
Microchip Technology - PIC18LF23K22T-I/SS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, HLVD, POR, PWM, WDT

Number of I/O 24

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 19x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-SSOP (0.209", 5.30mm Width)

Supplier Device Package 28-SSOP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf23k22t-i-ss

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf23k22t-i-ss-4403367
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F2X/4XK22
FIGURE 1: 28-PIN PDIP, SOIC, SSOP DIAGRAM

FIGURE 2: 28-PIN QFN, UQFN(1) DIAGRAM

10
11

2

3
4
5

6

1

8
7

9

12

13
14 15

16
17

18
19
20

23
24
25

26
27
28

22
21

MCLR/VPP/RE3
RA0
RA1
RA2
RA3
RA4
RA5
VSS

RA7
RA6
RC0
RC1
RC2
RC3

RB7/PGD
RB6/PGC
RB5

RB4
RB3
RB2
RB1
RB0
VDD

VSS

RC7
RC6
RC5
RC4

P
IC

18
(L

)F
2X

K
22

10 11

2
3

6

1

18
19
20
21

22

12 13 14
15

8
7

16
17

232425262728

9

R
C

0

5
4

R
B

7/
P

G
D

R
B

6/
P

G
C

R
B

5
R

B
4

RB3
RB2
RB1
RB0
VDD

VSS

RC7

R
C

6
R

C
5

R
C

4

M
C

LR
/V

P
P
/R

E
3

R
A

0
R

A
1

RA2
RA3
RA4
RA5/
VSS

RA7
RA6

R
C

1
R

C
2

R
C

3

PIC18(L)F2XK22

Note 1: The 28-pin UQFN package is available only for PIC18(L)F23K22 and PIC18(L)F24K22.
 2010-2016 Microchip Technology Inc. DS40001412G-page 3

PIC18(L)F2X/4XK22
21 40 40 36 RD2/P2B/AN22

RD2 I/O ST Digital I/O

P2B(1) O CMOS Enhanced CCP2 PWM output.

AN22 I Analog Analog input 22.

22 41 41 37 RD3/P2C/SS2/AN23

RD3 I/O ST Digital I/O.

P2C O CMOS Enhanced CCP2 PWM output.

SS2 I TTL SPI slave select input (MSSP).

AN23 I Analog Analog input 23.

27 2 2 2 RD4/P2D/SDO2/AN24

RD4 I/O ST Digital I/O.

P2D O CMOS Enhanced CCP2 PWM output.

SDO2 O — SPI data out (MSSP).

AN24 I Analog Analog input 24.

28 3 3 3 RD5/P1B/AN25

RD5 I/O ST Digital I/O.

P1B O CMOS Enhanced CCP1 PWM output.

AN25 I Analog Analog input 25.

29 4 4 4 RD6/P1C/TX2/CK2/AN26

RD6 I/O ST Digital I/O.

P1C O CMOS Enhanced CCP1 PWM output.

TX2 O — EUSART asynchronous transmit.

CK2 I/O ST EUSART synchronous clock (see related RXx/
DTx).

AN26 I Analog Analog input 26.

30 5 5 5 RD7/P1D/RX2/DT2/AN27

RD7 I/O ST Digital I/O.

P1D O CMOS Enhanced CCP1 PWM output.

RX2 I ST EUSART asynchronous receive.

DT2 I/O ST EUSART synchronous data (see related TXx/
CKx).

AN27 I Analog Analog input 27.

8 25 25 23 RE0/P3A/CCP3/AN5

RE0 I/O ST Digital I/O.

P3A(2) O CMOS Enhanced CCP3 PWM output.

CCP3(2) I/O ST Capture 3 input/Compare 3 output/PWM 3 output.

AN5 I Analog Analog input 5.

9 26 26 24 RE1/P3B/AN6

RE1 I/O ST Digital I/O.

P3B O CMOS Enhanced CCP3 PWM output.

AN6 I Analog Analog input 6.

TABLE 1-3: PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Number
Pin Name

Pin
Type

Buffer
Type

Description
PDIP TQFP QFN UQFN

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I
= Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX
and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX,
CCP3MX and CCP2MX are clear.
 2010-2016 Microchip Technology Inc. DS40001412G-page 23

PIC18(L)F2X/4XK22
5.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the
ability to push values onto the stack and pull values off
the stack without disturbing normal program execution
is a desirable feature. The PIC18 instruction set
includes two instructions, PUSH and POP, that permit
the TOS to be manipulated under software control.
TOSU, TOSH and TOSL can be modified to place data
or a return address on the stack.

The PUSH instruction places the current PC value onto
the stack. This increments the Stack Pointer and loads
the current PC value onto the stack.

The POP instruction discards the current TOS by
decrementing the Stack Pointer. The previous value
pushed onto the stack then becomes the TOS value.

5.2 Register Definitions: Stack Pointer

5.2.0.1 Stack Full and Underflow Resets

Device Resets on Stack Overflow and Stack Underflow
conditions are enabled by setting the STVREN bit in
Configuration Register 4L. When STVREN is set, a full
or underflow will set the appropriate STKFUL or
STKUNF bit and then cause a device Reset. When
STVREN is cleared, a full or underflow condition will set
the appropriate STKFUL or STKUNF bit but not cause
a device Reset. The STKFUL or STKUNF bits are
cleared by the user software or a Power-on Reset.

5.2.1 FAST REGISTER STACK

A fast register stack is provided for the Status, WREG
and BSR registers, to provide a “fast return” option for
interrupts. The stack for each register is only one level
deep and is neither readable nor writable. It is loaded
with the current value of the corresponding register
when the processor vectors for an interrupt. All
interrupt sources will push values into the stack
registers. The values in the registers are then loaded
back into their associated registers if the
RETFIE,FAST instruction is used to return from the
interrupt.

If both low and high priority interrupts are enabled, the
stack registers cannot be used reliably to return from
low priority interrupts. If a high priority interrupt occurs
while servicing a low priority interrupt, the stack register
values stored by the low priority interrupt will be
overwritten. In these cases, users must save the key
registers by software during a low priority interrupt.

If interrupt priority is not used, all interrupts may use the
fast register stack for returns from interrupt. If no
interrupts are used, the fast register stack can be used
to restore the Status, WREG and BSR registers at the
end of a subroutine call. To use the fast register stack
for a subroutine call, a CALL label, FAST instruction
must be executed to save the Status, WREG and BSR
registers to the fast register stack. A RETURN, FAST
instruction is then executed to restore these registers
from the fast register stack.

Example 5-1 shows a source code example that uses
the fast register stack during a subroutine call and
return.

REGISTER 5-1: STKPTR: STACK POINTER REGISTER

R/C-0 R/C-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

STKFUL(1) STKUNF(1) — STKPTR<4:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented C = Clearable only bit

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 STKFUL: Stack Full Flag bit(1)

1 = Stack became full or overflowed
0 = Stack has not become full or overflowed

bit 6 STKUNF: Stack Underflow Flag bit(1)

1 = Stack Underflow occurred
0 = Stack Underflow did not occur

bit 5 Unimplemented: Read as ‘0’

bit 4-0 STKPTR<4:0>: Stack Pointer Location bits

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.
 2010-2016 Microchip Technology Inc. DS40001412G-page 67

PIC18(L)F2X/4XK22
REGISTER 9-7: PIR4: PERIPHERAL INTERRUPT (FLAG) REGISTER 4

U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0

— — — — — CCP5IF CCP4IF CCP3IF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-3 Unimplemented: Read as ‘0’

bit 2 CCP5IF: CCP5 Interrupt Flag bits

Capture mode:
1 = A TMR register capture occurred (must be cleared in software)
0 = No TMR register capture occurred

Compare mode:
1 = A TMR register compare match occurred (must be cleared in software)
0 = No TMR register compare match occurred

PWM mode:
Unused in PWM mode.

bit 1 CCP4IF: CCP4 Interrupt Flag bits

Capture mode:
1 = A TMR register capture occurred (must be cleared in software)
0 = No TMR register capture occurred

Compare mode:
1 = A TMR register compare match occurred (must be cleared in software)
0 = No TMR register compare match occurred

PWM mode:
Unused in PWM mode.

bit 0 CCP3IF: ECCP3 Interrupt Flag bits

Capture mode:
1 = A TMR register capture occurred (must be cleared in software)
0 = No TMR register capture occurred

Compare mode:
1 = A TMR register compare match occurred (must be cleared in software)
0 = No TMR register compare match occurred

PWM mode:
Unused in PWM mode.
 2010-2016 Microchip Technology Inc. DS40001412G-page 115

PIC18(L)F2X/4XK22
REGISTER 10-2: PORTE: PORTE REGISTER

U-0 U-0 U-0 U-0 R/W-u/x R/W-u/x R/W-u/x R/W-u/x

— — — — RE3(1) RE2(2), (3) RE1(2), (3) RE0(2), (3)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

-n/n = Value at POR and BOR/Value at all other Resets

bit 7-4 Unimplemented: Read as ‘0’

bit 3 RE3: PORTE Input bit value(1)

bit 2-0 RE<2:0>: PORTE I/O bit values(2), (3)

Note 1: Port is available as input only when MCLRE = 0.

2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O
pin values.

3: Available on PIC18(L)F4XK22 devices.

REGISTER 10-3: ANSELA – PORTA ANALOG SELECT REGISTER

U-0 U-0 R/W-1 U-0 R/W-1 R/W-1 R/W-1 R/W-1

— — ANSA5 — ANSA3 ANSA2 ANSA1 ANSA0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 Unimplemented: Read as ‘0’

bit 5 ANSA5: RA5 Analog Select bit

1 = Digital input buffer disabled
0 = Digital input buffer enabled

bit 4 Unimplemented: Read as ‘0’

bit 3-0 ANSA<3:0>: RA<3:0> Analog Select bit

1 = Digital input buffer disabled
0 = Digital input buffer enabled
 2010-2016 Microchip Technology Inc. DS40001412G-page 149

PIC18(L)F2X/4XK22
FIGURE 12-3: TIMER1/3/5 INCREMENTING EDGE

FIGURE 12-4: TIMER1/3/5 GATE ENABLE MODE

TXCKI = 1

when TMRx
Enabled

TXCKI = 0

when TMRX
Enabled

Note 1: Arrows indicate counter increments.

2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

TMRxGE

TxGPOL

TxG_IN

TxCKI

TxGVAL

Timer1/3/5 N N + 1 N + 2 N + 3 N + 4
 2010-2016 Microchip Technology Inc. DS40001412G-page 163

PIC18(L)F2X/4XK22
14.2 Compare Mode

The Compare mode function described in this section
is identical for all CCP and ECCP modules available on
this device family.

Compare mode makes use of the 16-bit TimerX
resources, Timer1, Timer3 and Timer5. The 16-bit
value of the CCPRxH:CCPRxL register pair is
constantly compared against the 16-bit value of the
TMRxH:TMRxL register pair. When a match occurs,
one of the following events can occur:

• Toggle the CCPx output

• Set the CCPx output

• Clear the CCPx output

• Generate a Special Event Trigger

• Generate a Software Interrupt

The action on the pin is based on the value of the
CCPxM<3:0> control bits of the CCPxCON register. At
the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 14-2 shows a simplified diagram of the
Compare operation.

FIGURE 14-2: COMPARE MODE
OPERATION BLOCK
DIAGRAM

14.2.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by
clearing the associated TRIS bit.

Some CCPx outputs are multiplexed on a couple of
pins. Table 14-2 shows the CCP output pin
Multiplexing. Selection of the output pin is determined
by the CCPxMX bits in Configuration register 3H
(CONFIG3H). Refer to Register 24-4 for more details.

14.2.2 TimerX MODE RESOURCE

In Compare mode, 16-bit TimerX resource must be
running in either Timer mode or Synchronized Counter
mode. The compare operation may not work in
Asynchronous Counter mode.

See Section 12.0 “Timer1/3/5 Module with Gate
Control” for more information on configuring the 16-bit
TimerX resources.

14.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen
(CCPxM<3:0> = 1010), the CCPx module does not
assert control of the CCPx pin (see the CCPxCON
register).

CCPRxH CCPRxL

TMRxH TMRxL

Comparator
Q S

R

Output
Logic

Special Event Trigger

Set CCPxIF Interrupt Flag
(PIR1/2/4)

Match

TRIS

CCPxM<3:0>
Mode Select

Output Enable

Pin

Special Event Trigger function on

• ECCP1, ECCP2, ECCP3, CCP4 and CCP5 will:
- Reset TimerX – TMRxH:TMRxL = 0x0000
- TimerX Interrupt Flag, (TMRxIF) is not set

Additional Function on

• CCP5 will
- Set ADCON0<1>, GO/DONE bit to start an ADC

Conversion if ADCON<0>, ADON = 1.

CCPx 4

Note: Clearing the CCPxCON register will force
the CCPx compare output latch to the
default low level. This is not the PORT I/O
data latch.

Note: Clocking TimerX from the system clock
(FOSC) should not be used in Compare
mode. In order for Compare mode to
recognize the trigger event on the CCPx
pin, TimerX must be clocked from the
instruction clock (FOSC/4) or from an
external clock source.
 2010-2016 Microchip Technology Inc. DS40001412G-page 177

PIC18(L)F2X/4XK22
14.4.2 FULL-BRIDGE MODE

In Full-Bridge mode, all four pins are used as outputs.
An example of full-bridge application is shown in
Figure 14-10.

In the Forward mode, pin CCPx/PxA is driven to its active
state, pin PxD is modulated, while PxB and PxC will be
driven to their inactive state as shown in Figure 14-11.

In the Reverse mode, PxC is driven to its active state, pin
PxB is modulated, while PxA and PxD will be driven to
their inactive state as shown Figure 14-11.

PxA, PxB, PxC and PxD outputs are multiplexed with
the PORT data latches. The associated TRIS bits must
be cleared to configure the PxA, PxB, PxC and PxD
pins as outputs.

FIGURE 14-10: EXAMPLE OF FULL-BRIDGE APPLICATION

PxA

PxC

FET
Driver

FET
Driver

V+

V-

Load

FET
Driver

FET
Driver

PxB

PxD

QA

QB QD

QC
DS40001412G-page 188  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22
FIGURE 14-11: EXAMPLE OF FULL-BRIDGE PWM OUTPUT

Period

Pulse Width

PxA(2)

PxB(2)

PxC(2)

PxD(2)

Forward Mode

(1)

Period

Pulse Width

PxA(2)

PxC(2)

PxD(2)

PxB(2)

Reverse Mode

(1)

(1)(1)

Note 1: At this time, the TMRx register is equal to the PRx register.

2: Output signal is shown as active-high.
 2010-2016 Microchip Technology Inc. DS40001412G-page 189

PIC18(L)F2X/4XK22
15.3 I2C Mode Overview

The Inter-Integrated Circuit Bus (I2C) is a multi-master
serial data communication bus. Devices communicate
in a master/slave environment where the master
devices initiate the communication. A slave device is
controlled through addressing.

The I2C bus specifies two signal connections:

• Serial Clock (SCLx)

• Serial Data (SDAx)

Figure 15-2 shows the block diagram of the MSSPx
module when operating in I2C mode.

Both the SCLx and SDAx connections are bidirectional
open-drain lines, each requiring pull-up resistors for the
supply voltage. Pulling the line to ground is considered
a logical zero and letting the line float is considered a
logical one.

Figure 15-11 shows a typical connection between two
processors configured as master and slave devices.

The I2C bus can operate with one or more master
devices and one or more slave devices.

There are four potential modes of operation for a given
device:

• Master Transmit mode
(master is transmitting data to a slave)

• Master Receive mode
(master is receiving data from a slave)

• Slave Transmit mode
(slave is transmitting data to a master)

• Slave Receive mode
(slave is receiving data from the master)

To begin communication, a master device starts out in
Master Transmit mode. The master device sends out a
Start bit followed by the address byte of the slave it
intends to communicate with. This is followed by a sin-
gle Read/Write bit, which determines whether the mas-
ter intends to transmit to or receive data from the slave
device.

If the requested slave exists on the bus, it will respond
with an Acknowledge bit, otherwise known as an ACK.
The master then continues in either Transmit mode or
Receive mode and the slave continues in the comple-
ment, either in Receive mode or Transmit mode,
respectively.

A Start bit is indicated by a high-to-low transition of the
SDAx line while the SCLx line is held high. Address and
data bytes are sent out, Most Significant bit (MSb) first.
The Read/Write bit is sent out as a logical one when the
master intends to read data from the slave, and is sent
out as a logical zero when it intends to write data to the
slave.

FIGURE 15-11: I2C MASTER/
SLAVE CONNECTION

The Acknowledge bit (ACK) is an active-low signal,
which holds the SDAx line low to indicate to the
transmitter that the slave device has received the
transmitted data and is ready to receive more.

The transition of data bits is always performed while the
SCLx line is held low. Transitions that occur while the
SCLx line is held high are used to indicate Start and
Stop bits.

If the master intends to write to the slave, then it
repeatedly sends out a byte of data, with the slave
responding after each byte with an ACK bit. In this
example, the master device is in Master Transmit mode
and the slave is in Slave Receive mode.

If the master intends to read from the slave, then it
repeatedly receives a byte of data from the slave, and
responds after each byte with an ACK bit. In this
example, the master device is in Master Receive mode
and the slave is Slave Transmit mode.

On the last byte of data communicated, the master
device may end the transmission by sending a Stop bit.
If the master device is in Receive mode, it sends the
Stop bit in place of the last ACK bit. A Stop bit is
indicated by a low-to-high transition of the SDAx line
while the SCLx line is held high.

In some cases, the master may want to maintain con-
trol of the bus and re-initiate another transmission. If
so, the master device may send another Start bit in
place of the Stop bit or last ACK bit when it is in receive
mode.

The I2C bus specifies three message protocols;

• Single message where a master writes data to a
slave.

• Single message where a master reads data from
a slave.

• Combined message where a master initiates a
minimum of two writes, or two reads, or a
combination of writes and reads, to one or more
slaves.

Master

SCLK

SDIx

SCLK

SDOx

Slave
VDD

VDD
 2010-2016 Microchip Technology Inc. DS40001412G-page 215

PIC18(L)F2X/4XK22
15.5.4 SLAVE MODE 10-BIT ADDRESS
RECEPTION

This section describes a standard sequence of events
for the MSSPx module configured as an I2C slave in
10-bit Addressing mode (Figure 15-20) and is used as
a visual reference for this description.

This is a step by step process of what must be done by
slave software to accomplish I2C communication.

1. Bus starts Idle.

2. Master sends Start condition; S bit of SSPxSTAT
is set; SSPxIF is set if interrupt on Start detect is
enabled.

3. Master sends matching high address with R/W
bit clear; UA bit of the SSPxSTAT register is set.

4. Slave sends ACK and SSPxIF is set.

5. Software clears the SSPxIF bit.

6. Software reads received address from SSPxBUF
clearing the BF flag.

7. Slave loads low address into SSPxADD,
releasing SCLx.

8. Master sends matching low address byte to the
slave; UA bit is set.

9. Slave sends ACK and SSPxIF is set.

10. Slave clears SSPxIF.

11. Slave reads the received matching address
from SSPxBUF clearing BF.

12. Slave loads high address into SSPxADD.

13. Master clocks a data byte to the slave and clocks
out the slaves ACK on the 9th SCLx pulse;
SSPxIF is set.

14. If SEN bit of SSPxCON2 is set, CKP is cleared
by hardware and the clock is stretched.

15. Slave clears SSPxIF.

16. Slave reads the received byte from SSPxBUF
clearing BF.

17. If SEN is set the slave sets CKP to release the
SCLx.

18. Steps 13-17 repeat for each received byte.

19. Master sends Stop to end the transmission.

15.5.5 10-BIT ADDRESSING WITH ADDRESS
OR DATA HOLD

Reception using 10-bit addressing with AHEN or
DHEN set is the same as with 7-bit modes. The only
difference is the need to update the SSPxADD register
using the UA bit. All functionality, specifically when the
CKP bit is cleared and SCLx line is held low are the
same. Figure 15-21 can be used as a reference of a
slave in 10-bit addressing with AHEN set.

Figure 15-22 shows a standard waveform for a slave
transmitter in 10-bit Addressing mode.

Note: Updates to the SSPxADD register are not
allowed until after the ACK sequence.

Note: If the low address does not match, SSPxIF
and UA are still set so that the slave
software can set SSPxADD back to the high
address. BF is not set because there is no
match. CKP is unaffected.
 2010-2016 Microchip Technology Inc. DS40001412G-page 229

P
IC

18(L
)F

2X
/4X

K
22

D
S

4
0

0
0

1
4

1
2

G
-p

a
g

e
 2

3
1



 2
0

1
0

-2
0

1
6

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

Receive Data

ACK

Receive Data

D4 D3 D2 D1 D0 D7 D6 D5

4 5 6 7 8 9 1 2

SSPxBUF
is read from
Received data

oftware

x
rs UA and releases
ate of SSPxADD,

oftware
FIGURE 15-21: I2C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)

Receive First Address Byte

UA

Receive Second Address Byte

UA

1 1 1 1 0 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5SDAx

SCLx

SSPxIF

BF

ACKDT

UA

CKP

ACKTIM

1 2 3 4 5 6 7 8 9S

ACKACK

1 2 3 4 5 6 7 8 9 1 2 3

SSPxBUF can be
read anytime before
the next received byte

Cleared by software

falling edge of SCLx
not allowed until 9th
Update to SSPxADD is

Set CKP with s
releases SCLx

SCL
clea
Upd

Set by hardware
on 9th falling edge

Slave software clears
ACKDT to ACK
the received byte

If when AHEN = 1;
on the 8th falling edge
of SCLx of an address
byte, CKP is cleared

ACKTIM is set by hardware
on 8th falling edge of SCLx

Cleared by s

R/W = 0

PIC18(L)F2X/4XK22
16.1.2 EUSART ASYNCHRONOUS
RECEIVER

The Asynchronous mode would typically be used in
RS-232 systems. The receiver block diagram is shown
in Figure 16-2. The data is received on the RXx/DTx
pin and drives the data recovery block. The data
recovery block is actually a high-speed shifter
operating at 16 times the baud rate, whereas the serial
Receive Shift Register (RSR) operates at the bit rate.
When all eight or nine bits of the character have been
shifted in, they are immediately transferred to a two
character First-In-First-Out (FIFO) memory. The FIFO
buffering allows reception of two complete characters
and the start of a third character before software must
start servicing the EUSART receiver. The FIFO and
RSR registers are not directly accessible by software.
Access to the received data is via the RCREGx
register.

16.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous
operation by configuring the following three control bits:

• CREN = 1
• SYNC = 0

• SPEN = 1

All other EUSART control bits are assumed to be in
their default state.

Setting the CREN bit of the RCSTAx register enables
the receiver circuitry of the EUSART. Clearing the
SYNC bit of the TXSTAx register configures the
EUSART for asynchronous operation. Setting the
SPEN bit of the RCSTAx register enables the
EUSART. The RXx/DTx I/O pin must be configured as
an input by setting the corresponding TRIS control bit.
If the RXx/DTx pin is shared with an analog peripheral
the analog I/O function must be disabled by clearing
the corresponding ANSEL bit.

16.1.2.2 Receiving Data

The receiver data recovery circuit initiates character
reception on the falling edge of the first bit. The first bit,
also known as the Start bit, is always a zero. The data
recovery circuit counts one-half bit time to the center of
the Start bit and verifies that the bit is still a zero. If it is
not a zero then the data recovery circuit aborts
character reception, without generating an error, and
resumes looking for the falling edge of the Start bit. If
the Start bit zero verification succeeds then the data
recovery circuit counts a full bit time to the center of the
next bit. The bit is then sampled by a majority detect
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.
This repeats until all data bits have been sampled and
shifted into the RSR. One final bit time is measured and
the level sampled. This is the Stop bit, which is always
a ‘1’. If the data recovery circuit samples a ‘0’ in the
Stop bit position then a framing error is set for this
character, otherwise the framing error is cleared for this
character. See Section 16.1.2.5 “Receive Framing
Error” for more information on framing errors.

Immediately after all data bits and the Stop bit have
been received, the character in the RSR is transferred
to the EUSART receive FIFO and the RCxIF interrupt
flag bit of the PIR1/PIR3 register is set. The top
character in the FIFO is transferred out of the FIFO by
reading the RCREGx register.

16.1.2.3 Receive Data Polarity

The polarity of the receive data can be controlled with
the DTRXP bit of the BAUDCONx register. The default
state of this bit is ‘0’ which selects high true receive idle
and data bits. Setting the DTRXP bit to ‘1’ will invert the
receive data resulting in low true idle and data bits. The
DTRXP bit controls receive data polarity only in
Asynchronous mode. In Synchronous mode the
DTRXP bit has a different function.

Note: If the receive FIFO is overrun, no additional
characters will be received until the overrun
condition is cleared. See Section 16.1.2.6
“Receive Overrun Error” for more
information on overrun errors.
DS40001412G-page 264  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22

MOVFF Move f to f

Syntax: MOVFF fs,fd

Operands: 0  fs  4095
0  fd  4095

Operation: (fs)  fd

Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1100
1111

ffff
ffff

ffff
ffff

ffffs
ffffd

Description: The contents of source register ‘fs’ are
moved to destination register ‘fd’.
Location of source ‘fs’ can be anywhere
in the 4096-byte data space (000h to
FFFh) and location of destination ‘fd’
can also be anywhere from 000h to
FFFh.
Either source or destination can be W
(a useful special situation).
MOVFF is particularly useful for
transferring a data memory location to a
peripheral register (such as the transmit
buffer or an I/O port).
The MOVFF instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register.

Words: 2

Cycles: 2 (3)

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

(src)

Process
Data

No
operation

Decode No
operation

No dummy
read

No
operation

Write
register ‘f’

(dest)

Example: MOVFF REG1, REG2

Before Instruction
REG1 = 33h
REG2 = 11h

After Instruction
REG1 = 33h
REG2 = 33h

MOVLB Move literal to low nibble in BSR

Syntax: MOVLW k

Operands: 0  k  255

Operation: k  BSR

Status Affected: None

Encoding: 0000 0001 kkkk kkkk

Description: The 8-bit literal ‘k’ is loaded into the
Bank Select Register (BSR). The value
of BSR<7:4> always remains ‘0’,
regardless of the value of k7:k4.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write literal
‘k’ to BSR

Example: MOVLB 5

Before Instruction
BSR Register = 02h

After Instruction
BSR Register = 05h
 2010-2016 Microchip Technology Inc. DS40001412G-page 385

PIC18(L)F2X/4XK22
25.2.3 BYTE-ORIENTED AND
BIT-ORIENTED INSTRUCTIONS IN
INDEXED LITERAL OFFSET MODE

In addition to eight new commands in the extended set,
enabling the extended instruction set also enables
Indexed Literal Offset Addressing mode (Section 5.7.1
“Indexed Addressing with Literal Offset”). This has
a significant impact on the way that many commands of
the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses
embedded in opcodes are treated as literal memory
locations: either as a location in the Access Bank (‘a’ =
0), or in a GPR bank designated by the BSR (‘a’ = 1).
When the extended instruction set is enabled and ‘a’ =
0, however, a file register argument of 5Fh or less is
interpreted as an offset from the pointer value in FSR2
and not as a literal address. For practical purposes, this
means that all instructions that use the Access RAM bit
as an argument – that is, all byte-oriented and bit-
oriented instructions, or almost half of the core PIC18
instructions – may behave differently when the
extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the
Access RAM are essentially remapped to their original
values. This may be useful in creating backward
compatible code. If this technique is used, it may be
necessary to save the value of FSR2 and restore it
when moving back and forth between C and assembly
routines in order to preserve the Stack Pointer. Users
must also keep in mind the syntax requirements of the
extended instruction set (see Section 25.2.3.1
“Extended Instruction Syntax with Standard PIC18
Commands”).

Although the Indexed Literal Offset Addressing mode
can be very useful for dynamic stack and pointer
manipulation, it can also be very annoying if a simple
arithmetic operation is carried out on the wrong
register. Users who are accustomed to the PIC18
programming must keep in mind that, when the
extended instruction set is enabled, register addresses
of 5Fh or less are used for Indexed Literal Offset
Addressing.

Representative examples of typical byte-oriented and
bit-oriented instructions in the Indexed Literal Offset
Addressing mode are provided on the following page to
show how execution is affected. The operand condi-
tions shown in the examples are applicable to all
instructions of these types.

25.2.3.1 Extended Instruction Syntax with
Standard PIC18 Commands

When the extended instruction set is enabled, the file
register argument, ‘f’, in the standard byte-oriented and
bit-oriented commands is replaced with the literal offset
value, ‘k’. As already noted, this occurs only when ‘f’ is
less than or equal to 5Fh. When an offset value is used,
it must be indicated by square brackets (“[]”). As with
the extended instructions, the use of brackets indicates
to the compiler that the value is to be interpreted as an
index or an offset. Omitting the brackets, or using a
value greater than 5Fh within brackets, will generate an
error in the MPASM assembler.

If the index argument is properly bracketed for Indexed
Literal Offset Addressing, the Access RAM argument is
never specified; it will automatically be assumed to be
‘0’. This is in contrast to standard operation (extended
instruction set disabled) when ‘a’ is set on the basis of
the target address. Declaring the Access RAM bit in
this mode will also generate an error in the MPASM
assembler.

The destination argument, ‘d’, functions as before.

In the latest versions of the MPASM™ assembler,
language support for the extended instruction set must
be explicitly invoked. This is done with either the
command line option, /y, or the PE directive in the
source listing.

25.2.4 CONSIDERATIONS WHEN
ENABLING THE EXTENDED
INSTRUCTION SET

It is important to note that the extensions to the instruc-
tion set may not be beneficial to all users. In particular,
users who are not writing code that uses a software
stack may not benefit from using the extensions to the
instruction set.

Additionally, the Indexed Literal Offset Addressing
mode may create issues with legacy applications
written to the PIC18 assembler. This is because
instructions in the legacy code may attempt to address
registers in the Access Bank below 5Fh. Since these
addresses are interpreted as literal offsets to FSR2
when the instruction set extension is enabled, the
application may read or write to the wrong data
addresses.

When porting an application to the PIC18(L)F2X/
4XK22, it is very important to consider the type of code.
A large, re-entrant application that is written in ‘C’ and
would benefit from efficient compilation will do well
when using the instruction set extensions. Legacy
applications that heavily use the Access Bank will most
likely not benefit from using the extended instruction
set.

Note: Enabling the PIC18 instruction set
extension may cause legacy applications
to behave erratically or fail entirely.
 2010-2016 Microchip Technology Inc. DS40001412G-page 407

PIC18(L)F2X/4XK22
FIGURE 27-3: PIC18F2X/4XK22 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL
TEMPERATURE)

FIGURE 27-4: PIC18F2X/4XK22 FAMILY VOLTAGE-FREQUENCY GRAPH (EXTENDED
TEMPERATURE)

Frequency (MHz)

V
o

lt
a

g
e

3.6V

1.8V

64

3.0V

2.7V

2.3V

10 20 6030 40

Note 1: Maximum Frequency 20 MHz, 2.3V to 2.7V, -40°C to +85°C

2: Maximum Frequency 64 MHz, 2.7V to 5.5V, -40°C to +85°C

5.5V

5.0V

4.0V

4816

Frequency (MHz)

V
o

lt
a

g
e

3.6V

1.8V

64

3.0V

2.7V

2.3V

10 20 6030 40

Note 1: Maximum Frequency 16 MHz, 2.3V to 2.7V, +85°C to +125°C

2: Maximum Frequency 48 MHz, 2.7V to 5.5V, +85°C to +125°C

5.5V

5.0V

4.0V

4816
DS40001412G-page 416  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22
27.5 DC Characteristics: Primary Run Supply Current, PIC18(L)F2X/4XK22

PIC18LF2X/4XK22 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C  TA  +125°C

PIC18F2X/4XK22 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C  TA  +125°C

Param
No.

Device Characteristics Typ Max Units Conditions

D070 Supply Current (IDD)(1),(2) 0.11 0.20 mA -40°C to +125°C VDD = 1.8V FOSC = 1 MHz
(PRI_RUN mode,
ECM source)

D071 0.17 0.25 mA -40°C to +125°C VDD = 3.0V

D072 0.15 0.25 mA -40°C to +125°C VDD = 2.3V FOSC = 1 MHz
(PRI_RUN mode,
ECM source)

D073 0.20 0.30 mA -40°C to +125°C VDD = 3.0V

D074 0.25 0.35 mA -40°C to +125°C VDD = 5.0V

D075 1.45 2.0 mA -40°C to +125°C VDD = 1.8V FOSC = 20 MHz
(PRI_RUN mode,
ECH source)

D076 2.60 3.5 mA -40°C to +125°C VDD = 3.0V

D077 1.95 2.5 mA -40°C to +125°C VDD = 2.3V FOSC = 20 MHz
(PRI_RUN mode,
ECH source)

D078 2.65 3.5 mA -40°C to +125°C VDD = 3.0V

D079 2.95 4.5 mA -40°C to +125°C VDD = 5.0V

D080 7.5 10 mA -40°C to +125°C VDD = 3.0V FOSC = 64 MHz
(PRI_RUN,
ECH oscillator)

D081 7.5 10 mA -40°C to +125°C VDD = 3.0V FOSC = 64 MHz
(PRI_RUN mode,
ECH source)

D082 8.5 11.5 mA -40°C to +125°C VDD = 5.0V

D083 1.0 1.5 mA -40°C to +125°C VDD = 1.8V FOSC = 4 MHz
16 MHz Internal
(PRI_RUN mode,
ECM + PLL source)

D084 1.8 3.0 mA -40°C to +125°C VDD = 3.0V

D085 1.4 2.0 mA -40°C to +125°C VDD = 2.3V FOSC = 4 MHz
16 MHz Internal
(PRI_RUN mode,
ECM + PLL source)

D086 1.85 2.5 mA -40°C to +125°C VDD = 3.0V

D087 2.1 3.0 mA -40°C to +125°C VDD = 5.0V

D088 6.35 9.0 mA -40°C to +125°C VDD = 3.0V FOSC = 16 MHz
64 MHz Internal
(PRI_RUN mode,
ECH + PLL source)

D089 6.35 9.0 mA -40°C to +125°C VDD = 3.0V FOSC = 16 MHz
64 MHz Internal
(PRI_RUN mode,
ECH + PLL source)

D090 7.0 10 mA -40°C to +125°C VDD = 5.0V

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on
the current consumption.
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to ‘1’.

2: The test conditions for all IDD measurements in active operation mode are:
All I/O pins set as outputs driven to Vss;
MCLR = VDD;
OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).
DS40001412G-page 424  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22
FIGURE 27-21: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

FIGURE 27-22: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 27-19: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param.
No.

Symbol Characteristic Min Max Units Conditions

120 TckH2dtV SYNC XMIT (MASTER & SLAVE)
Clock High to Data Out Valid — 40 ns

121 Tckrf Clock Out Rise Time and Fall Time
(Master mode)

— 20 ns

122 Tdtrf Data Out Rise Time and Fall Time — 20 ns

121 121

120
122

TXx/CKx

RXx/DTx
pin

pin

Note: Refer to Figure 27-6 for load conditions.

TABLE 27-20: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param.
No.

Symbol Characteristic Min Max Units Conditions

125 TdtV2ckl SYNC RCV (MASTER & SLAVE)
Data Setup before CK  (DT setup time) 10 — ns

126 TckL2dtl Data Hold after CK  (DT hold time) 15 — ns

125

126

TXx/CKx

RXx/DTx

pin

pin

Note: Refer to Figure 27-6 for load conditions.
DS40001412G-page 450  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22
FIGURE 28-46: PIC18F2X/4XK22 TYPICAL IDD: RC_IDLE HF-INTOSC with PLL

FIGURE 28-47: PIC18F2X/4XK22 MAXIMUM IDD: RC_IDLE HF-INTOSC with PLL

16 MHz

32 MHz

64 MHz

0

0.5

1

1.5

2

2.5

3

2.3 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5

ID
D

 (
m

A
)

VDD (V)

16 MHz

32 MHz

64 MHz

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2.3 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5

ID
D

 (
m

A
)

VDD (V)
 2010-2016 Microchip Technology Inc. DS40001412G-page 477

PIC18(L)F2X/4XK22
FIGURE 28-58: PIC18F2X/4XK22 TYPICAL IDD: PRI_RUN EC with PLL

FIGURE 28-59: PIC18F2X/4XK22 MAXIMUM IDD: PRI_RUN EC with PLL

16 MHz

32 MHz

64 MHz

0

1

2

3

4

5

6

7

8

2.3 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5

ID
D

 (
m

A
)

VDD (V)

16 MHz

32 MHz

64 MHz

0

2

4

6

8

10

12

2.3 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5

ID
D

 (
m

A
)

VDD (V)
 2010-2016 Microchip Technology Inc. DS40001412G-page 483

