WR control bit initiates write operations. The bit
can be set but not cleared by software. It is cleared only
by hardware at the completion of the write operation.

Control bits, RD and WR, start read and erase/write
operations, respectively. These bits are set by firmware
and cleared by hardware at the completion of the
operation.

The RD bit cannot be set when accessing program
memory (EEPGD = 1). Program memory is read using
table read instructions. See Section 6.1 “Table Reads
and Table Writes” regarding table reads.

The EECON2 register is not a physical register. It is
used exclusively in the memory write and erase
sequences. Reading EECON2 will read all ‘0’s.

Note: During normal operation, the WRERR
may read as ‘1’. This can indicate that a
write operation was prematurely termi-
nated by a Reset, or a write operation was
attempted improperly.

Note: The EEIF interrupt flag bit of the PIR2
register is set when the write is complete.
It must be cleared by software.
 2010-2016 Microchip Technology Inc.  DS40001412G-page 99



PIC18(L)F2X/4XK22
REGISTER 9-6: PIR3: PERIPHERAL INTERRUPT (FLAG) REGISTER 3

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SSP2IF BCL2IF RC2IF TX2IF CTMUIF TMR5GIF TMR3GIF TMR1GIF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 SSP2IF: Synchronous Serial Port Interrupt Flag bit

1 = The transmission/reception is complete (must be cleared in software)
0 = Waiting to transmit/receive

bit 6 BCL2IF: MSSP2 Bus Collision Interrupt Flag bit

1 = A bus collision has occurred while the SSP2 module configured in I2C master was transmitting
(must be cleared in software)

0 = No bus collision occurred

bit 5 RC2IF: EUSART2 Receive Interrupt Flag bit

1 = The EUSART2 receive buffer, RCREG2, is full (cleared by reading RCREG2)
0 = The EUSART2 receive buffer is empty

bit 4 TX2IF: EUSART2 Transmit Interrupt Flag bit

1 = The EUSART2 transmit buffer, TXREG2, is empty (cleared by writing TXREG2)
0 = The EUSART2 transmit buffer is full

bit 3 CTMUIF: CTMU Interrupt Flag bit 

1 = CTMU interrupt occurred (must be cleared in software)
0 = No CTMU interrupt occurred

bit 2 TMR5GIF: TMR5 Gate Interrupt Flag bits

1 = TMR gate interrupt occurred (must be cleared in software)
0 = No TMR gate occurred

bit 1 TMR3GIF: TMR3 Gate Interrupt Flag bits

1 = TMR gate interrupt occurred (must be cleared in software)
0 = No TMR gate occurred

bit 0 TMR1GIF: TMR1 Gate Interrupt Flag bits 

1 = TMR gate interrupt occurred (must be cleared in software)
0 = No TMR gate occurred
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PIC18(L)F2X/4XK22
TABLE 10-6: REGISTERS ASSOCIATED WITH PORTB

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

ANSELB — — ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 150

ECCP2AS CCP2ASE CCP2AS<2:0> PSS2AC<1:0> PSS2BD<1:0> 202

CCP2CON P2M<1:0> DC2B<1:0> CCP2M<3:0> 198

ECCP3AS CCP3ASE CCP3AS<2:0> PSS3AC<1:0> PSS3BD<1:0> 202

CCP3CON P3M<1:0> DC3B<1:0> CCP3M<3:0> 198

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 109

INTCON2 RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP 110

INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF 111

IOCB IOCB7 IOCB6 IOCB5 IOCB4 — — — — 153

LATB LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 152

PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 148

SLRCON — — — SLRE(1) SLRD(1) SLRC SLRB SLRA 153

T1GCON TMR1GE T1GPOL T1GTM T1GSPM T1GGO/DONE T1GVAL T1GSS<1:0> 167

T3CON TMR3CS<1:0> T3CKPS<1:0> T3SOSCEN T3SYNC T3RD16 TMR3ON 166

T5GCON TMR5GE T5GPOL T5GTM T5GSPM T5GGO/DONE T5GVAL T5GSS<1:0> 167

TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 151

WPUB WPUB7 WPUB6 WPUB5 WPUB4 WPUB3 WPUB2 WPUB1 WPUB0 152

Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for PORTB.
Note 1: Available on PIC18(L)F4XK22 devices.

TABLE 10-7: CONFIGURATION REGISTERS ASSOCIATED WITH PORTB

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

CONFIG3H MCLRE — P2BMX T3CMX HFOFST CCP3MX PBADEN CCP2MX 348

CONFIG4L DEBUG XINST — — — LVP(1) — STRVEN 349

Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for PORTB.
Note 1: Can only be changed when in high voltage programming mode.
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PIC18(L)F2X/4XK22
11.2 Timer0 Operation

Timer0 can operate as either a timer or a counter; the
mode is selected with the T0CS bit of the T0CON
register. In Timer mode (T0CS = 0), the module
increments on every clock by default unless a different
prescaler value is selected (see Section 11.4
“Prescaler”). Timer0 incrementing is inhibited for two
instruction cycles following a TMR0 register write. The
user can work around this by adjusting the value written
to the TMR0 register to compensate for the anticipated
missing increments.

The Counter mode is selected by setting the T0CS bit
(= 1). In this mode, Timer0 increments either on every
rising or falling edge of pin RA4/T0CKI. The increment-
ing edge is determined by the Timer0 Source Edge
Select bit, T0SE of the T0CON register; clearing this bit
selects the rising edge. Restrictions on the external
clock input are discussed below.

An external clock source can be used to drive Timer0;
however, it must meet certain requirements (see
Table 27-12) to ensure that the external clock can be
synchronized with the internal phase clock (TOSC).
There is a delay between synchronization and the
onset of incrementing the timer/counter.

11.3 Timer0 Reads and Writes in 
16-Bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit
mode; it is actually a buffered version of the real high
byte of Timer0 which is neither directly readable nor
writable (refer to Figure 11-2). TMR0H is updated with
the contents of the high byte of Timer0 during a read of
TMR0L. This provides the ability to read all 16 bits of
Timer0 without the need to verify that the read of the
high and low byte were valid. Invalid reads could
otherwise occur due to a rollover between successive
reads of the high and low byte. 

Similarly, a write to the high byte of Timer0 must also
take place through the TMR0H Buffer register. Writing
to TMR0H does not directly affect Timer0. Instead, the
high byte of Timer0 is updated with the contents of
TMR0H when a write occurs to TMR0L. This allows all
16 bits of Timer0 to be updated at once.

FIGURE 11-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)    

Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.
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14.4.2.1 Direction Change in Full-Bridge 
Mode

In the Full-Bridge mode, the PxM1 bit in the CCPxCON
register allows users to control the forward/reverse
direction. When the application firmware changes this
direction control bit, the module will change to the new
direction on the next PWM cycle.

A direction change is initiated in software by changing
the PxM1 bit of the CCPxCON register. The following
sequence occurs four Timer cycles prior to the end of
the current PWM period:

• The modulated outputs (PxB and PxD) are placed 
in their inactive state.

• The associated unmodulated outputs (PxA and 
PxC) are switched to drive in the opposite 
direction.

• PWM modulation resumes at the beginning of the 
next period.

See Figure 14-12 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band
delay. As one output is modulated at a time, dead-band
delay is generally not required. There is a situation
where dead-band delay is required. 

This situation occurs when both of the following
conditions are true:

1. The direction of the PWM output changes when
the duty cycle of the output is at or near 100%.

2. The turn off time of the power switch, including
the power device and driver circuit, is greater
than the turn on time.

Figure 14-13 shows an example of the PWM direction
changing from forward to reverse, at a near 100% duty
cycle. In this example, at time t1, the output PxA and
PxD become inactive, while output PxC becomes
active. Since the turn off time of the power devices is
longer than the turn on time, a shoot-through current
will flow through power devices QC and QD (see
Figure 14-10) for the duration of ‘t’. The same
phenomenon will occur to power devices QA and QB
for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required
for an application, two possible solutions for eliminating
the shoot-through current are:

1. Reduce PWM duty cycle for one PWM period
before changing directions.

2. Use switch drivers that can drive the switches off
faster than they can drive them on.

Other options to prevent shoot-through current may
exist.

FIGURE 14-12: EXAMPLE OF PWM DIRECTION CHANGE

Pulse Width

Period(1)
Signal

Note 1: The direction bit PxM1 of the CCPxCON register is written any time during the PWM cycle.

2: When changing directions, the PxA and PxC signals switch before the end of the current PWM cycle. The
modulated PxB and PxD signals are inactive at this time. The length of this time is (TimerX Prescale)/FOSC,
where TimerX is Timer2, Timer4 or Timer6.

Period

(2)

PxA (Active-High)

PxB (Active-High)

PxC (Active-High)

PxD (Active-High)

Pulse Width
DS40001412G-page 190   2010-2016 Microchip Technology Inc.



PIC18(L)F2X/4XK22
14.4.5 PROGRAMMABLE DEAD-BAND 
DELAY MODE

In half-bridge applications where all power switches are
modulated at the PWM frequency, the power switches
normally require more time to turn off than to turn on. If
both the upper and lower power switches are switched
at the same time (one turned on, and the other turned
off), both switches may be on for a short period of time
until one switch completely turns off. During this brief
interval, a very high current (shoot-through current) will
flow through both power switches, shorting the bridge
supply. To avoid this potentially destructive shoot-
through current from flowing during switching, turning
on either of the power switches is normally delayed to
allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable dead-
band delay is available to avoid shoot-through current
from destroying the bridge power switches. The delay
occurs at the signal transition from the non-active state
to the active state. See Figure 14-16 for illustration.
The lower seven bits of the associated PWMxCON
register (Register 14-6) sets the delay period in terms
of microcontroller instruction cycles (TCY or 4 TOSC).

FIGURE 14-16: EXAMPLE OF HALF-
BRIDGE PWM OUTPUT

FIGURE 14-17: EXAMPLE OF HALF-BRIDGE APPLICATIONS
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PRx register.

2: Output signals are shown as active-high.
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15.5.2 SLAVE RECEPTION

When the R/W bit of a matching received address byte
is clear, the R/W bit of the SSPxSTAT register is
cleared. The received address is loaded into the
SSPxBUF register and acknowledged. 

When the overflow condition exists for a received
address, then not Acknowledge is given. An overflow
condition is defined as either bit BF of the SSPxSTAT
register is set, or bit SSPxOV of the SSPxCON1 regis-
ter is set. The BOEN bit of the SSPxCON3 register
modifies this operation. For more information see
Register 15-5.

An MSSPx interrupt is generated for each transferred
data byte. Flag bit, SSPxIF, must be cleared by
software.

When the SEN bit of the SSPxCON2 register is set,
SCLx will be held low (clock stretch) following each
received byte. The clock must be released by setting
the CKP bit of the SSPxCON1 register, except
sometimes in 10-bit mode. See Section 15.2.3 “SPI
Master Mode” for more detail.

15.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events
for the MSSPx module configured as an I2C slave in
7-bit Addressing mode. All decisions made by hard-
ware or software and their effect on reception.
Figure 15-14 and Figure 15-5 are used as a visual
reference for this description.

This is a step by step process of what typically must
be done to accomplish I2C communication.

1. Start bit detected.

2. S bit of SSPxSTAT is set; SSPxIF is set if
interrupt on Start detect is enabled.

3. Matching address with R/W bit clear is received.

4. The slave pulls SDAx low sending an ACK to the
master, and sets SSPxIF bit.

5. Software clears the SSPxIF bit.

6. Software reads received address from
SSPxBUF clearing the BF flag.

7. If SEN = 1; Slave software sets CKP bit to
release the SCLx line.

8. The master clocks out a data byte.

9. Slave drives SDAx low sending an ACK to the
master, and sets SSPxIF bit.

10. Software clears SSPxIF.

11. Software reads the received byte from
SSPxBUF clearing BF.

12. Steps 8-12 are repeated for all received bytes
from the master.

13. Master sends Stop condition, setting P bit of
SSPxSTAT, and the bus goes Idle.

15.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set
operate the same as without these options with extra
interrupts and clock stretching added after the 8th fall-
ing edge of SCLx. These additional interrupts allow the
slave software to decide whether it wants to ACK the
receive address or data byte, rather than the hard-
ware. This functionality adds support for PMBus™ that
was not present on previous versions of this module. 

This list describes the steps that need to be taken by
slave software to use these options for I2C
communication. Figure 15-16 displays a module using
both address and data holding. Figure 15-17 includes
the operation with the SEN bit of the SSPxCON2
register set.

1. S bit of SSPxSTAT is set; SSPxIF is set if
interrupt on Start detect is enabled.

2. Matching address with R/W bit clear is clocked
in. SSPxIF is set and CKP cleared after the 8th
falling edge of SCLx.

3. Slave clears the SSPxIF.

4. Slave can look at the ACKTIM bit of the SSPx-
CON3 register to determine if the SSPxIF was
after or before the ACK.

5. Slave reads the address value from SSPxBUF,
clearing the BF flag.

6. Slave sets ACK value clocked out to the master
by setting ACKDT.

7. Slave releases the clock by setting CKP.

8. SSPxIF is set after an ACK, not after a NACK.

9. If SEN = 1 the slave hardware will stretch the
clock after the ACK.

10. Slave clears SSPxIF

.

11. SSPxIF set and CKP cleared after 8th falling
edge of SCLx for a received data byte.

12. Slave looks at ACKTIM bit of SSPxCON3 to
determine the source of the interrupt.

13. Slave reads the received data from SSPxBUF
clearing BF.

14. Steps 7-14 are the same for each received data
byte.

15. Communication is ended by either the slave
sending an ACK = 1, or the master sending a
Stop condition. If a Stop is sent and Interrupt on
Stop detect is disabled, the slave will only know
by polling the P bit of the SSTSTAT register.

Note: SSPxIF is still set after the 9th falling edge of
SCLx even if there is no clock stretching and
BF has been cleared. Only if NACK is sent
to master is SSPxIF not set.
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16.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the
standard non-return-to-zero (NRZ) format. NRZ is
implemented with two levels: a VOH Mark state which
represents a ‘1’ data bit, and a VOL Space state which
represents a ‘0’ data bit. NRZ refers to the fact that
consecutively transmitted data bits of the same value
stay at the output level of that bit without returning to a
neutral level between each bit transmission. An NRZ
transmission port idles in the Mark state. Each character
transmission consists of one Start bit followed by eight
or nine data bits and is always terminated by one or
more Stop bits. The Start bit is always a space and the
Stop bits are always marks. The most common data
format is eight bits. Each transmitted bit persists for a
period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-
bit Baud Rate Generator is used to derive standard
baud rate frequencies from the system oscillator. See
Table 16-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The
EUSART’s transmitter and receiver are functionally
independent, but share the same data format and baud
rate. Parity is not supported by the hardware, but can
be implemented in software and stored as the ninth
data bit.

16.1.1 EUSART ASYNCHRONOUS 
TRANSMITTER

The EUSART transmitter block diagram is shown in
Figure 16-1. The heart of the transmitter is the serial
Transmit Shift Register (TSR), which is not directly
accessible by software. The TSR obtains its data from
the transmit buffer, which is the TXREGx register.

16.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous
operations by configuring the following three control
bits:

• TXEN = 1
• SYNC = 0

• SPEN = 1

All other EUSART control bits are assumed to be in
their default state.

Setting the TXEN bit of the TXSTAx register enables the
transmitter circuitry of the EUSART. Clearing the SYNC
bit of the TXSTAx register configures the EUSART for
asynchronous operation. Setting the SPEN bit of the
RCSTAx register enables the EUSART and
automatically configures the TXx/CKx I/O pin as an
output. If the TXx/CKx pin is shared with an analog
peripheral the analog I/O function must be disabled by
clearing the corresponding ANSEL bit.

 

16.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the
TXREGx register. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREGx is immediately
transferred to the TSR register. If the TSR still contains
all or part of a previous character, the new character
data is held in the TXREGx until the Stop bit of the
previous character has been transmitted. The pending
character in the TXREGx is then transferred to the TSR
in one TCY immediately following the Stop bit
transmission. The transmission of the Start bit, data bits
and Stop bit sequence commences immediately
following the transfer of the data to the TSR from the
TXREGx.

16.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with
the CKTXP bit of the BAUDCONx register. The default
state of this bit is ‘0’ which selects high true transmit
idle and data bits. Setting the CKTXP bit to ‘1’ will invert
the transmit data resulting in low true idle and data bits.
The CKTXP bit controls transmit data polarity only in
Asynchronous mode. In Synchronous mode the
CKTXP bit has a different function.

16.1.1.4 Transmit Interrupt Flag

The TXxIF interrupt flag bit of the PIR1/PIR3 register is
set whenever the EUSART transmitter is enabled and
no character is being held for transmission in the
TXREGx. In other words, the TXxIF bit is only clear
when the TSR is busy with a character and a new
character has been queued for transmission in the
TXREGx. The TXxIF flag bit is not cleared immediately
upon writing TXREGx. TXxIF becomes valid in the
second instruction cycle following the write execution.
Polling TXxIF immediately following the TXREGx write
will return invalid results. The TXxIF bit is read-only, it
cannot be set or cleared by software.

The TXxIF interrupt can be enabled by setting the
TXxIE interrupt enable bit of the PIE1/PIE3 register.
However, the TXxIF flag bit will be set whenever the
TXREGx is empty, regardless of the state of TXxIE
enable bit.

To use interrupts when transmitting data, set the TXxIE
bit only when there is more data to send. Clear the
TXxIE interrupt enable bit upon writing the last
character of the transmission to the TXREGx.

Note: The TXxIF transmitter interrupt flag is set
when the TXEN enable bit is set.
 2010-2016 Microchip Technology Inc.  DS40001412G-page 261



PIC18(L)F2X/4XK22
16.5.1.6 Synchronous Master Reception

Data is received at the RXx/DTx pin. The RXx/DTx pin
output driver must be disabled by setting the
corresponding TRIS bits when the EUSART is
configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting
either the Single Receive Enable bit (SREN of the
RCSTAx register) or the Continuous Receive Enable
bit (CREN of the RCSTAx register).

When SREN is set and CREN is clear, only as many
clock cycles are generated as there are data bits in a
single character. The SREN bit is automatically cleared
at the completion of one character. When CREN is set,
clocks are continuously generated until CREN is
cleared. If CREN is cleared in the middle of a character
the CK clock stops immediately and the partial charac-
ter is discarded. If SREN and CREN are both set, then
SREN is cleared at the completion of the first character
and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is
sampled at the RXx/DTx pin on the trailing edge of the
TXx/CKx clock pin and is shifted into the Receive Shift
Register (RSR). When a complete character is
received into the RSR, the RCxIF bit is set and the
character is automatically transferred to the two
character receive FIFO. The Least Significant eight bits
of the top character in the receive FIFO are available in
RCREGx. The RCxIF bit remains set as long as there
are un-read characters in the receive FIFO.

16.5.1.7 Slave Clock

Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device configured
as a slave receives the clock on the TXx/CKx line. The
TXx/CKx pin output driver must be disabled by setting
the associated TRIS bit when the device is configured
for synchronous slave transmit or receive operation.
Serial data bits change on the leading edge to ensure
they are valid at the trailing edge of each clock. One data
bit is transferred for each clock cycle. Only as many
clock cycles should be received as there are data bits.

16.5.1.8 Receive Overrun Error

The receive FIFO buffer can hold two characters. An
overrun error will be generated if a third character, in its
entirety, is received before RCREGx is read to access
the FIFO. When this happens the OERR bit of the
RCSTAx register is set. Previous data in the FIFO will
not be overwritten. The two characters in the FIFO
buffer can be read, however, no additional characters
will be received until the error is cleared. The OERR bit
can only be cleared by clearing the overrun condition.
If the overrun error occurred when the SREN bit is set
and CREN is clear then the error is cleared by reading
RCREGx. 

If the overrun occurred when the CREN bit is set then
the error condition is cleared by either clearing the
CREN bit of the RCSTAx register or by clearing the
SPEN bit which resets the EUSART.

16.5.1.9 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When
the RX9 bit of the RCSTAx register is set the EUSART
will shift 9-bits into the RSR for each character
received. The RX9D bit of the RCSTAx register is the
ninth, and Most Significant, data bit of the top unread
character in the receive FIFO. When reading 9-bit data
from the receive FIFO buffer, the RX9D data bit must
be read before reading the eight Least Significant bits
from the RCREGx.

16.5.1.10 Synchronous Master Reception 
Setup:

1. Initialize the SPBRGHx, SPBRGx register pair
for the appropriate baud rate. Set or clear the
BRGH and BRG16 bits, as required, to achieve
the desired baud rate.

2. Set the RXx/DTx and TXx/CKx TRIS controls to
‘1’.

3. Enable the synchronous master serial port by
setting bits SYNC, SPEN and CSRC. Disable
RXx/DTx and TXx/CKx output drivers by setting
the corresponding TRIS bits.

4. Ensure bits CREN and SREN are clear.

5. If using interrupts, set the GIE/GIEH and PEIE/
GIEL bits of the INTCON register and set
RCxIE.

6. If 9-bit reception is desired, set bit RX9.

7. Start reception by setting the SREN bit or for
continuous reception, set the CREN bit.

8. Interrupt flag bit RCxIF will be set when recep-
tion of a character is complete. An interrupt will
be generated if the enable bit RCxIE was set.

9. Read the RCSTAx register to get the ninth bit (if
enabled) and determine if any error occurred
during reception.

10. Read the 8-bit received data by reading the
RCREGx register.

11. If an overrun error occurs, clear the error by
either clearing the CREN bit of the RCSTAx
register or by clearing the SPEN bit which resets
the EUSART. 
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19.1 CTMU Operation

The CTMU works by using a fixed current source to
charge a circuit. The type of circuit depends on the type
of measurement being made. In the case of charge
measurement, the current is fixed, and the amount of
time the current is applied to the circuit is fixed. The
amount of voltage read by the A/D is then a
measurement of the capacitance of the circuit. In the
case of time measurement, the current, as well as the
capacitance of the circuit, is fixed. In this case, the
voltage read by the A/D is then representative of the
amount of time elapsed from the time the current
source starts and stops charging the circuit.

If the CTMU is being used as a time delay, both
capacitance and current source are fixed, as well as the
voltage supplied to the comparator circuit. The delay of
a signal is determined by the amount of time it takes the
voltage to charge to the comparator threshold voltage.

19.1.1 THEORY OF OPERATION

The operation of the CTMU is based on the equation
for charge:

 

More simply, the amount of charge measured in
coulombs in a circuit is defined as current in amperes
(I) multiplied by the amount of time in seconds that the
current flows (t). Charge is also defined as the
capacitance in farads (C) multiplied by the voltage of
the circuit (V). It follows that:

 

The CTMU module provides a constant, known current
source. The A/D Converter is used to measure (V) in
the equation, leaving two unknowns: capacitance (C)
and time (t). The above equation can be used to
calculate capacitance or time, by either the relationship
using the known fixed capacitance of the circuit:

or by:

using a fixed time that the current source is applied to
the circuit.

19.1.2 CURRENT SOURCE

At the heart of the CTMU is a precision current source,
designed to provide a constant reference for
measurements. The level of current is user-selectable
across three ranges, with the ability to trim the output.
The current range is selected by the IRNG<1:0> bits
(CTMUICON<1:0>), with a value of ‘00’ representing
the lowest range. 

Current trim is provided by the ITRIM<5:0> bits
(CTMUICON<7:2>). Note that half of the range adjusts
the current source positively and the other half reduces
the current source. A value of ‘000000’ is the neutral
position (no change). A value of ‘100000’ is the maxi-
mum negative adjustment, and ‘011111’ is the maxi-
mum positive adjustment.

19.1.3 EDGE SELECTION AND CONTROL

CTMU measurements are controlled by edge events
occurring on the module’s two input channels. Each
channel, referred to as Edge 1 and Edge 2, can be
configured to receive input pulses from one of the edge
input pins (CTED1 and CTED2) or ECCPx Special
Event Triggers. The input channels are level-sensitive,
responding to the instantaneous level on the channel
rather than a transition between levels. The inputs are
selected using the EDG1SEL and EDG2SEL bit pairs
(CTMUCONL<3:2 and 6:5>). 

In addition to source, each channel can be configured for
event polarity using the EDGE2POL and EDGE1POL
bits (CTMUCONL<7,4>). The input channels can also
be filtered for an edge event sequence (Edge 1 occur-
ring before Edge 2) by setting the EDGSEQEN bit
(CTMUCONH<2>).

19.1.4 EDGE STATUS

The CTMUCONL register also contains two Status bits:
EDG2STAT and EDG1STAT (CTMUCONL<1:0>).
Their primary function is to show if an edge response
has occurred on the corresponding channel. The
CTMU automatically sets a particular bit when an edge
response is detected on its channel. The level-sensitive
nature of the input channels also means that the Status
bits become set immediately if the channel’s configura-
tion is changed and is the same as the channel’s
current state.

I C
dV
dT
-------=

I t C V.=

t C V  I=

C I t  V=
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MOVLW Move literal to W

Syntax: MOVLW   k

Operands: 0  k  255

Operation: k  W

Status Affected: None

Encoding: 0000 1110 kkkk kkkk

Description: The 8-bit literal ‘k’ is loaded into W.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process 
Data

Write to W

Example: MOVLW 5Ah

After Instruction

W = 5Ah

MOVWF Move W to f

Syntax: MOVWF     f {,a}

Operands: 0  f  255
a  [0,1]

Operation: (W)  f

Status Affected: None

Encoding: 0110 111a ffff ffff

Description: Move data from W to register ‘f’. 
Location ‘f’ can be anywhere in the 
256-byte bank. 
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See 
Section 25.2.3 “Byte-Oriented and 
Bit-Oriented Instructions in Indexed 
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write
register ‘f’

Example: MOVWF REG, 0

Before Instruction

W = 4Fh
REG = FFh

After Instruction

W = 4Fh
REG = 4Fh
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RETURN Return from Subroutine

Syntax: RETURN   {s}

Operands: s  [0,1]

Operation: (TOS)  PC,
if s = 1
(WS)  W,
(STATUSS)  Status,
(BSRS)  BSR,
PCLATU, PCLATH are unchanged

Status Affected: None

Encoding: 0000 0000 0001 001s

Description: Return from subroutine. The stack is 
popped and the top of the stack (TOS) 
is loaded into the program counter. If 
‘s’= 1, the contents of the shadow 
registers, WS, STATUSS and BSRS, 
are loaded into their corresponding 
registers, W, STATUS and BSR. If 
‘s’ = 0, no update of these registers 
occurs (default).

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No 
operation

Process 
Data

POP PC 
from stack

No 
operation

No 
operation

No 
operation

No 
operation

Example: RETURN

After Instruction:
PC = TOS

RLCF Rotate Left f through Carry

Syntax:  RLCF     f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f<n>)  dest<n + 1>,
(f<7>)  C,
(C)  dest<0>

Status Affected: C, N, Z

Encoding: 0011 01da ffff ffff

Description: The contents of register ‘f’ are rotated 
one bit to the left through the CARRY 
flag. If ‘d’ is ‘0’, the result is placed in 
W. If ‘d’ is ‘1’, the result is stored back 
in register ‘f’ (default). 
If ‘a’ is ‘0’, the Access Bank is 
selected. If ‘a’ is ‘1’, the BSR is used to 
select the GPR bank.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction 
operates in Indexed Literal Offset 
Addressing mode whenever 
f 95 (5Fh). See Section 25.2.3 
“Byte-Oriented and Bit-Oriented 
Instructions in Indexed Literal Offset 
Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

Example: RLCF REG, 0, 0

Before Instruction
REG = 1110 0110
C = 0

After Instruction
REG = 1110 0110
W = 1100 1100
C = 1

C register f
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SUBFSR Subtract Literal from FSR 

Syntax: SUBFSR f, k

Operands: 0  k  63

f  [ 0, 1, 2 ]

Operation: FSR(f) – k  FSRf

Status Affected: None

Encoding: 1110 1001 ffkk kkkk

Description: The 6-bit literal ‘k’ is subtracted from 
the contents of the FSR specified by 
‘f’.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

Example: SUBFSR 2, 23h

Before Instruction
FSR2 = 03FFh

After Instruction
FSR2 = 03DCh

SUBULNK Subtract Literal from FSR2 and Return

Syntax: SUBULNK   k

Operands: 0  k  63

Operation: FSR2 – k  FSR2

(TOS) PC

Status Affected: None

Encoding: 1110 1001 11kk kkkk

Description: The 6-bit literal ‘k’ is subtracted from the 
contents of the FSR2. A RETURN is then 
executed by loading the PC with the TOS. 
The instruction takes two cycles to 
execute; a NOP is performed during the 
second cycle.
This may be thought of as a special case of 
the SUBFSR instruction, where f = 3 (binary 
‘11’); it operates only on FSR2. 

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

No
Operation

No
Operation

No
Operation

No
Operation

Example: SUBULNK 23h

Before Instruction
FSR2 = 03FFh
PC = 0100h

After Instruction
FSR2 = 03DCh
PC = (TOS)
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26.11 Demonstration/Development 
Boards, Evaluation Kits, and 
Starter Kits

A wide variety of demonstration, development and
evaluation boards for various PIC MCUs and dsPIC
DSCs allows quick application development on fully
functional systems. Most boards include prototyping
areas for adding custom circuitry and provide applica-
tion firmware and source code for examination and
modification.

The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.

The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.

In addition to the PICDEM™ and dsPICDEM™
demonstration/development board series of circuits,
Microchip has a line of evaluation kits and demonstra-
tion software for analog filter design, KEELOQ® security
ICs, CAN, IrDA®, PowerSmart battery management,
SEEVAL® evaluation system, Sigma-Delta ADC, flow
rate sensing, plus many more.

Also available are starter kits that contain everything
needed to experience the specified device. This usually
includes a single application and debug capability, all
on one board.

Check the Microchip web page (www.microchip.com)
for the complete list of demonstration, development
and evaluation kits.

26.12 Third-Party Development Tools

Microchip also offers a great collection of tools from
third-party vendors. These tools are carefully selected
to offer good value and unique functionality.

• Device Programmers and Gang Programmers 
from companies, such as SoftLog and CCS

• Software Tools from companies, such as Gimpel 
and Trace Systems

• Protocol Analyzers from companies, such as 
Saleae and Total Phase

• Demonstration Boards from companies, such as 
MikroElektronika, Digilent® and Olimex

• Embedded Ethernet Solutions from companies, 
such as EZ Web Lynx, WIZnet and IPLogika®
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28.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g. outside specified power supply range) and therefore, outside the warranted range.
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29.0 PACKAGING INFORMATION

29.1 Package Marking Information          

Legend: XX...X Customer-specific information or Microchip part number
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
  Pb-free JEDEC® designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator (     )

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.

3e

3e

28-Lead SPDIP (.300”) Example

PIC18F25K22

0810017
3e

28-Lead SOIC (7.50 mm) Example

YYWWNNN

XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX PIC18F25K22

3e

28-Lead SSOP (5.30 mm) Example

PIC18F25K22

0810017

3e-E/SS

-E/SP

-E/SO

0810017
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Note: For the most current package drawings, please see the Microchip Packaging Specification located at 
http://www.microchip.com/packaging
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