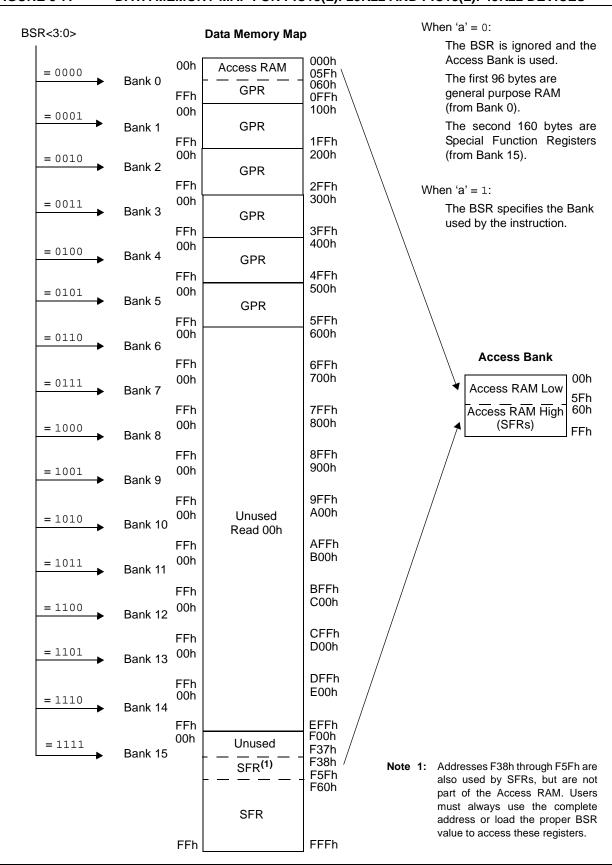


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k22-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dress F5Fh F5Eh F5Dh F5Ch F5Bh F58h F57h F58h F57h F56h F55h F54h F54h	Name CCPR3H CCPR3L CCP3CON PWM3CON ECCP3AS PSTR3CON CCPR4H CCPR4L CCPR4L CCPR5H CCPR5H CCPR5L CCP5CON
F5Eh F5Dh F5Ch F5Bh F58h F59h F58h F57h F56h F55h F55h F54h F53h	CCPR3L CCP3CON PWM3CON ECCP3AS PSTR3CON CCPR4H CCPR4L CCP4CON CCPR5H CCPR5L
F5Dh F5Ch F5Bh F5Ah F59h F58h F57h F56h F55h F54h F53h	CCP3CON PWM3CON ECCP3AS PSTR3CON CCPR4H CCPR4L CCP4CON CCPR5H CCPR5L
F5Ch F5Bh F5Ah F59h F58h F57h F56h F55h F54h F53h	PWM3CON ECCP3AS PSTR3CON CCPR4H CCPR4L CCP4CON CCPR5H CCPR5L
F5Bh F5Ah F59h F58h F57h F56h F55h F55h F53h	ECCP3AS PSTR3CON CCPR4H CCPR4L CCP4CON CCPR5H CCPR5L
F5Ah F59h F58h F57h F56h F55h F55h F53h	PSTR3CON CCPR4H CCPR4L CCP4CON CCPR5H CCPR5L
F59h F58h F57h F56h F55h F54h F53h	CCPR4H CCPR4L CCP4CON CCPR5H CCPR5L
F58h F57h F56h F55h F54h F53h	CCPR4L CCP4CON CCPR5H CCPR5L
F57h F56h F55h F54h F53h	CCP4CON CCPR5H CCPR5L
F56h F55h F54h F53h	CCPR5H CCPR5L
F55h F54h F53h	CCPR5L
F54h F53h	
F53h	CCF5CON
	TMR4
EEDh	PR4
F52h F51h	T4CON
	T4CON TMR5H
	TMR5L
	T5CON
	T5GCON
	TMR6
	PR6
	T6CON
	CCPTMRS0
	CCPTMRS1
	SRCON0
	SRCON1
	CTMUCONH
	CTMUCONL
	CTMUICON
	VREFCON0
	VREFCON1
F40h	VREFCON2
F3Fh	PMD0
F3Eh	PMD1
F3Dh	PMD2
F3Ch	ANSELE
F3Bh	ANSELD
F3Ah	ANSELC
F39h	ANSELB
F38h	ANSELA
	F3Fh F3Eh F3Dh F3Ch F3Bh F3Ah F39h

TABLE 5-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F2X/4XK22 DEVICES

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: PIC18(L)F4XK22 devices only.

4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

TABLE 10-14: PORTE I/O SUMMARY

Pin	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RE0/P3A/CCP3/AN5	RE0	0	0	0	DIG	LATE<0> data output; not affected by analog input.
		1	0	I	ST	PORTE<0> data input; disabled when analog input enabled.
	P3A ⁽¹⁾	0	0	0	DIG	Enhanced CCP3 PWM output.
	CCP3 ⁽¹⁾	0	0	0	DIG	Compare 3 output/PWM 3 output.
		1	0	I	ST	Capture 3 input.
	AN5	1	1	I	AN	Analog input 5.
RE1/P3B/AN6	RE1	0	0	0	DIG	LATE<1> data output; not affected by analog input.
		1	0	I	ST	PORTE<1> data input; disabled when analog input enabled.
	P3B	0	0	0	DIG	Enhanced CCP3 PWM output.
	AN6	1	1	-	AN	Analog input 6.
RE2/CCP5/AN7	RE2	0	0	0	DIG	LATE<2> data output; not affected by analog input.
		1	0	Ι	ST	PORTE<2> data input; disabled when analog input enabled.
	CCP5	0	0	0	DIG	Compare 5 output/PWM 5 output.
		1	0	-	ST	Capture 5 input.
	AN7	1	1	-	AN	Analog input 7.
RE3/VPP/MCLR	RE3	_	_	Ι	ST	PORTE<3> data input; enabled when Configuration bit MCLRE = 0.
	Vpp	_	—	Р	AN	Programming voltage input; always available
	MCLR	_	_	Ι	ST	Active-low Master Clear (device Reset) input; enabled when configuration bit MCLRE = 1.

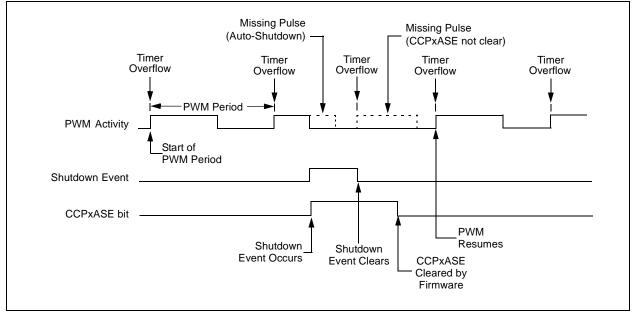
Legend:AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I^2C = Schmitt Trigger input with I^2C .

Note 1: Alternate pin assignment for P3A/CCP3 when Configuration bit CCP3MX is clear.

ECCP Mode	PxM<1:0>	CCPx/PxA	PxB	PxC	PxD
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

TABLE 14-12: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

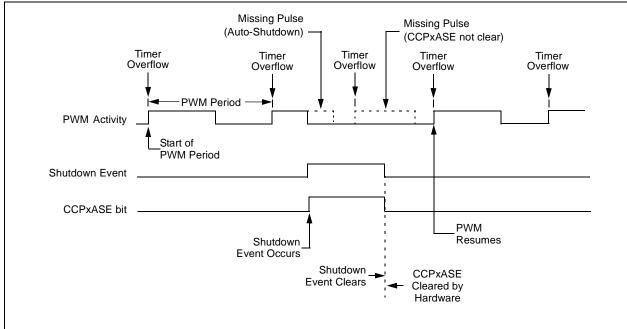
Note 1: PWM Steering enables outputs in Single mode.


FIGURE 14-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

PxM<1:0>	Signal	0 ◀ Pulse Width	PRX+1
		-	— Period →
00 (Single Output)	PxA Modulated	 Delay ⁽¹⁾	Delaý ⁽¹⁾
	PxA Modulated		
10 (Half-Bridge)	PxB Modulated	_ ' _ <u>'</u>	
	PxA Active		
(Full-Bridge,	PxB Inactive		
⁰¹ Forward)	PxC Inactive		
	PxD Modulated		
	PxA Inactive		
11 (Full-Bridge,	PxB Modulated		
Reverse)	PxC Active		
	PxD Inactive		

Period = 4 * Tosc * (PRx + 1) * (TMRx Prescale Value)
Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
Delay = 4 * Tosc * (PWMxCON<6:0>)

Note 1: Dead-band delay is programmed using the PWMxCON register (Section 14.4.5 "Programmable Dead-Band Delay Mode").



14.4.4 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit in the PWMxCON register.

If auto-restart is enabled, the CCPxASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the CCPxASE bit will be cleared via hardware and normal operation will resume.

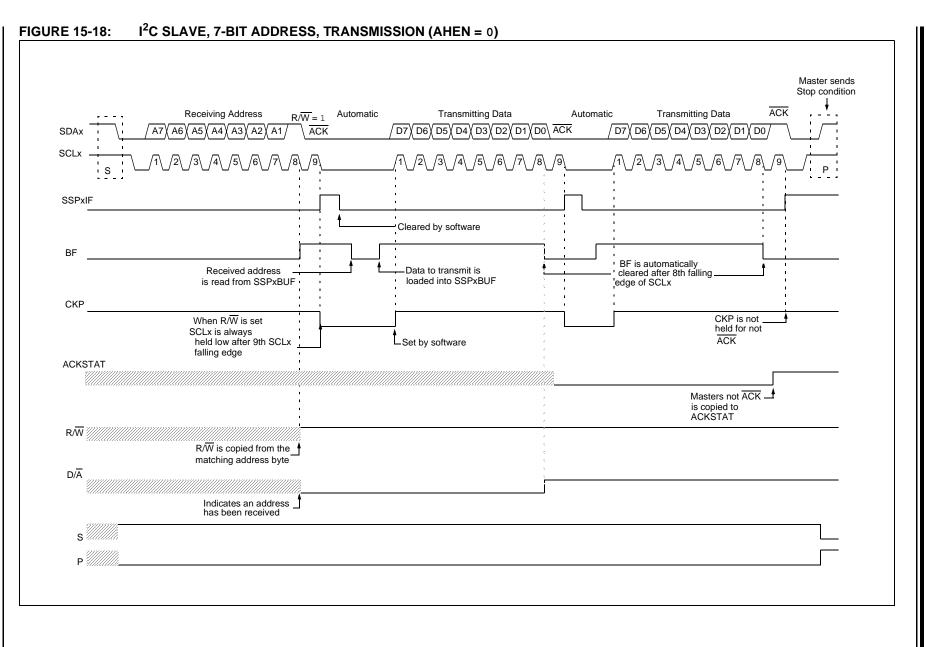


FIGURE 15-9:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
	\ \										
	2 2 2 2						- 				· · · ·
- 80%x - (CKF = 0, - CKF = 0)	·										3
980908-00 SURPARATE VISIRE	•		2 2 2 2 4	2 5 5 5 7	4 6 5 6 	· · · · · · · · · · · · · · · · · · · ·	2 2 2 2 2 2	· · · · · · · · · · · · · · · · · · · ·	<pre><</pre>		• • • • •
- \$5X0x - \$50%		1. 232. 7 			× 1931 4. 	X 88.3	7. 398. 2.	/		68 0 Ma	· · · · · · · · · · · · · · · · · · ·
incuá Secoles		- 1997 - 1995, 12 - 120				, ""///// . 4, .				//// -3	· ·
- SSPXH			2		(·	2		5		
inierrup: Pieg SSPXSR to SSPXSR)F	•	· · ·	2 2 2 2	 2 2 2	\$ 5 5 5 • • • • • • • • • • • • • • • • •	· · · ·	2		6 6 5 6 5 5 5	: //p.	
Varias Codiscon detection activa									. ,		~~

FIGURE 15-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

								/			
SSx Nex Optional										/	
SCKx (CKP = <u>0</u> CKE = 1)	, , , , ,										
SCKx (CKP = 1 CKE = 1)	; ; ; ;										
Write to SSPxBUF	 	1 1 1 1 1	1 1 1 1	 	 	 	1 1 1 1	 			
SDOx	<u> </u>	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
SDIx ———		bit 7	\bigcirc		\sim		\rightarrow	\sim	bit 0	, , , , ,	
Input Sample	1 1 1 1	1	1	1	1	1	1	1	1		
SSPxIF Interrupt Flag	1 1 1 1 1			, , , , ,	 	, , , , ,	1 1 1 1 1	 			
SSPxSR to SSPxBUF	1 1 1 1 1	1 1 1 1 1		 	1 1 1 1	 	, , , ,	1 1 1 1		×	
Wille Collector detection police	1	•			•		•				

© 2010-2016 Microchip Technology Inc

DS40001412G-page 226

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	271
BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	_	WUE	ABDEN	271
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SPBRG1			EUSART1	Baud Rate C	Generator, Lo	w Byte			_
SPBRGH1			EUSART1	Baud Rate (Generator, Hi	gh Byte			_
SPBRG2			EUSART2	Baud Rate C	Generator, Lo	w Byte			_
SPBRGH2			EUSART2	Baud Rate (Generator, Hi	gh Byte			_
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269


TABLE 16-4: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Legend: — = unimplemented, read as '0'. Shaded bits are not used by the BRG.

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

					S	YNC = 0, BRC	GH = 0, BRC	∋16 = 0				
BAUD	Fos	c = 64.00	0 MHz	Fosc = 18.432 MHz			Fos	c = 16.00	0 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRxG value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)
300	—	_	_	—	_	_	_	_	_	_	_	_
1200	_	_	_	1200	0.00	239	1202	0.16	207	1200	0.00	143
2400	_	_	_	2400	0.00	119	2404	0.16	103	2400	0.00	71
9600	9615	0.16	103	9600	0.00	29	9615	0.16	25	9600	0.00	17
10417	10417	0.00	95	10286	-1.26	27	10417	0.00	23	10165	-2.42	16
19.2k	19.23k	0.16	51	19.20k	0.00	14	19.23k	0.16	12	19.20k	0.00	8
57.6k	58.82k	2.12	16	57.60k	0.00	7	_	_	_	57.60k	0.00	2
115.2k	111.11k	-3.55	8	—	—	—	_	—	—		—	—

					S	YNC = 0, BRC	GH = 0, BRO	G16 = 0					
BAUD	Fos	SC = 8.00) MHz	Fosc = 4.000 MHz			Fos	Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	
300	—	_	_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	_	_	
9600	9615	0.16	12	_	_	_	9600	0.00	5	_	_	_	
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_	
19.2k	_	_	_	_	_	_	19.20k	0.00	2	_	_	_	
57.6k	—	—	—	—	—	—	57.60k	0.00	0	—	—	—	
115.2k	—	—	_	—	_	_	—	—	_	—	_	_	

FIGURE 16-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

	[03[03[03]	404(0402	609030900	03924	Q3		<u>koskosko</u> (028090	603666	3043	osiozios	404,046	20303
COSX	A JULIUN. Beise		nunyunu ''''''				nininin	nunun İ	Yunun			AUQUA Sectores	2
WEBE :	×.	: 	میں ہے۔ رینینی کاریک چ	······ · · ·		• • • • • • • • • • • •		······································	· · · · · · · · · · · · · · · · · · ·			:	, , ,
RIGERY R RGS	uni Mi	- - -	;	, , ,		N Ž					525-5 		
	,	States Co	voreand Exerc	uteri 🏅	Steep Hods		Cierre	වේ රිස්ම ස	e (Fear Re:	94 OÚ	ROREGA	2	,
26660-31					arrieg deta, itea et die presanca d			x dhe Wi	.48 ost cart	66066	wwie to	ta e opera	e signa is
2	1356 8933	alle cocco	ins in the wol	la dha MARE d	28.26 5682								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		ITRIM	<5:0>			IRNG	i<1:0>
bit 7							bit (
Legend:							
R = Readal	ble bit	W = Writable I	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7-2	011111 = M 011110	Current Source Maximum positive Minimum positive Nominal current o Minimum negative	change from change from utput specifie	nominal current d by IRNG<1:0>			
bit 1-0	IRNG<1:0> 11 = 100 × 10 = 10 × E 01 = Base	Maximum negative Current Source Base current Base current current level nt source disabled	Range Selec				

REGISTER 19-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
CTMUCONH	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	323
CTMUCONL	EDG2POL	EDG2SE	L<1:0>	EDG1POL	EDG1S	EL<1:0>	EDG2STAT EDG1STAT		324
CTMUICON	ITRIM<5:0>					IRNG<1:0>		325	
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD2	—		—	-	CTMUMD	CMP2MD	CMP1MD	ADCMD	54

Legend: — = unimplemented, read as '0'. Shaded bits are not used during CTMU operation.

ADDWF	ADD W to Indexed (Indexed Literal Offset mode)							
Syntax:	ADDWF	[k] {,d}						
Operands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$							
Operation:	(W) + ((FSF	$(2) + k) \rightarrow ($	dest					
Status Affected:	N, OV, C, D	C, Z						
Encoding:	0010	01d0 1	kkkk	kkkk				
Description:	contents of FSR2, offse If 'd' is '0', th is '1', the re	The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read 'k'	Process Data		Vrite to stination				
Example:	ADDWF [OFST],	0					
Before Instructi	ion							
W OFST FSR2 Contents of 0A2Ch After Instruction	= = = 1	17h 2Ch 0A00h 20h						
W Contents of 0A2Ch	=	37h 20h						

BSF	:	Bit Set Indexed (Indexed Literal Offset mode)							
Synt	ax:	BSF [k], k)						
Operands:		$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$	0 = 1 = 00						
Oper	ration:	$1 \rightarrow ((FSR)$	2) + k) <b< td=""><td>></td><td></td></b<>	>					
Statu	is Affected:	None							
Enco	oding:	1000	bbb0	kkkk	kkkk				
Description:			Bit 'b' of the register indicated by FSR2, offset by the value 'k', is set.						
Word	ds:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Proce Data		Write to estination				
		U		~ ~	Sunation				
<u>Exar</u>	<u>nple:</u> Before Instruc		[FLAG_O						

SET	F	•••	Set Indexed (Indexed Literal Offset mode)							
Syntax:		SETF	SETF [k]							
Oper	ands:	$0 \leq k \leq$	95							
Oper	ation:	$FFh \to$	((F	SR2) + k))					
Statu	s Affected:	None								
Enco	ding:	0110)	1000	kkk	k	kkkk			
Description:				nts of the et by 'k',	•		licated by FFh.			
Words:		1								
Cycle	es:	1								
QC	ycle Activity:									
	Q1	Q2		Q	3		Q4			
	Decode	Read 'I	٢'	Proce Dat		r	Write egister			
<u>Exan</u>	nple:	SETF		[OFST]						
	Before Instruct OFST FSR2 Contents of 0A2Ch After Instructio Contents of 0A2Ch	= = = n	0/	Ch AOOh Dh Fh						

26.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

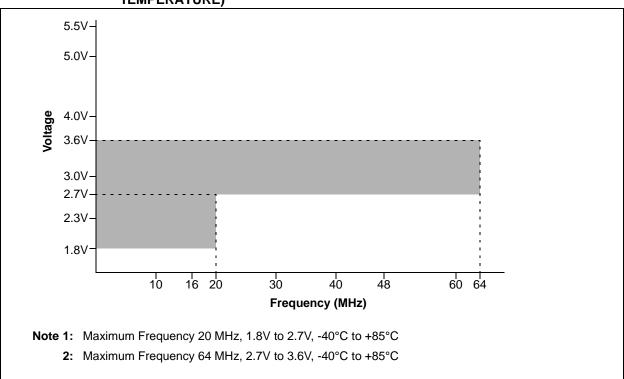
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

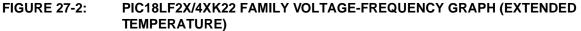
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

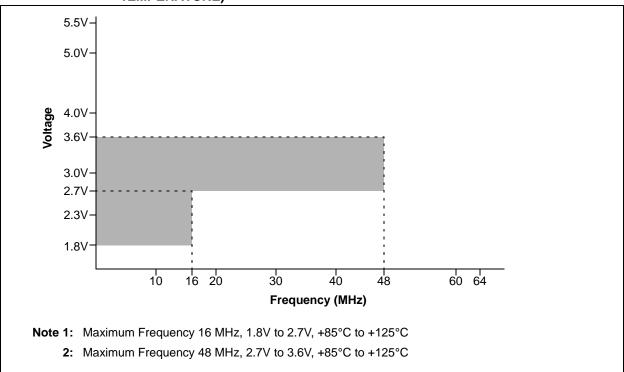
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.


Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


26.12 Third-Party Development Tools


Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

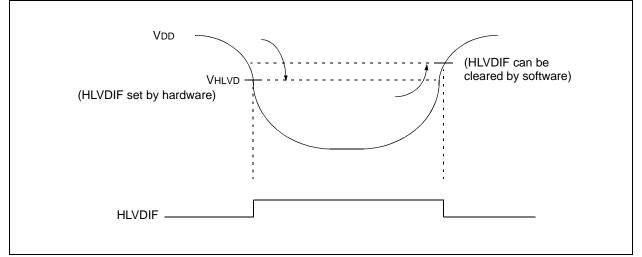
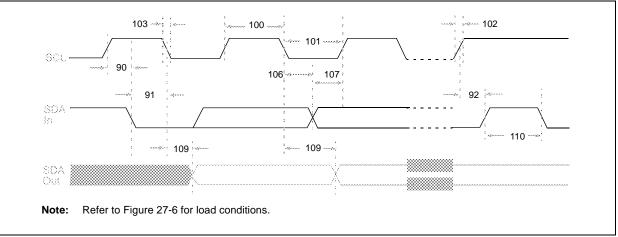

FIGURE 27-1: PIC18LF2X/4XK22 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL TEMPERATURE)

TABLE 27-5: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Г


Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Symbol	Characteristic	HLVDL<3:0>	Min	Тур†	Max	Units	Conditions
		HLVD Voltage on VDD	0000	1.69	1.84	1.99	V	
		Transition High-to-Low	0001	1.92	2.07	2.22	V	
			0010	2.08	2.28	2.48	V	
			0011	2.24	2.44	2.64	V	
			0100	2.34	2.54	2.74	V	
			0101	2.54	2.74	2.94	V	
			0110	2.62	2.87	3.12	V	
			0111	2.76	3.01	3.26	V	
			1000	3.00	3.30	3.60	V	
			1001	3.18	3.48	3.78	V	
			1010	3.44	3.69	3.94	V	
			1011	3.66	3.91	4.16	V	
			1100	3.90	4.15	4.40	V	
			1101	4.11	4.41	4.71	V	
			1110	4.39	4.74	5.09	V	
			1111	V(H	ILVDIN p	oin)	v	

† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

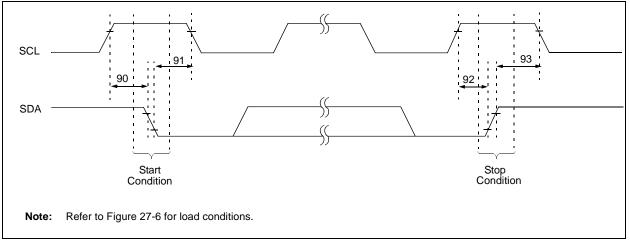
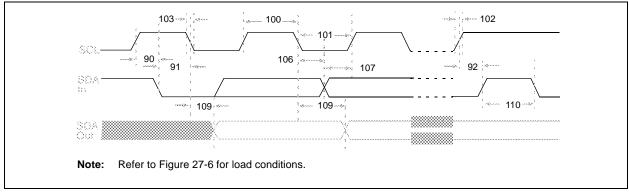
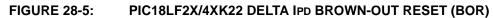
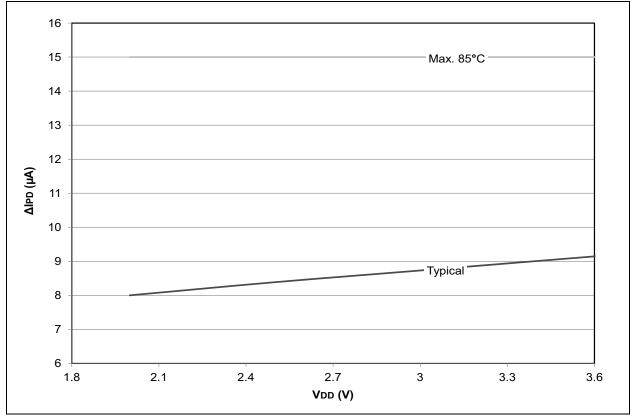

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions	
90	TSU:STA	Start Condition	100 kHz mode	4700	_	ns	Only relevant for Repeated	
		Setup Time	400 kHz mode	600	_		Start condition	
91	THD:STA	Start Condition	100 kHz mode	4000	_	ns	After this period, the first	
		Hold Time	400 kHz mode	600	_		clock pulse is generated	
92	Tsu:sto	Stop Condition	100 kHz mode	4700	_	ns		
		Setup Time	400 kHz mode	600	_			
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns		
		Hold Time	400 kHz mode	600		1		

TABLE 27-15: I²C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

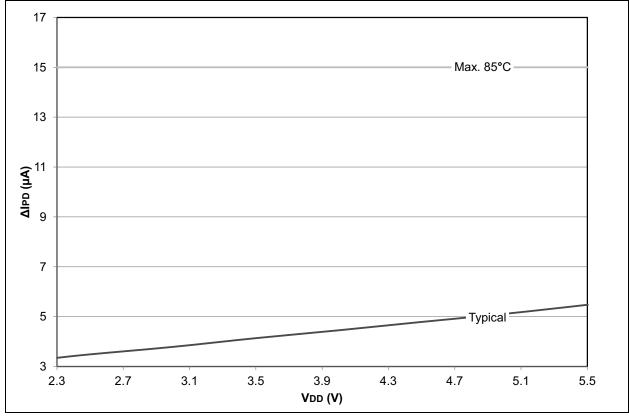
FIGURE 27-18: I²C BUS DATA TIMING

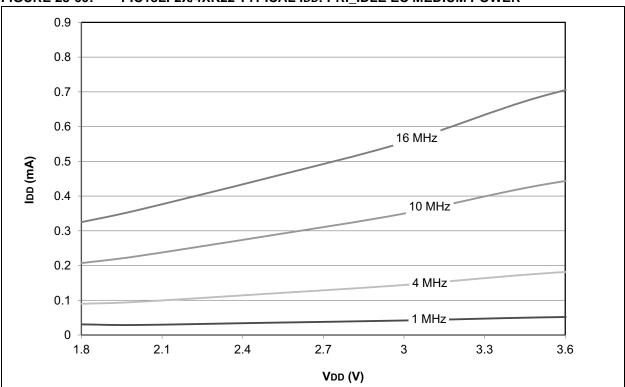
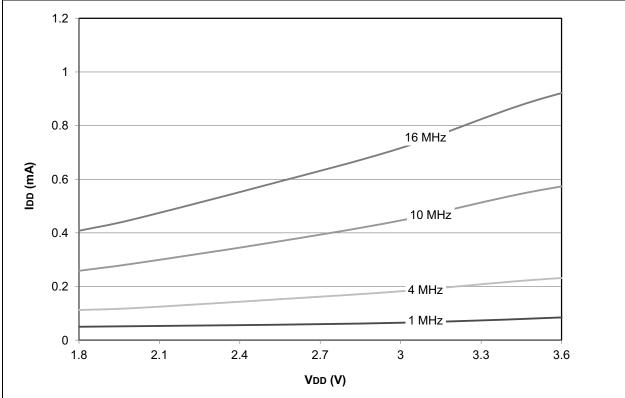


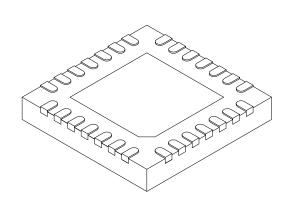



Param. No.	Symbol	I Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		Repeated Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		generated
92	TSU:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.


FIGURE 27-20: MASTER SSP I²C BUS DATA TIMING


FIGURE 28-60: PIC18LF2X/4XK22 TYPICAL IDD: PRI_IDLE EC MEDIUM POWER

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

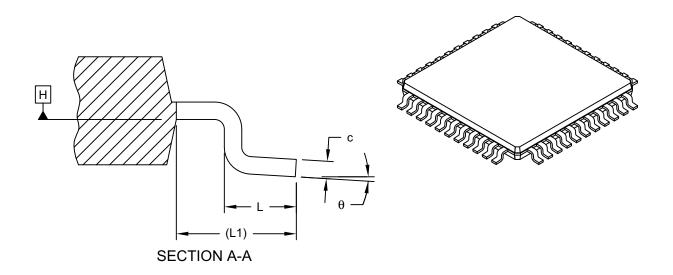
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	М	ILLIMETERS	6	
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Z		28		
Pitch	е		0.65 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3		0.20 REF		
Overall Width	Ш		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.50	0.55	0.70	
Terminal-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Leads	N		44			
Lead Pitch	е		0.80 BSC			
Overall Height	A	-	-	1.20		
Standoff	A1	0.05	-	0.15		
Molded Package Thickness	A2	0.95	1.00	1.05		
Overall Width	E		12.00 BSC			
Molded Package Width	E1		10.00 BSC			
Overall Length	D		12.00 BSC			
Molded Package Length	D1		10.00 BSC			
Lead Width	b	0.30	0.37	0.45		
Lead Thickness	С	0.09	-	0.20		
Lead Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	θ	0°	3.5°	7°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2