
Microchip Technology - PIC18LF24K22-E/MV Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 48MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, HLVD, POR, PWM, WDT

Number of I/O 24

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 768 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 19x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 28-UFQFN Exposed Pad

Supplier Device Package 28-UQFN (4x4)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k22-e-mv

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf24k22-e-mv-4404997
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F2X/4XK22
FIGURE 5-11: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND
BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)

When ‘a’ = 0 and f  60h:

The instruction executes in
Direct Forced mode. ‘f’ is inter-
preted as a location in the
Access RAM between 060h
and 0FFh. This is the same as
locations F60h to FFFh
(Bank 15) of data memory.

Locations below 60h are not
available in this addressing
mode.

When ‘a’ = 0 and f5Fh:

The instruction executes in
Indexed Literal Offset mode. ‘f’
is interpreted as an offset to the
address value in FSR2. The
two are added together to
obtain the address of the target
register for the instruction. The
address can be anywhere in
the data memory space.

Note that in this mode, the
correct syntax is now:
ADDWF [k], d
where ‘k’ is the same as ‘f’.

When ‘a’ = 1 (all values of f):

The instruction executes in
Direct mode (also known as
Direct Long mode). ‘f’ is inter-
preted as a location in one of
the 16 banks of the data
memory space. The bank is
designated by the Bank Select
Register (BSR). The address
can be in any implemented
bank in the data memory
space.

000h

060h

100h

F00h

F60h

FFFh

Valid range

00h

60h

FFh

Data Memory

Access RAM

Bank 0

Bank 1
through
Bank 14

Bank 15

SFRs

000h

060h

100h

F00h

F60h

FFFh
Data Memory

Bank 0

Bank 1
through
Bank 14

Bank 15

SFRs

FSR2H FSR2L

ffffffff001001da

ffffffff001001da

000h

060h

100h

F00h

F60h

FFFh
Data Memory

Bank 0

Bank 1
through
Bank 14

Bank 15

SFRs

for ‘f’

BSR
00000000
DS40001412G-page 88  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22
5.7.3 MAPPING THE ACCESS BANK IN
INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode
effectively changes how the first 96 locations of Access
RAM (00h to 5Fh) are mapped. Rather than containing
just the contents of the bottom section of Bank 0, this
mode maps the contents from a user defined “window”
that can be located anywhere in the data memory
space. The value of FSR2 establishes the lower bound-
ary of the addresses mapped into the window, while the
upper boundary is defined by FSR2 plus 95 (5Fh).
Addresses in the Access RAM above 5Fh are mapped
as previously described (see Section 5.4.2 “Access
Bank”). An example of Access Bank remapping in this
addressing mode is shown in Figure 5-12.

Remapping of the Access Bank applies only to opera-
tions using the Indexed Literal Offset mode. Operations
that use the BSR (Access RAM bit is ‘1’) will continue
to use direct addressing as before.

5.8 PIC18 Instruction Execution and
the Extended Instruction Set

Enabling the extended instruction set adds eight
additional commands to the existing PIC18 instruction
set. These instructions are executed as described in
Section 25.2 “Extended Instruction Set”.

FIGURE 5-12: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET
ADDRESSING

Data Memory

000h

100h

200h

F60h

F00h

FFFh

Bank 1

Bank 15

Bank 2
through
Bank 14

SFRs

ADDWF f, d, a

FSR2H:FSR2L = 120h

Locations in the region
from the FSR2 pointer
(120h) to the pointer plus
05Fh (17Fh) are mapped
to the bottom of the
Access RAM (000h-05Fh).

Special File Registers at
F60h through FFFh are
mapped to 60h through
FFh, as usual.

Bank 0 addresses below
5Fh can still be addressed
by using the BSR. Access Bank

00h

60h

FFh

SFRs

Bank 1 “Window”

Bank 0

Window

Example Situation:

120h
17Fh

5Fh

Bank 1
 2010-2016 Microchip Technology Inc. DS40001412G-page 89

PIC18(L)F2X/4XK22
6.3 Register Definitions: Memory Control

REGISTER 6-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

R/W-x R/W-x U-0 R/W-0 R/W-x R/W-0 R/S-0 R/S-0

EEPGD CFGS — FREE WRERR WREN WR RD

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit

S = Bit can be set by software, but not cleared U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 EEPGD: Flash Program or Data EEPROM Memory Select bit

1 = Access Flash program memory
0 = Access data EEPROM memory

bit 6 CFGS: Flash Program/Data EEPROM or Configuration Select bit

1 = Access Configuration registers
0 = Access Flash program or data EEPROM memory

bit 5 Unimplemented: Read as ‘0’

bit 4 FREE: Flash Row (Block) Erase Enable bit

1 = Erase the program memory block addressed by TBLPTR on the next WR command
(cleared by completion of erase operation)

0 = Perform write-only

bit 3 WRERR: Flash Program/Data EEPROM Error Flag bit(1)

1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal
operation, or an improper write attempt)

0 = The write operation completed

bit 2 WREN: Flash Program/Data EEPROM Write Enable bit

1 = Allows write cycles to Flash program/data EEPROM
0 = Inhibits write cycles to Flash program/data EEPROM

bit 1 WR: Write Control bit

1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.
(The operation is self-timed and the bit is cleared by hardware once write is complete.
The WR bit can only be set (not cleared) by software.)

0 = Write cycle to the EEPROM is complete

bit 0 RD: Read Control bit

1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared by hardware. The RD bit can only
be set (not cleared) by software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.)

0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the
error condition.
DS40001412G-page 92  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22
6.3.1 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped
into the SFR space. The Table Latch register is used to
hold 8-bit data during data transfers between program
memory and data RAM.

6.3.2 TBLPTR – TABLE POINTER
REGISTER

The Table Pointer (TBLPTR) register addresses a byte
within the program memory. The TBLPTR is comprised
of three SFR registers: Table Pointer Upper Byte, Table
Pointer High Byte and Table Pointer Low Byte
(TBLPTRU:TBLPTRH:TBLPTRL). These three
registers join to form a 22-bit wide pointer. The
low-order 21 bits allow the device to address up to 2
Mbytes of program memory space. The 22nd bit allows
access to the device ID, the user ID and the
Configuration bits.

The Table Pointer register, TBLPTR, is used by the
TBLRD and TBLWT instructions. These instructions can
update the TBLPTR in one of four ways based on the
table operation. These operations on the TBLPTR
affect only the low-order 21 bits.

6.3.3 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the
Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR
determine which byte is read from program memory
directly into the TABLAT register.

When a TBLWT is executed the byte in the TABLAT
register is written, not to Flash memory but, to a holding
register in preparation for a program memory write. The
holding registers constitute a write block which varies
depending on the device (see Table 6-1).The 3, 4, or 5
LSbs of the TBLPTRL register determine which specific
address within the holding register block is written to.
The MSBs of the Table Pointer have no effect during
TBLWT operations.

When a program memory write is executed the entire
holding register block is written to the Flash memory at
the address determined by the MSbs of the TBLPTR.
The 3, 4, or 5 LSBs are ignored during Flash memory
writes. For more detail, see Section 6.6 “Writing to
Flash Program Memory”.

When an erase of program memory is executed, the
16 MSbs of the Table Pointer register (TBLPTR<21:6>)
point to the 64-byte block that will be erased. The Least
Significant bits (TBLPTR<5:0>) are ignored.

Figure 6-3 describes the relevant boundaries of
TBLPTR based on Flash program memory operations.

FIGURE 6-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

TABLE 6-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example Operation on Table Pointer

TBLRD*
TBLWT*

TBLPTR is not modified

TBLRD*+
TBLWT*+

TBLPTR is incremented after the read/write

TBLRD*-
TBLWT*-

TBLPTR is decremented after the read/write

TBLRD+*
TBLWT+*

TBLPTR is incremented before the read/write

21 16 15 8 7 0

TABLE ERASE/WRITE TABLE WRITE

TABLE READ – TBLPTR<21:0>

TBLPTRLTBLPTRHTBLPTRU

TBLPTR<n:0>(1)TBLPTR<21:n+1>(1)

Note 1: n = 6 for block sizes of 64 bytes.
 2010-2016 Microchip Technology Inc. DS40001412G-page 93

PIC18(L)F2X/4XK22

TABLE 7-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register
on Page

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 109

EEADR EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 —

EEADRH(1) — — — — — — EEADR9 EEADR8 —

EEDATA EEPROM Data Register —

EECON2 EEPROM Control Register 2 (not a physical register) —

EECON1 EEPGD CFGS — FREE WRERR WREN WR RD 100

IPR2 OSCFIP C1IP C2IP EEIP BCL1IP HLVDIP TMR3IP CCP2IP 122

PIR2 OSCFIF C1IF C2IF EEIF BCL1IF HLVDIF TMR3IF CCP2IF 113

PIE2 OSCFIE C1IE C2IE EEIE BCL1IE HLVDIE TMR3IE CCP2IE 118

Legend: — = unimplemented, read as ‘0’. Shaded bits are not used during EEPROM access.

Note 1: PIC18(L)F26K22 and PIC18(L)F46K22 only.
 2010-2016 Microchip Technology Inc. DS40001412G-page 103

PIC18(L)F2X/4XK22
10.1.1 PORTA OUTPUT PRIORITY

Each PORTA pin is multiplexed with other functions.
The pins, their combined functions and their output
priorities are briefly described here. For additional
information, refer to the appropriate section in this data
sheet.

When multiple outputs are enabled, the actual pin
control goes to the peripheral with the higher priority.
Table 10-4 lists the PORTA pin functions from the
highest to the lowest priority.

Analog input functions, such as ADC and comparator,
are not shown in the priority lists.

These inputs are active when the I/O pin is set for
Analog mode using the ANSELx registers. Digital
output functions may control the pin when it is in Analog
mode with the priority shown below.

TABLE 10-4: PORT PIN FUNCTION PRIORITY

Port bit
Port Function Priority by Port Pin

PORTA PORTB PORTC PORTD(2) PORTE(2)

0 RA0 CCP4(1) SOSCO SCL2 CCP3(8)

RB0 P2B(6) SCK2 P3A(8)

RC0 RD0 RE0

1 RA1 SCL2(1) SOSCI SDA2 P3B

SCK2(1) CCP2(3) CCP4 RE1

P1C(1) P2A(3) RD1

RB1 RC1

2 RA2 SDA2(1) CCP1 P2B CCP5

P1B(1) P1A RD2(4) RE2

RB2 CTPLS

RC2

3 RA3 SDO2(1) SCL1 P2C MCLR

CCP2(6) SCK1 RD3 VPP

P2A(6) RC3 RE3

RB3

4 SRQ P1D(1) SDA1 SDO2

C1OUT RB4 RC4 P2D

CCP5(1) RD4

RA4

Note 1: PIC18(L)F2XK22 devices.

2: PIC18(L)F4XK22 devices.

3: Function default pin.

4: Function default pin (28-pin devices).

5: Function default pin (40/44-pin devices).

6: Function alternate pin.

7: Function alternate pin (28-pin devices).

8: Function alternate pin (40/44-pin devices)
DS40001412G-page 130  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22
REGISTER 10-4: ANSELB – PORTB ANALOG SELECT REGISTER

U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

— — ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 Unimplemented: Read as ‘0’

bit 5-0 ANSB<5:0>: RB<5:0> Analog Select bit

1 = Digital input buffer disabled
0 = Digital input buffer enabled

REGISTER 10-5: ANSELC – PORTC ANALOG SELECT REGISTER

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 U-0 U-0

ANSC7 ANSC6 ANSC5 ANSC4 ANSC3 ANSC2 — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-2 ANSC<7:2>: RC<7:2> Analog Select bit

1 = Digital input buffer disabled
0 = Digital input buffer enabled

bit 1-0 Unimplemented: Read as ‘0’

REGISTER 10-6: ANSELD – PORTD ANALOG SELECT REGISTER

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

ANSD7 ANSD6 ANSD5 ANSD4 ANSD3 ANSD2 ANSD1 ANSD0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 ANSD<7:0>: RD<7:0> Analog Select bit

1 = Digital input buffer disabled
0 = Digital input buffer enabled
DS40001412G-page 150  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22
11.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

• Software selectable operation as a timer or
counter in both 8-bit or 16-bit modes

• Readable and writable registers

• Dedicated 8-bit, software programmable
prescaler

• Selectable clock source (internal or external)

• Edge select for external clock

• Interrupt-on-overflow

The T0CON register (Register 11-1) controls all
aspects of the module’s operation, including the
prescale selection. It is both readable and writable.

A simplified block diagram of the Timer0 module in 8-bit
mode is shown in Figure 11-1. Figure 11-2 shows a
simplified block diagram of the Timer0 module in 16-bit
mode.

11.1 Register Definitions: Timer0 Control

REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

TMR0ON T08BIT T0CS T0SE PSA TOPS<2:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 TMR0ON: Timer0 On/Off Control bit

1 = Enables Timer0
0 = Stops Timer0

bit 6 T08BIT: Timer0 8-bit/16-bit Control bit

1 = Timer0 is configured as an 8-bit timer/counter
0 = Timer0 is configured as a 16-bit timer/counter

bit 5 T0CS: Timer0 Clock Source Select bit

1 = Transition on T0CKI pin
0 = Internal instruction cycle clock (CLKOUT)

bit 4 T0SE: Timer0 Source Edge Select bit

1 = Increment on high-to-low transition on T0CKI pin
0 = Increment on low-to-high transition on T0CKI pin

bit 3 PSA: Timer0 Prescaler Assignment bit

1 = TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.
0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.

bit 2-0 T0PS<2:0>: Timer0 Prescaler Select bits

111 = 1:256 prescale value
110 = 1:128 prescale value
101 = 1:64 prescale value
100 = 1:32 prescale value
011 = 1:16 prescale value
010 = 1:8 prescale value
001 = 1:4 prescale value
000 = 1:2 prescale value
DS40001412G-page 154  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22

FIGURE 14-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH
STATE)

TABLE 14-12: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

ECCP Mode PxM<1:0> CCPx/PxA PxB PxC PxD

Single 00 Yes(1) Yes(1) Yes(1) Yes(1)

Half-Bridge 10 Yes Yes No No

Full-Bridge, Forward 01 Yes Yes Yes Yes

Full-Bridge, Reverse 11 Yes Yes Yes Yes

Note 1: PWM Steering enables outputs in Single mode.

0

Period

00

10

01

11

Signal
PRX+1

PxM<1:0>

PxA Modulated

PxA Modulated

PxB Modulated

PxA Active

PxB Inactive

PxC Inactive

PxD Modulated

PxA Inactive

PxB Modulated

PxC Active

PxD Inactive

Pulse
Width

(Single Output)

(Half-Bridge)

(Full-Bridge,
Forward)

(Full-Bridge,
Reverse)

Delay(1) Delay(1)

Relationships:
• Period = 4 * TOSC * (PRx + 1) * (TMRx Prescale Value)
• Pulse Width = TOSC * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
• Delay = 4 * TOSC * (PWMxCON<6:0>)

Note 1: Dead-band delay is programmed using the PWMxCON register (Section 14.4.5 “Programmable Dead-Band Delay Mode”).
 2010-2016 Microchip Technology Inc. DS40001412G-page 185

PIC18(L)F2X/4XK22
14.4.7 START-UP CONSIDERATIONS

When any PWM mode is used, the application
hardware must use the proper external pull-up and/or
pull-down resistors on the PWM output pins.

The CCPxM<1:0> bits of the CCPxCON register allow
the user to choose whether the PWM output signals are
active-high or active-low for each pair of PWM output
pins (PxA/PxC and PxB/PxD). The PWM output
polarities must be selected before the PWM pin output
drivers are enabled. Changing the polarity
configuration while the PWM pin output drivers are
enable is not recommended since it may result in
damage to the application circuits.

The PxA, PxB, PxC and PxD output latches may not be
in the proper states when the PWM module is
initialized. Enabling the PWM pin output drivers at the
same time as the Enhanced PWM modes may cause
damage to the application circuit.

The Enhanced PWM modes must be enabled in the
proper Output mode and complete a full PWM cycle
before enabling the PWM pin output drivers. The
completion of a full PWM cycle is indicated by the
TMRxIF bit of the PIR1, PIR2 or PIR5 register being set
as the second PWM period begins.

FIGURE 14-19: EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRxSYNC = 0)

FIGURE 14-20: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION
(STRxSYNC = 1)

Note: When the microcontroller is released from
Reset, all of the I/O pins are in the high-
impedance state. The external circuits
must keep the power switch devices in the
Off state until the microcontroller drives
the I/O pins with the proper signal levels or
activates the PWM output(s).

PWM

P1n = PWM

STRx

P1<D:A> PORT Data

PWM Period

PORT Data

PWM

PORT Data

P1n = PWM

STRx

P1<D:A> PORT Data
 2010-2016 Microchip Technology Inc. DS40001412G-page 195

PIC18(L)F2X/4XK22
BAUD
RATE

SYNC = 0, BRGH = 1, BRG16 = 0

FOSC = 64.000 MHz FOSC = 18.432 MHz FOSC = 16.000 MHz FOSC = 11.0592 MHz

Actual
Rate

%
Error

SPBRGx
value

(decimal)

Actual
Rate

%
Error

SPBRGx
value

(decimal)

Actual
Rate

%
Error

SPBRGx
value

(decimal)

Actual
Rate

%
Error

SPBRGx
value

(decimal)

300 — — — — — — — — — — — —

1200 — — — — — — — — — — — —

2400 — — — — — — — — — — — —

9600 — — — 9600 0.00 119 9615 0.16 103 9600 0.00 71

10417 — — — 10378 -0.37 110 10417 0.00 95 10473 0.53 65

19.2k 19.23k 0.16 207 19.20k 0.00 59 19.23k 0.16 51 19.20k 0.00 35

57.6k 57.97k 0.64 68 57.60k 0.00 19 58.82k 2.12 16 57.60k 0.00 11

115.2k 114.29k -0.79 34 115.2k 0.00 9 111.1k -3.55 8 115.2k 0.00 5

BAUD
RATE

SYNC = 0, BRGH = 1, BRG16 = 0

FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz

Actual
Rate

%
Error

SPBRGx
value

(decimal)

Actual
Rate

%
Error

SPBRGx
value

(decimal)

Actual
Rate

%
Error

SxBRGx
value

(decimal)

Actual
Rate

%
Error

SPBRGx
value

(decimal)

300 — — — — — — — — — 300 0.16 207

1200 — — — 1202 0.16 207 1200 0.00 191 1202 0.16 51

2400 2404 0.16 207 2404 0.16 103 2400 0.00 95 2404 0.16 25

9600 9615 0.16 51 9615 0.16 25 9600 0.00 23 — — —

10417 10417 0.00 47 10417 0.00 23 10473 0.53 21 10417 0.00 5

19.2k 19231 0.16 25 19.23k 0.16 12 19.2k 0.00 11 — — —

57.6k 55556 -3.55 8 — — — 57.60k 0.00 3 — — —

115.2k — — — — — — 115.2k 0.00 1 — — —

BAUD
RATE

SYNC = 0, BRGH = 0, BRG16 = 1

FOSC = 64.000 MHz FOSC = 18.432 MHz FOSC = 16.000 MHz FOSC = 11.0592 MHz

Actual
Rate

%
Error

SPBRGHx:
SPBRGx
(decimal)

Actual
Rate

%
Error

SPBRGHx:
SPBRGx
(decimal)

Actual
Rate

%
Error

SPBRGHx
:SPBRGx
(decimal)

Actual
Rate

%
Error

SPBRGHx:
SPBRGx
(decimal)

300 300.0 0.00 13332 300.0 0.00 3839 300.03 0.01 3332 300.0 0.00 2303

1200 1200.1 0.01 3332 1200 0.00 959 1200.5 0.04 832 1200 0.00 575

2400 2399 -0.02 1666 2400 0.00 479 2398 -0.08 416 2400 0.00 287

9600 9592 -0.08 416 9600 0.00 119 9615 0.16 103 9600 0.00 71

10417 10417 0.00 383 10378 -0.37 110 10417 0.00 95 10473 0.53 65

19.2k 19.23k 0.16 207 19.20k 0.00 59 19.23k 0.16 51 19.20k 0.00 35

57.6k 57.97k 0.64 68 57.60k 0.00 19 58.82k 2.12 16 57.60k 0.00 11

115.2k 114.29k -0.79 34 115.2k 0.00 9 111.11k -3.55 8 115.2k 0.00 5

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)
DS40001412G-page 274  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22
17.1.7 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two
formats, left justified or right justified. The ADFM bit of
the ADCON2 register controls the output format.

Figure 17-2 shows the two output formats.

FIGURE 17-2: 10-BIT A/D CONVERSION RESULT FORMAT

ADRESH ADRESL

(ADFM = 0) MSB LSB

bit 7 bit 0 bit 7 bit 0

10-bit A/D Result Unimplemented: Read as ‘0’

(ADFM = 1) MSB LSB

bit 7 bit 0 bit 7 bit 0

Unimplemented: Read as ‘0’ 10-bit A/D Result
 2010-2016 Microchip Technology Inc. DS40001412G-page 291

PIC18(L)F2X/4XK22
FIGURE 20-1: DIVSRCLK BLOCK DIAGRAM

FIGURE 20-2: SR LATCH SIMPLIFIED BLOCK DIAGRAM

3

SRCLK<2:0>

Peripheral
Clock

DIVSRCLK

Programmable
SRCLK divider

1:4 to 1:512

Tosc

4-512 cycles
...

SRCLK<2:0> = "001"
1:8

t0+4t0 t0+8 t0+12

SRPS

S

R

Q

Q

Note 1: If R = 1 and S = 1 simultaneously, Q = 0, Q = 1
2: Pulse generator causes a pulse width of 2 TOSC clock cycles.
3: Name denotes the connection point at the comparator output.

Pulse

Gen(2)

SR

Latch(1)

SRQEN

SRSPE

SRSC2E

SRSCKE

DIVSRCLK

sync_C2OUT(3)

SRSC1E
sync_C1OUT(3)

SRPR Pulse

Gen(2)

SRRPE

SRRC2E

SRRCKE

DIVSRCLK

sync_C2OUT(3)

SRRC1E
sync_C1OUT(3)

SRLEN

SRNQEN

SRLEN

SRQ

SRNQ

SRI

SRI
 2010-2016 Microchip Technology Inc. DS40001412G-page 327

PIC18(L)F2X/4XK22

INCFSZ Increment f, skip if 0

Syntax: INCFSZ f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) + 1  dest,
skip if result = 0

Status Affected: None

Encoding: 0011 11da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is ‘0’, the next instruction,
which is already fetched, is discarded
and a NOP is executed instead, making
it a 2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE INCFSZ CNT, 1, 0
NZERO :
ZERO :

Before Instruction
PC = Address (HERE)

After Instruction
CNT = CNT + 1
If CNT = 0;
PC = Address (ZERO)
If CNT  0;
PC = Address (NZERO)

INFSNZ Increment f, skip if not 0

Syntax: INFSNZ f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) + 1  dest,
skip if result  0

Status Affected: None

Encoding: 0100 10da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is not ‘0’, the next
instruction, which is already fetched, is
discarded and a NOP is executed
instead, making it a 2-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE INFSNZ REG, 1, 0
ZERO
NZERO

Before Instruction
PC = Address (HERE)

After Instruction
REG = REG + 1
If REG  0;
PC = Address (NZERO)
If REG = 0;
PC = Address (ZERO)
DS40001412G-page 382  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22

IORLW Inclusive OR literal with W

Syntax: IORLW k

Operands: 0  k  255

Operation: (W) .OR. k  W

Status Affected: N, Z

Encoding: 0000 1001 kkkk kkkk

Description: The contents of W are ORed with the
8-bit literal ‘k’. The result is placed in W.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to W

Example: IORLW 35h

Before Instruction

W = 9Ah

After Instruction

W = BFh

IORWF Inclusive OR W with f

Syntax: IORWF f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (W) .OR. (f)  dest

Status Affected: N, Z

Encoding: 0001 00da ffff ffff

Description: Inclusive OR W with register ‘f’. If ‘d’ is
‘0’, the result is placed in W. If ‘d’ is ‘1’,
the result is placed back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: IORWF RESULT, 0, 1

Before Instruction
RESULT = 13h
W = 91h

After Instruction
RESULT = 13h
W = 93h
 2010-2016 Microchip Technology Inc. DS40001412G-page 383

PIC18(L)F2X/4XK22

RETFIE Return from Interrupt

Syntax: RETFIE {s}

Operands: s  [0,1]

Operation: (TOS)  PC,
1  GIE/GIEH or PEIE/GIEL,
if s = 1
(WS)  W,
(STATUSS)  Status,
(BSRS)  BSR,
PCLATU, PCLATH are unchanged.

Status Affected: GIE/GIEH, PEIE/GIEL.

Encoding: 0000 0000 0001 000s

Description: Return from interrupt. Stack is popped
and Top-of-Stack (TOS) is loaded into
the PC. Interrupts are enabled by
setting either the high or low priority
global interrupt enable bit. If ‘s’ = 1, the
contents of the shadow registers, WS,
STATUSS and BSRS, are loaded into
their corresponding registers, W,
STATUS and BSR. If ‘s’ = 0, no update
of these registers occurs (default).

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No
operation

No
operation

POP PC
from stack

Set GIEH or
GIEL

No
operation

No
operation

No
operation

No
operation

Example: RETFIE 1

After Interrupt
PC = TOS
W = WS
BSR = BSRS
Status = STATUSS
GIE/GIEH, PEIE/GIEL = 1

RETLW Return literal to W

Syntax: RETLW k

Operands: 0  k  255

Operation: k  W,
(TOS)  PC,
PCLATU, PCLATH are unchanged

Status Affected: None

Encoding: 0000 1100 kkkk kkkk

Description: W is loaded with the 8-bit literal ‘k’. The
program counter is loaded from the top
of the stack (the return address). The
high address latch (PCLATH) remains
unchanged.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

POP PC
from stack,
Write to W

No
operation

No
operation

No
operation

No
operation

Example:

 CALL TABLE ; W contains table
 ; offset value
 ; W now has
 ; table value
 :
TABLE

ADDWF PCL ; W = offset
RETLW k0 ; Begin table
RETLW k1 ;

 :
 :

RETLW kn ; End of table

Before Instruction
W = 07h

After Instruction
W = value of kn
 2010-2016 Microchip Technology Inc. DS40001412G-page 391

PIC18(L)F2X/4XK22

SUBLW Subtract W from literal

Syntax: SUBLW k

Operands: 0 k 255

Operation: k – (W) W

Status Affected: N, OV, C, DC, Z

Encoding: 0000 1000 kkkk kkkk

Description W is subtracted from the 8-bit
literal ‘k’. The result is placed in W.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to W

Example 1: SUBLW 02h

Before Instruction
W = 01h
C = ?

After Instruction
W = 01h
C = 1 ; result is positive
Z = 0
N = 0

Example 2: SUBLW 02h

Before Instruction
W = 02h
C = ?

After Instruction
W = 00h
C = 1 ; result is zero
Z = 1
N = 0

Example 3: SUBLW 02h

Before Instruction
W = 03h
C = ?

After Instruction
W = FFh ; (2’s complement)
C = 0 ; result is negative
Z = 0
N = 1

SUBWF Subtract W from f

Syntax: SUBWF f {,d {,a}}

Operands: 0 f 255
d  [0,1]
a  [0,1]

Operation: (f) – (W) dest

Status Affected: N, OV, C, DC, Z

Encoding: 0101 11da ffff ffff

Description: Subtract W from register ‘f’ (2’s
complement method). If ‘d’ is ‘0’, the
result is stored in W. If ‘d’ is ‘1’, the
result is stored back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used
to select the GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f 95 (5Fh). See Section 25.2.3
“Byte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example 1: SUBWF REG, 1, 0

Before Instruction
REG = 3
W = 2
C = ?

After Instruction
REG = 1
W = 2
C = 1 ; result is positive
Z = 0
N = 0

Example 2: SUBWF REG, 0, 0

Before Instruction
REG = 2
W = 2
C = ?

After Instruction
REG = 2
W = 0
C = 1 ; result is zero
Z = 1
N = 0

Example 3: SUBWF REG, 1, 0

Before Instruction
REG = 1
W = 2
C = ?

After Instruction
REG = FFh ;(2’s complement)
W = 2
C = 0 ; result is negative
Z = 0
N = 1
DS40001412G-page 396  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22

TBLWT Table Write

Syntax: TBLWT (*; *+; *-; +*)

Operands: None

Operation: if TBLWT*,
(TABLAT)  Holding Register;
TBLPTR – No Change;
if TBLWT*+,
(TABLAT)  Holding Register;
(TBLPTR) + 1  TBLPTR;
if TBLWT*-,
(TABLAT)  Holding Register;
(TBLPTR) – 1  TBLPTR;
if TBLWT+*,
(TBLPTR) + 1  TBLPTR;
(TABLAT)  Holding Register;

Status Affected: None

Encoding: 0000 0000 0000 11nn
nn=0 *
 =1 *+
 =2 *-
 =3 +*

Description: This instruction uses the three LSBs of
TBLPTR to determine which of the eight
holding registers the TABLAT is written to.
The holding registers are used to program
the contents of Program Memory (P.M.).
(Refer to Section 6.0 “Flash Program
Memory” for additional details on
programming Flash memory.)
The TBLPTR (a 21-bit pointer) points to
each byte in the program memory.
TBLPTR has a 2-MByte address range.
The LSb of the TBLPTR selects which
byte of the program memory location to
access.

TBLPTR[0] = 0: Least Significant
Byte of Program
Memory Word

TBLPTR[0] = 1: Most Significant
Byte of Program
Memory Word

The TBLWT instruction can modify the
value of TBLPTR as follows:
• no change
• post-increment
• post-decrement
• pre-increment

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No
operation

No
operation

No
operation

No
operation

No
operation

(Read
TABLAT)

No
operation

No
operation
(Write to
Holding

Register)

TBLWT Table Write (Continued)

Example1: TBLWT *+;

Before Instruction
TABLAT = 55h
TBLPTR = 00A356h
HOLDING REGISTER
 (00A356h) = FFh

After Instructions (table write completion)
TABLAT = 55h
TBLPTR = 00A357h
HOLDING REGISTER
 (00A356h) = 55h

Example 2: TBLWT +*;

Before Instruction
TABLAT = 34h
TBLPTR = 01389Ah
HOLDING REGISTER
 (01389Ah) = FFh
HOLDING REGISTER
 (01389Bh) = FFh

After Instruction (table write completion)
TABLAT = 34h
TBLPTR = 01389Bh
HOLDING REGISTER
 (01389Ah) = FFh
HOLDING REGISTER
 (01389Bh) = 34h

 2010-2016 Microchip Technology Inc. DS40001412G-page 399

PIC18(L)F2X/4XK22
26.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code
development in a PC-hosted environment by simulat-
ing the PIC MCUs and dsPIC DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports
symbolic debugging using the MPLAB XC Compilers,
and the MPASM and MPLAB Assemblers. The soft-
ware simulator offers the flexibility to develop and
debug code outside of the hardware laboratory envi-
ronment, making it an excellent, economical software
development tool.

26.7 MPLAB REAL ICE In-Circuit
Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs all 8, 16 and 32-bit MCU, and DSC devices
with the easy-to-use, powerful graphical user interface of
the MPLAB X IDE.

The emulator is connected to the design engineer’s
PC using a high-speed USB 2.0 interface and is
connected to the target with either a connector
compatible with in-circuit debugger systems (RJ-11)
or with the new high-speed, noise tolerant, Low-
Voltage Differential Signal (LVDS) interconnection
(CAT5).

The emulator is field upgradable through future firmware
downloads in MPLAB X IDE. MPLAB REAL ICE offers
significant advantages over competitive emulators
including full-speed emulation, run-time variable
watches, trace analysis, complex breakpoints, logic
probes, a ruggedized probe interface and long (up to
three meters) interconnection cables.

26.8 MPLAB ICD 3 In-Circuit Debugger
System

The MPLAB ICD 3 In-Circuit Debugger System is
Microchip’s most cost-effective, high-speed hardware
debugger/programmer for Microchip Flash DSC and
MCU devices. It debugs and programs PIC Flash
microcontrollers and dsPIC DSCs with the powerful,
yet easy-to-use graphical user interface of the MPLAB
IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is
connected to the design engineer’s PC using a high-
speed USB 2.0 interface and is connected to the target
with a connector compatible with the MPLAB ICD 2 or
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3
supports all MPLAB ICD 2 headers.

26.9 PICkit 3 In-Circuit Debugger/
Programmer

The MPLAB PICkit 3 allows debugging and program-
ming of PIC and dsPIC Flash microcontrollers at a most
affordable price point using the powerful graphical user
interface of the MPLAB IDE. The MPLAB PICkit 3 is
connected to the design engineer’s PC using a full-
speed USB interface and can be connected to the tar-
get via a Microchip debug (RJ-11) connector (compati-
ble with MPLAB ICD 3 and MPLAB REAL ICE). The
connector uses two device I/O pins and the Reset line
to implement in-circuit debugging and In-Circuit Serial
Programming™ (ICSP™).

26.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages, and a mod-
ular, detachable socket assembly to support various
package types. The ICSP cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices, and incorporates an MMC card for file
storage and data applications.
DS40001412G-page 412  2010-2016 Microchip Technology Inc.

PIC18(L)F2X/4XK22
FIGURE 28-17: PIC18LF2X/4XK22 DELTA IPD FVR

FIGURE 28-18: PIC18F2X/4XK22 DELTA IPD FVR

Typ. 25°C
Typ. 60°C

Max.

10

12

14

16

18

20

22

24

26

28

30

1.8 2.1 2.4 2.7 3 3.3 3.6

ΔI
P

D
 (

µ
A

)

VDD (V)

Typical

Max.

0

20

40

60

80

100

120

2.3 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5

Δ
IP

D
 (

µ
A

)

VDD (V)

Note 1: On the PIC18F2X/4XK22, enabling the FVR results in significantly more
Sleep current when the part enters Voltage Regulation mode at VDD ~ 3.2V.
DS40001412G-page 462  2010-2016 Microchip Technology Inc.

