



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 48MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                           |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                                 |
| Number of I/O              | 24                                                                          |
| Program Memory Size        | 16KB (8K x 16)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 256 x 8                                                                     |
| RAM Size                   | 768 x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                 |
| Data Converters            | A/D 19x10b                                                                  |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 28-UFQFN Exposed Pad                                                        |
| Supplier Device Package    | 28-UQFN (4x4)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k22-e-mv |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### FIGURE 5-11: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

### **EXAMPLE INSTRUCTION:** ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)

### When 'a' = 0 and $f \ge 60h$ :

The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and 0FFh. This is the same as locations F60h to FFFh (Bank 15) of data memory.

Locations below 60h are not available in this addressing mode.

#### When 'a' = 0 and $f \le 5Fh$ :

The instruction executes in Indexed Literal Offset mode. 'f' is interpreted as an offset to the address value in FSR2. The two are added together to obtain the address of the target register for the instruction. The address can be anywhere in the data memory space.

Note that in this mode, the correct syntax is now: ADDWF [k], d where 'k' is the same as 'f'.

#### When 'a' = 1 (all values of f):

The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.



# 5.7.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of Access RAM (00h to 5Fh) are mapped. Rather than containing just the contents of the bottom section of Bank 0, this mode maps the contents from a user defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 5.4.2 "Access Bank"**). An example of Access Bank remapping in this addressing mode is shown in Figure 5-12.

Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use direct addressing as before.

# 5.8 PIC18 Instruction Execution and the Extended Instruction Set

Enabling the extended instruction set adds eight additional commands to the existing PIC18 instruction set. These instructions are executed as described in **Section 25.2 "Extended Instruction Set"**.

### FIGURE 5-12: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING



# 6.3 Register Definitions: Memory Control

# REGISTER 6-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

| R/W-x           | R/W-x                        | U-0                | R/W-0                            | R/W-x                         | R/W-0           | R/S-0             | R/S-0           |
|-----------------|------------------------------|--------------------|----------------------------------|-------------------------------|-----------------|-------------------|-----------------|
| EEPGD           | CFGS                         | _                  | FREE                             | WRERR                         | WREN            | WR                | RD              |
| bit 7           |                              |                    |                                  |                               |                 |                   | bit 0           |
|                 |                              |                    |                                  |                               |                 |                   |                 |
| Legend:         |                              |                    |                                  |                               |                 |                   |                 |
| R = Readable    | bit                          | W = Writable       | bit                              |                               |                 |                   |                 |
| S = Bit can be  | set by software              | e, but not clear   | ed                               | U = Unimpler                  | nented bit, rea | ad as '0'         |                 |
| -n = Value at F | POR                          | '1' = Bit is set   |                                  | '0' = Bit is cle              | ared            | x = Bit is unkr   | nown            |
| h:4 7           |                              |                    |                                  |                               | -4 h:4          |                   |                 |
| DIT 7           | 1 - Accoss E                 | n Program or L     |                                  | i wemory Selec                |                 |                   |                 |
|                 | 1 = Access r<br>0 = Access d | ata EEPROM         | memory                           |                               |                 |                   |                 |
| bit 6           | CFGS: Flash                  | Program/Data       | EEPROM or (                      | Configuration S               | elect bit       |                   |                 |
|                 | 1 = Access C                 | configuration re   | gisters                          | -                             |                 |                   |                 |
|                 | 0 = Access F                 | lash program       | or data EEPRO                    | OM memory                     |                 |                   |                 |
| bit 5           | Unimplement                  | ted: Read as '     | 0'                               |                               |                 |                   |                 |
| bit 4           | FREE: Flash                  | Row (Block) E      | rase Enable bi                   | t                             |                 |                   |                 |
|                 | 1 = Erase the                | e program men      | nory block add                   | ressed by TBL                 | PIR on the ne   | ext WR commar     | ld              |
|                 | 0 = Perform  V               | write-only         |                                  |                               |                 |                   |                 |
| bit 3           | WRERR: Flas                  | sh Program/Da      | ta EEPROM E                      | Error Flag bit <sup>(1)</sup> |                 |                   |                 |
|                 | 1 = A write op               | peration is prei   | maturely termi                   | nated (any Res                | et during self- | timed programr    | ning in normal  |
|                 | operation                    | , or an improp     | er write attemp                  | ot)                           |                 |                   |                 |
| h it 0          |                              |                    |                                  | ite Excelete bit              |                 |                   |                 |
| DIT 2           |                              | Program/Data       | EEPROM W                         |                               |                 |                   |                 |
|                 | 0 = Inhibits w               | rite cycles to F   | lash program/                    | data EEPROM                   |                 |                   |                 |
| bit 1           | WR: Write Co                 | ntrol bit          |                                  |                               |                 |                   |                 |
|                 | 1 = Initiates a              | data EEPRON        | /l erase/write c                 | ycle or a progra              | am memory era   | ase cycle or writ | e cycle.        |
|                 | (The ope                     | ration is self-tir | ned and the bi                   | it is cleared by              | hardware onc    | e write is compl  | ete.            |
|                 | 0 = Write cyc                | le to the EEPF     | Set (not cleare<br>ROM is comple | ed) by soliware               | .)              |                   |                 |
| bit 0           | RD: Read Co                  | ntrol bit          | ·                                |                               |                 |                   |                 |
|                 | 1 = Initiates a              | n EEPROM re        | ad (Read takes                   | s one cycle. RD               | is cleared by I | hardware. The F   | RD bit can only |
|                 | be set (no                   | ot cleared) by s   | oftware. RD bi                   | t cannot be set               | when EEPGD      | = 1 or CFGS =     | 1.)             |
|                 | v = Does not                 | initiate an EEI    | -KOW read                        |                               |                 |                   |                 |

# **Note 1:** When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

# 6.3.1 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

### 6.3.2 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations on the TBLPTR affect only the low-order 21 bits.

### 6.3.3 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory directly into the TABLAT register.

When a TBLWT is executed the byte in the TABLAT register is written, not to Flash memory but, to a holding register in preparation for a program memory write. The holding registers constitute a write block which varies depending on the device (see Table 6-1). The 3, 4, or 5 LSbs of the TBLPTRL register determine which specific address within the holding register block is written to. The MSBs of the Table Pointer have no effect during TBLWT operations.

When a program memory write is executed the entire holding register block is written to the Flash memory at the address determined by the MSbs of the TBLPTR. The 3, 4, or 5 LSBs are ignored during Flash memory writes. For more detail, see **Section 6.6** "**Writing to Flash Program Memory**".

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 6-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

# TABLE 6-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

| Example            | Operation on Table Pointer                  |  |  |  |  |  |
|--------------------|---------------------------------------------|--|--|--|--|--|
| TBLRD*<br>TBLWT*   | TBLPTR is not modified                      |  |  |  |  |  |
| TBLRD*+<br>TBLWT*+ | TBLPTR is incremented after the read/write  |  |  |  |  |  |
| TBLRD*-<br>TBLWT*- | TBLPTR is decremented after the read/write  |  |  |  |  |  |
| TBLRD+*<br>TBLWT+* | TBLPTR is incremented before the read/write |  |  |  |  |  |

### FIGURE 6-3: TABLE POINTER BOUNDARIES BASED ON OPERATION



| Name                  | Bit 7    | Bit 6     | Bit 5     | Bit 4        | Bit 3        | Bit 2         | Bit 1  | Bit 0  | Register<br>on Page |
|-----------------------|----------|-----------|-----------|--------------|--------------|---------------|--------|--------|---------------------|
| INTCON                | GIE/GIEH | PEIE/GIEL | TMR0IE    | INT0IE       | RBIE         | TMR0IF        | INT0IF | RBIF   | 109                 |
| EEADR                 | EEADR7   | EEADR6    | EEADR5    | EEADR4       | EEADR3       | EEADR2        | EEADR1 | EEADR0 | -                   |
| EEADRH <sup>(1)</sup> | _        | —         | —         | —            | —            | —             | EEADR9 | EEADR8 | _                   |
| EEDATA                |          |           | EE        | PROM Dat     | a Register   |               |        |        | _                   |
| EECON2                |          | EEPR      | OM Contro | l Register 2 | 2 (not a phy | sical registe | er)    |        | _                   |
| EECON1                | EEPGD    | CFGS      | —         | FREE         | WRERR        | WREN          | WR     | RD     | 100                 |
| IPR2                  | OSCFIP   | C1IP      | C2IP      | EEIP         | BCL1IP       | HLVDIP        | TMR3IP | CCP2IP | 122                 |
| PIR2                  | OSCFIF   | C1IF      | C2IF      | EEIF         | BCL1IF       | HLVDIF        | TMR3IF | CCP2IF | 113                 |
| PIE2                  | OSCFIE   | C1IE      | C2IE      | EEIE         | BCL1IE       | HLVDIE        | TMR3IE | CCP2IE | 118                 |

# TABLE 7-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Legend: — = unimplemented, read as '0'. Shaded bits are not used during EEPROM access.

Note 1: PIC18(L)F26K22 and PIC18(L)F46K22 only.

### 10.1.1 PORTA OUTPUT PRIORITY

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the higher priority. Table 10-4 lists the PORTA pin functions from the highest to the lowest priority.

Analog input functions, such as ADC and comparator, are not shown in the priority lists.

These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below.

| Deat bit |                     | Port Function Priority by Port Pin |                     |                      |                      |  |  |  |  |  |
|----------|---------------------|------------------------------------|---------------------|----------------------|----------------------|--|--|--|--|--|
| Port bit | PORTA               | PORTB                              | PORTC               | PORTD <sup>(2)</sup> | PORTE <sup>(2)</sup> |  |  |  |  |  |
| 0        | RA0                 | CCP4 <sup>(1)</sup>                | SOSCO               | SCL2                 | CCP3 <sup>(8)</sup>  |  |  |  |  |  |
|          |                     | RB0                                | P2B <sup>(6)</sup>  | SCK2                 | P3A <sup>(8)</sup>   |  |  |  |  |  |
|          |                     |                                    | RC0                 | RD0                  | RE0                  |  |  |  |  |  |
| 1        | RA1                 | SCL2 <sup>(1)</sup>                | SOSCI               | SDA2                 | P3B                  |  |  |  |  |  |
|          |                     | SCK2 <sup>(1)</sup>                | CCP2 <sup>(3)</sup> | CCP4                 | RE1                  |  |  |  |  |  |
|          |                     | P1C <sup>(1)</sup>                 | P2A <sup>(3)</sup>  | RD1                  |                      |  |  |  |  |  |
|          |                     | RB1                                | RC1                 |                      |                      |  |  |  |  |  |
| 2        | RA2                 | SDA2 <sup>(1)</sup>                | CCP1                | P2B                  | CCP5                 |  |  |  |  |  |
|          |                     | P1B <sup>(1)</sup>                 | P1A                 | RD2 <sup>(4)</sup>   | RE2                  |  |  |  |  |  |
|          |                     | RB2                                | CTPLS               |                      |                      |  |  |  |  |  |
|          |                     |                                    | RC2                 |                      |                      |  |  |  |  |  |
| 3        | RA3                 | SDO2 <sup>(1)</sup>                | SCL1                | P2C                  | MCLR                 |  |  |  |  |  |
|          |                     | CCP2 <sup>(6)</sup>                | SCK1                | RD3                  | Vpp                  |  |  |  |  |  |
|          |                     | P2A <sup>(6)</sup>                 | RC3                 |                      | RE3                  |  |  |  |  |  |
|          |                     | RB3                                |                     |                      |                      |  |  |  |  |  |
| 4        | SRQ                 | P1D <sup>(1)</sup>                 | SDA1                | SDO2                 |                      |  |  |  |  |  |
|          | C1OUT               | RB4                                | RC4                 | P2D                  |                      |  |  |  |  |  |
|          | CCP5 <sup>(1)</sup> |                                    |                     | RD4                  |                      |  |  |  |  |  |
|          | RA4                 |                                    |                     |                      |                      |  |  |  |  |  |

### TABLE 10-4: PORT PIN FUNCTION PRIORITY

Note 1: PIC18(L)F2XK22 devices.

2: PIC18(L)F4XK22 devices.

- **3:** Function default pin.
- **4:** Function default pin (28-pin devices).
- **5:** Function default pin (40/44-pin devices).
- **6:** Function alternate pin.
- 7: Function alternate pin (28-pin devices).
- 8: Function alternate pin (40/44-pin devices)

| U-0             | U-0                               | R/W-1 | R/W-1            | R/W-1        | R/W-1            | R/W-1    | R/W-1 |
|-----------------|-----------------------------------|-------|------------------|--------------|------------------|----------|-------|
| —               | —                                 | ANSB5 | ANSB4            | ANSB3        | ANSB2            | ANSB1    | ANSB0 |
| bit 7           |                                   |       |                  |              |                  |          | bit 0 |
|                 |                                   |       |                  |              |                  |          |       |
| Legend:         |                                   |       |                  |              |                  |          |       |
| R = Readable    | R = Readable bit W = Writable bit |       |                  | U = Unimpler | nented bit, read | 1 as '0' |       |
| -n = Value at P | n = Value at POR '1' = Bit is set |       | '0' = Bit is cle | ared         | x = Bit is unkr  | nown     |       |
|                 |                                   |       |                  |              |                  |          |       |

### **REGISTER 10-4:** ANSELB – PORTB ANALOG SELECT REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 ANSB<5:0>: RB<5:0> Analog Select bit 1 = Digital input buffer disabled 0 = Digital input buffer enabled

# REGISTER 10-5: ANSELC – PORTC ANALOG SELECT REGISTER

| R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | U-0 | U-0   |
|-------|-------|-------|-------|-------|-------|-----|-------|
| ANSC7 | ANSC6 | ANSC5 | ANSC4 | ANSC3 | ANSC2 | —   | —     |
| bit 7 |       |       |       |       |       |     | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |
|                   |                  |                             |                    |

bit 7-2 ANSC<7:2>: RC<7:2> Analog Select bit 1 = Digital input buffer disabled 0 = Digital input buffer enabled

bit 1-0 Unimplemented: Read as '0'

## REGISTER 10-6: ANSELD – PORTD ANALOG SELECT REGISTER

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ANSD7 | ANSD6 | ANSD5 | ANSD4 | ANSD3 | ANSD2 | ANSD1 | ANSD0 |
| bit 7 |       |       |       |       |       |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 7-0 ANSD<7:0>: RD<7:0> Analog Select bit

1 = Digital input buffer disabled

0 = Digital input buffer enabled

# 11.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- · Readable and writable registers
- Dedicated 8-bit, software programmable prescaler
- · Selectable clock source (internal or external)
- Edge select for external clock
- Interrupt-on-overflow

The T0CON register (Register 11-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

A simplified block diagram of the Timer0 module in 8-bit mode is shown in Figure 11-1. Figure 11-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

# 11.1 Register Definitions: Timer0 Control

### REGISTER 11-1: TOCON: TIMERO CONTROL REGISTER

| R/W-1  | R/W-1  | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1     | R/W-1 |
|--------|--------|-------|-------|-------|-------|-----------|-------|
| TMR0ON | T08BIT | TOCS  | TOSE  | PSA   |       | TOPS<2:0> |       |
| bit 7  |        |       |       |       |       |           | bit 0 |

| Legend:      |                   |                                 |                               |                    |
|--------------|-------------------|---------------------------------|-------------------------------|--------------------|
| R = Readab   | ole bit           | W = Writable bit                | U = Unimplemented bit,        | , read as '0'      |
| -n = Value a | t POR             | '1' = Bit is set                | '0' = Bit is cleared          | x = Bit is unknown |
|              |                   |                                 |                               |                    |
| bit 7        | TMR0ON            | I: Timer0 On/Off Control bit    |                               |                    |
|              | 1 = Enab          | les Timer0                      |                               |                    |
|              | 0 = Stops         | s Timer0                        |                               |                    |
| bit 6        | T08BIT:           | Timer0 8-bit/16-bit Control bi  | t                             |                    |
|              | 1 = Time          | r0 is configured as an 8-bit ti | mer/counter                   |                    |
|              | 0 <b>= Time</b>   | r0 is configured as a 16-bit ti | mer/counter                   |                    |
| bit 5        | TOCS: Ti          | mer0 Clock Source Select bi     | t                             |                    |
|              | 1 = Trans         | sition on T0CKI pin             |                               |                    |
|              | 0 = Interr        | nal instruction cycle clock (C  | LKOUT)                        |                    |
| bit 4        | TOSE: Ti          | mer0 Source Edge Select bit     | t                             |                    |
|              | 1 = Incre         | ment on high-to-low transitio   | n on T0CKI pin                |                    |
|              | 0 = Incre         | ment on low-to-high transitio   | n on T0CKI pin                |                    |
| bit 3        | PSA: Tim          | ner0 Prescaler Assignment b     | it                            |                    |
|              | 1 = TIme          | r0 prescaler is NOT assigne     | d. Timer0 clock input bypasse | es prescaler.      |
|              | 0 <b>= Time</b>   | r0 prescaler is assigned. Tim   | ner0 clock input comes from p | rescaler output.   |
| bit 2-0      | T0PS<2:           | 0>: Timer0 Prescaler Select     | bits                          |                    |
|              | 111 <b>= 1</b> :2 | 256 prescale value              |                               |                    |
|              | 110 = <b>1</b> :  | 128 prescale value              |                               |                    |
|              | 101 = 1:6         | 64 prescale value               |                               |                    |
|              | 100 = 1:3         | 32 prescale value               |                               |                    |
|              | 011 = 1           | rescale value                   |                               |                    |
|              | $0 \pm 0 = 1.0$   | 1 prescale value                |                               |                    |
|              | 000 = 12          | prescale value                  |                               |                    |

| ECCP Mode            | PxM<1:0> | CCPx/PxA           | PxB                | PxC                | PxD                |
|----------------------|----------|--------------------|--------------------|--------------------|--------------------|
| Single               | 00       | Yes <sup>(1)</sup> | Yes <sup>(1)</sup> | Yes <sup>(1)</sup> | Yes <sup>(1)</sup> |
| Half-Bridge          | 10       | Yes                | Yes                | No                 | No                 |
| Full-Bridge, Forward | 01       | Yes                | Yes                | Yes                | Yes                |
| Full-Bridge, Reverse | 11       | Yes                | Yes                | Yes                | Yes                |

# TABLE 14-12: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

**Note 1:** PWM Steering enables outputs in Single mode.

#### **FIGURE 14-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH** STATE)

| PxM<1:0>           | Signal        | 0 Pulse |            | PRX+1    |
|--------------------|---------------|---------|------------|----------|
|                    |               |         | Period     |          |
| 00 (Single Output) | PxA Modulated |         |            |          |
|                    | PxA Modulated |         |            |          |
| 10 (Half-Bridge)   | PxB Modulated |         |            | i        |
|                    | PxA Active    |         |            | <u> </u> |
| (Full-Bridge,      | PxB Inactive  |         |            |          |
| • Forward)         | PxC Inactive  |         |            |          |
|                    | PxD Modulated |         | —          |          |
|                    | PxA Inactive  |         |            | 1<br>1   |
| 11 (Full-Bridge,   | PxB Modulated | :       | — <u>`</u> | <u> </u> |
| Reverse)           | PxC Active    |         |            |          |
|                    | PxD Inactive  | - !     | 1          |          |

Period = 4 \* Tosc \* (PRx + 1) \* (TMRx Prescale Value)
Pulse Width = Tosc \* (CCPRxL<7:0>:CCPxCON<5:4>) \* (TMRx Prescale Value)
Delay = 4 \* Tosc \* (PWMxCON<6:0>)

Note 1: Dead-band delay is programmed using the PWMxCON register (Section 14.4.5 "Programmable Dead-Band Delay Mode").

# 14.4.7 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

The CCPxM<1:0> bits of the CCPxCON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (PxA/PxC and PxB/PxD). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enable is not recommended since it may result in damage to the application circuits.

The PxA, PxB, PxC and PxD output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMRxIF bit of the PIR1, PIR2 or PIR5 register being set as the second PWM period begins.

Note: When the microcontroller is released from Reset, all of the I/O pins are in the highimpedance state. The external circuits must keep the power switch devices in the Off state until the microcontroller drives the I/O pins with the proper signal levels or activates the PWM output(s).









|        |                   |            |                              |                   | S          | YNC = 0, BRC                 | GH = 1, BR(    | <b>G16 =</b> 0 |                              |                |            |                              |
|--------|-------------------|------------|------------------------------|-------------------|------------|------------------------------|----------------|----------------|------------------------------|----------------|------------|------------------------------|
| BAUD   | Fosc = 64.000 MHz |            | Fos                          | Fosc = 18.432 MHz |            | Fosc = 16.000 MHz            |                |                | Fosc = 11.0592 MHz           |                |            |                              |
| RATE   | Actual<br>Rate    | %<br>Error | SPBRGx<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRGx<br>value<br>(decimal) | Actual<br>Rate | %<br>Error     | SPBRGx<br>value<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRGx<br>value<br>(decimal) |
| 300    | -                 |            | _                            | —                 | _          | _                            | _              | _              | _                            | —              | _          | _                            |
| 1200   | —                 | _          | —                            | —                 | —          | —                            | —              | —              | —                            | —              | _          | —                            |
| 2400   | —                 | —          | _                            | —                 | —          | —                            | _              | _              | _                            | _              | _          | _                            |
| 9600   | —                 | _          | _                            | 9600              | 0.00       | 119                          | 9615           | 0.16           | 103                          | 9600           | 0.00       | 71                           |
| 10417  | —                 | _          | —                            | 10378             | -0.37      | 110                          | 10417          | 0.00           | 95                           | 10473          | 0.53       | 65                           |
| 19.2k  | 19.23k            | 0.16       | 207                          | 19.20k            | 0.00       | 59                           | 19.23k         | 0.16           | 51                           | 19.20k         | 0.00       | 35                           |
| 57.6k  | 57.97k            | 0.64       | 68                           | 57.60k            | 0.00       | 19                           | 58.82k         | 2.12           | 16                           | 57.60k         | 0.00       | 11                           |
| 115.2k | 114.29k           | -0.79      | 34                           | 115.2k            | 0.00       | 9                            | 111.1k         | -3.55          | 8                            | 115.2k         | 0.00       | 5                            |

# TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

|        | SYNC = 0, BRGH = 1, BRG16 = 0 |            |                              |                  |            |                              |                   |            |                              |                  |            |                              |
|--------|-------------------------------|------------|------------------------------|------------------|------------|------------------------------|-------------------|------------|------------------------------|------------------|------------|------------------------------|
| BAUD   | Fosc = 8.000 MHz              |            |                              | Fosc = 4.000 MHz |            |                              | Fosc = 3.6864 MHz |            |                              | Fosc = 1.000 MHz |            |                              |
| RATE   | Actual<br>Rate                | %<br>Error | SPBRGx<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRGx<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SxBRGx<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRGx<br>value<br>(decimal) |
| 300    | —                             | _          | _                            | _                | _          | _                            | _                 |            | _                            | 300              | 0.16       | 207                          |
| 1200   | —                             | _          | _                            | 1202             | 0.16       | 207                          | 1200              | 0.00       | 191                          | 1202             | 0.16       | 51                           |
| 2400   | 2404                          | 0.16       | 207                          | 2404             | 0.16       | 103                          | 2400              | 0.00       | 95                           | 2404             | 0.16       | 25                           |
| 9600   | 9615                          | 0.16       | 51                           | 9615             | 0.16       | 25                           | 9600              | 0.00       | 23                           | —                | —          | —                            |
| 10417  | 10417                         | 0.00       | 47                           | 10417            | 0.00       | 23                           | 10473             | 0.53       | 21                           | 10417            | 0.00       | 5                            |
| 19.2k  | 19231                         | 0.16       | 25                           | 19.23k           | 0.16       | 12                           | 19.2k             | 0.00       | 11                           | —                | _          | _                            |
| 57.6k  | 55556                         | -3.55      | 8                            | —                | _          | _                            | 57.60k            | 0.00       | 3                            | —                | _          | _                            |
| 115.2k | _                             | _          | _                            | _                | _          | _                            | 115.2k            | 0.00       | 1                            | _                | _          | _                            |

|        | SYNC = 0, BRGH = 0, BRG16 = 1 |            |                                 |                   |            |                                 |                |            |                                 |                |            |                                 |
|--------|-------------------------------|------------|---------------------------------|-------------------|------------|---------------------------------|----------------|------------|---------------------------------|----------------|------------|---------------------------------|
| BAUD   | Fos                           | c = 64.00  | 00 MHz                          | Fosc = 18.432 MHz |            | Fosc = 16.000 MHz               |                |            | Fosc = 11.0592 MHz              |                |            |                                 |
| RATE   | Actual<br>Rate                | %<br>Error | SPBRGHx:<br>SPBRGx<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRGHx:<br>SPBRGx<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRGHx<br>:SPBRGx<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRGHx:<br>SPBRGx<br>(decimal) |
| 300    | 300.0                         | 0.00       | 13332                           | 300.0             | 0.00       | 3839                            | 300.03         | 0.01       | 3332                            | 300.0          | 0.00       | 2303                            |
| 1200   | 1200.1                        | 0.01       | 3332                            | 1200              | 0.00       | 959                             | 1200.5         | 0.04       | 832                             | 1200           | 0.00       | 575                             |
| 2400   | 2399                          | -0.02      | 1666                            | 2400              | 0.00       | 479                             | 2398           | -0.08      | 416                             | 2400           | 0.00       | 287                             |
| 9600   | 9592                          | -0.08      | 416                             | 9600              | 0.00       | 119                             | 9615           | 0.16       | 103                             | 9600           | 0.00       | 71                              |
| 10417  | 10417                         | 0.00       | 383                             | 10378             | -0.37      | 110                             | 10417          | 0.00       | 95                              | 10473          | 0.53       | 65                              |
| 19.2k  | 19.23k                        | 0.16       | 207                             | 19.20k            | 0.00       | 59                              | 19.23k         | 0.16       | 51                              | 19.20k         | 0.00       | 35                              |
| 57.6k  | 57.97k                        | 0.64       | 68                              | 57.60k            | 0.00       | 19                              | 58.82k         | 2.12       | 16                              | 57.60k         | 0.00       | 11                              |
| 115.2k | 114.29k                       | -0.79      | 34                              | 115.2k            | 0.00       | 9                               | 111.11k        | -3.55      | 8                               | 115.2k         | 0.00       | 5                               |

# 17.1.7 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON2 register controls the output format.

Figure 17-2 shows the two output formats.

# FIGURE 17-2: 10-BIT A/D CONVERSION RESULT FORMAT









| INC                                                                             | FSZ                                           | Increment f, skip if 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      | INF                  | SNZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Incremen                                       | Increment f, skip if not 0                          |                                                                                                                                                                                                                   |                      |  |
|---------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| Synt                                                                            | ax:                                           | INCFSZ f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | {,d {,a}}                                                            |                      | Synt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ax:                                            | INFSNZ f                                            | {,d {,a}}                                                                                                                                                                                                         |                      |  |
| Ope                                                                             | ands:                                         | $0 \le f \le 255$<br>$d \in [0,1]$<br>$a \in [0,1]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                      | Оре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rands:                                         | $0 \le f \le 255$<br>$d \in [0,1]$<br>$a \in [0,1]$ |                                                                                                                                                                                                                   |                      |  |
| Ope                                                                             | ration:                                       | (f) + 1 $\rightarrow$ de skip if resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | est,<br>t = 0                                                        |                      | Ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ration:                                        | (f) + 1 $\rightarrow$ de skip if resul              | (f) + 1 $\rightarrow$ dest,<br>skip if result $\neq$ 0                                                                                                                                                            |                      |  |
| Statu                                                                           | is Affected:                                  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                      | Statu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | us Affected:                                   | None                                                |                                                                                                                                                                                                                   |                      |  |
| Enco                                                                            | odina:                                        | 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11da ff:                                                             | ff ffff              | Enco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oding:                                         | 0100                                                | 10da ff:                                                                                                                                                                                                          | ff fff               |  |
| Desc                                                                            | sription:                                     | ption: The contents of register 'f' are<br>incremented. If 'd' is '0', the result is<br>placed in W. If 'd' is '1', the result is<br>placed back in register 'f' (default).<br>If the result is '0', the next instruction,<br>which is already fetched, is discarded<br>and a NOP is executed instead, making<br>it a 2-cycle instruction.<br>If 'a' is '0', the Access Bank is selected.<br>If 'a' is '1', the BSR is used to select the<br>GPR bank.<br>If 'a' is '0' and the extended instruction<br>set is enabled, this instruction operates<br>in Indexed Literal Offset Addressing<br>mode whenever f ≤ 95 (5Fh). See<br>Section 25.2.3 "Byte-Oriented and<br>Bit-Oriented Instructions in Indexed<br>Literal Offset Mode" for details. |                                                                      | Desi                 | incremented. If 'd' is '0', the<br>placed in W. If 'd' is '1', the<br>placed back in register 'f' (<br>If the result is not '0', the n<br>instruction, which is alread<br>discarded and a NOP is exc<br>instead, making it a 2-cycle<br>instruction.<br>If 'a' is '0', the Access Banl<br>If 'a' is '0', the Access Banl<br>If 'a' is '1', the BSR is used<br>GPR bank.<br>If 'a' is '0' and the extende<br>set is enabled, this instruct<br>in Indexed Literal Offset Ac<br>mode whenever f ≤ 95 (5F<br>Section 25.2.3 "Byte-Orie<br>Bit-Oriented Instructions<br>Literal Offset Mode" for c |                                                |                                                     | are<br>he result is<br>(default).<br>next<br>dy fetched, is<br>kecuted<br>de selected.<br>d to select the<br>ed instruction<br>ction operates<br>Addressing<br>Fh). See<br>iented and<br>s in Indexed<br>details. |                      |  |
| Word                                                                            | ds:                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                      | Wor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ds:                                            | 1                                                   |                                                                                                                                                                                                                   |                      |  |
| Cycles: 1(2)<br>Note: 3 cycles if skip and followed<br>by a 2-word instruction. |                                               | Cycl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cycles: 1(2)<br>Note: 3 cycles if skip and t<br>by a 2-word instruct |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd followed<br>ruction.                        |                                                     |                                                                                                                                                                                                                   |                      |  |
| QC                                                                              | ycle Activity:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                      | QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cycle Activity:                                |                                                     |                                                                                                                                                                                                                   |                      |  |
|                                                                                 | Q1                                            | Q2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q3                                                                   | Q4                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q1                                             | Q2                                                  | Q3                                                                                                                                                                                                                | Q4                   |  |
|                                                                                 | Decode                                        | Read<br>register 'f'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Process<br>Data                                                      | Write to destination |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Decode                                         | Read<br>register 'f'                                | Process<br>Data                                                                                                                                                                                                   | Write to destination |  |
| lf sk                                                                           | tip:                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                      | lf sl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kip:                                           |                                                     |                                                                                                                                                                                                                   |                      |  |
|                                                                                 | Q1                                            | Q2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q3                                                                   | Q4                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q1                                             | Q2                                                  | Q3                                                                                                                                                                                                                | Q4                   |  |
|                                                                                 | No                                            | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No                                                                   | No                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No                                             | No                                                  | No                                                                                                                                                                                                                | No                   |  |
| 16 - 1                                                                          | operation                                     | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | operation                                                            | operation            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | operation                                      | operation                                           | operation                                                                                                                                                                                                         | operation            |  |
| II SF                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | 04                   | It si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kip and followe                                | d by 2-word in                                      | struction:                                                                                                                                                                                                        | 0.1                  |  |
|                                                                                 | Q1<br>No                                      | Q2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q3                                                                   | Q4                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q1                                             | Q2                                                  | Q3                                                                                                                                                                                                                | Q4                   |  |
|                                                                                 | operation                                     | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | operation                                                            | operation            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | no                                             | N0<br>operation                                     | operation                                                                                                                                                                                                         | no                   |  |
|                                                                                 | No                                            | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No                                                                   | No                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No                                             | No                                                  | No                                                                                                                                                                                                                | No                   |  |
|                                                                                 | operation                                     | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | operation                                                            | operation            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | operation                                      | operation                                           | operation                                                                                                                                                                                                         | operation            |  |
| <u>Exar</u>                                                                     | nple:                                         | HERE<br>NZERO<br>ZERO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INCFSZ CN<br>:<br>:                                                  | TT, 1, 0             | <u>Exa</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mple:                                          | HERE<br>ZERO<br>NZERO                               | INFSNZ REG                                                                                                                                                                                                        | 5, 1, 0              |  |
|                                                                                 | Before Instruc                                | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Before Instruc                                 | tion                                                |                                                                                                                                                                                                                   |                      |  |
|                                                                                 | PC<br>After Instructio<br>CNT<br>If CNT<br>PC | = Address<br>on<br>= CNT + 7<br>= 0;<br>- Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S (HERE)                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PC<br>After Instruction<br>REG<br>If REG<br>PC | = Address<br>on<br>= REG +<br>≠ 0;<br>= Address     | S (HERE)<br>1<br>S (NZERO)                                                                                                                                                                                        |                      |  |
|                                                                                 | If CNT<br>PC                                  | <ul> <li>≠ 0;</li> <li>= Address</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S (NZERO)                                                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | If REG<br>PC                                   | = 0;<br>= Address                                   | s (ZERO)                                                                                                                                                                                                          |                      |  |

| IOR               | LW                | Inclusive                   | Inclusive OR literal with W |                   |                |                        |  |  |  |  |
|-------------------|-------------------|-----------------------------|-----------------------------|-------------------|----------------|------------------------|--|--|--|--|
| Synta             | ax:               | IORLW k                     |                             |                   |                |                        |  |  |  |  |
| Oper              | ands:             | $0 \le k \le 255$           |                             |                   |                |                        |  |  |  |  |
| Oper              | ation:            | (W) .OR. k                  | $\rightarrow W$             |                   |                |                        |  |  |  |  |
| Statu             | s Affected:       | N, Z                        | N, Z                        |                   |                |                        |  |  |  |  |
| Encoding:         |                   | 0000                        | 1001                        | kkk               | k              | kkkk                   |  |  |  |  |
| Description:      |                   | The conten<br>8-bit literal | its of W a<br>'k'. The r    | are OF<br>esult i | Red v<br>s pla | vith the<br>iced in W. |  |  |  |  |
| Word              | ls:               | 1                           |                             |                   |                |                        |  |  |  |  |
| Cycles:           |                   | 1                           |                             |                   |                |                        |  |  |  |  |
| Q Cycle Activity: |                   |                             |                             |                   |                |                        |  |  |  |  |
|                   | Q1                | Q2                          | Q                           | 3                 | Q4             |                        |  |  |  |  |
|                   | Decode            | Read<br>literal 'k'         | Proce<br>Dat                | ess<br>a          | W              | ite to W               |  |  |  |  |
| <u>Exan</u>       | nple:             | IORLW                       | 35h                         |                   |                |                        |  |  |  |  |
|                   | Before Instruc    | tion                        |                             |                   |                |                        |  |  |  |  |
|                   | W                 | = 9Ah                       |                             |                   |                |                        |  |  |  |  |
|                   | After Instruction | on                          |                             |                   |                |                        |  |  |  |  |
|                   | W                 | = BFh                       |                             |                   |                |                        |  |  |  |  |

| IORWF             | Inclusive                                                                                                                                                                                                       | OR W w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /ith f       |                    |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|--|--|--|--|
| Syntax:           | IORWF f                                                                                                                                                                                                         | {,d {,a}}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                    |  |  |  |  |
| Operands:         | $0 \le f \le 255$<br>$d \in [0,1]$<br>$a \in [0,1]$                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                    |  |  |  |  |
| Operation:        | (W) .OR. (f)                                                                                                                                                                                                    | $\rightarrow$ dest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                    |  |  |  |  |
| Status Affected:  | N, Z                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                    |  |  |  |  |
| Encoding:         | 0001                                                                                                                                                                                                            | 00da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ffff         | ffff               |  |  |  |  |
| Description:      | Inclusive O<br>'0', the result is<br>(default).<br>If 'a' is '0', t<br>If 'a' is '1', t<br>GPR bank.<br>If 'a' is '0' a<br>set is enabl<br>in Indexed<br>mode when<br>Section 25<br>Bit-Oriente<br>Literal Offs | Inclusive OR W with register 'f'. If 'd' is<br>'0', the result is placed in W. If 'd' is '1',<br>the result is placed back in register 'f'<br>(default).<br>If 'a' is '0', the Access Bank is selected.<br>If 'a' is '1', the BSR is used to select the<br>GPR bank.<br>If 'a' is '0' and the extended instruction<br>set is enabled, this instruction operates<br>in Indexed Literal Offset Addressing<br>mode whenever $f \le 95$ (5Fh). See<br>Section 25.2.3 "Byte-Oriented and<br>Bit-Oriented Instructions in Indexed<br>Literal Offset Mode" for details |              |                    |  |  |  |  |
| Words:            | 1                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                    |  |  |  |  |
| Cycles:           | 1                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                    |  |  |  |  |
| Q Cycle Activity: |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                    |  |  |  |  |
| Q1                | Q2                                                                                                                                                                                                              | Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | Q4                 |  |  |  |  |
| Decode            | Read<br>register 'f'                                                                                                                                                                                            | Proce<br>Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ss V<br>a de | Vrite to stination |  |  |  |  |
| Example:          | IORWF RI                                                                                                                                                                                                        | ESULT,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0, 1         |                    |  |  |  |  |

Example:

| Before Instruction |  |
|--------------------|--|

| RESULT            | = | 13h |
|-------------------|---|-----|
| W                 | = | 91h |
| After Instruction | n |     |
| RESULT            | = | 13h |
| W                 | = | 93h |

| RET         | FIE                                                                                              | Return fr                                                                                                                                    | Return from Interrupt                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                             |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------|--|--|--|
| Synta       | ax:                                                                                              | RETFIE {                                                                                                                                     | s}                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                             |  |  |  |
| Oper        | ands:                                                                                            | $s \in \left[0,1\right]$                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                             |  |  |  |
| Oper        | ation:                                                                                           | $(TOS) \rightarrow F$<br>$1 \rightarrow GIE/G$<br>if s = 1<br>$(WS) \rightarrow W$<br>(STATUSS)<br>$(BSRS) \rightarrow$<br>PCLATU, I         | PC,<br>GIEH or P<br>$\frac{1}{2}$ ,<br>3) → Statu<br>BSR,<br>PCLATH :                                                                                                                                                                                                                                                                                                                                              | EIE/GIE<br>Is,<br>are unch | L,<br>nanged.                               |  |  |  |
| Statu       | s Affected:                                                                                      | GIE/GIEH,                                                                                                                                    | PEIE/GI                                                                                                                                                                                                                                                                                                                                                                                                            | EL.                        |                                             |  |  |  |
| Enco        | ding:                                                                                            | 0000                                                                                                                                         | 0000                                                                                                                                                                                                                                                                                                                                                                                                               | 0001                       | 000s                                        |  |  |  |
| Desc        | ription:                                                                                         | Return from<br>and Top-of<br>the PC. Int<br>setting eith<br>global inte<br>contents o<br>STATUSS<br>their corres<br>STATUS a<br>of these ret | Return from interrupt. Stack is popped<br>and Top-of-Stack (TOS) is loaded into<br>the PC. Interrupts are enabled by<br>setting either the high or low priority<br>global interrupt enable bit. If 's' = 1, the<br>contents of the shadow registers, WS,<br>STATUSS and BSRS, are loaded into<br>their corresponding registers, W,<br>STATUS and BSR. If 's' = 0, no update<br>of these registers occurs (defa:!!) |                            |                                             |  |  |  |
| Word        | ls:                                                                                              | 1                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                             |  |  |  |
| Cycle       | es:                                                                                              | 2                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                             |  |  |  |
| QC          | ycle Activity:                                                                                   |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                             |  |  |  |
|             | Q1                                                                                               | Q2                                                                                                                                           | Q3                                                                                                                                                                                                                                                                                                                                                                                                                 | }                          | Q4                                          |  |  |  |
|             | Decode                                                                                           | No<br>operation                                                                                                                              | No<br>opera                                                                                                                                                                                                                                                                                                                                                                                                        | tion s                     | POP PC<br>from stack<br>Set GIEH or<br>GIEL |  |  |  |
|             | No                                                                                               | No                                                                                                                                           | No                                                                                                                                                                                                                                                                                                                                                                                                                 | )                          | No                                          |  |  |  |
|             | operation                                                                                        | operation                                                                                                                                    | opera                                                                                                                                                                                                                                                                                                                                                                                                              | tion                       | operation                                   |  |  |  |
| <u>Exan</u> | nple:                                                                                            | RETFIE                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                             |  |  |  |
|             | After Interrupt<br>PC = TOS<br>W = WS<br>BSR = BSRS<br>Status = STATUSS<br>CIE/CIEH PEE/CIEL = 1 |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                             |  |  |  |

| C',         | 2.2.1                        |                                                                        | -                                                                                                                                                                                   |                     |                                 |  |  |  |  |  |
|-------------|------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|--|--|
| Synta       | ax:                          | REILVV K                                                               |                                                                                                                                                                                     |                     |                                 |  |  |  |  |  |
| Oper        | ands:                        | $0 \le k \le 255$                                                      |                                                                                                                                                                                     |                     |                                 |  |  |  |  |  |
| Oper        | ation:                       | $k \rightarrow W,$<br>(TOS) $\rightarrow P($<br>PCLATU, P              | C,<br>CLATH a                                                                                                                                                                       | are uncha           | nged                            |  |  |  |  |  |
| Statu       | s Affected:                  | None                                                                   | None                                                                                                                                                                                |                     |                                 |  |  |  |  |  |
| Enco        | ding:                        | 0000                                                                   | 1100                                                                                                                                                                                | kkkk                | kkkk                            |  |  |  |  |  |
| Desc        | ription:                     | W is loaded<br>program co<br>of the stack<br>high addres<br>unchanged. | W is loaded with the 8-bit literal 'k'. The<br>program counter is loaded from the top<br>of the stack (the return address). The<br>high address latch (PCLATH) remains<br>unchanged |                     |                                 |  |  |  |  |  |
| Word        | ls:                          | 1                                                                      |                                                                                                                                                                                     |                     |                                 |  |  |  |  |  |
| Cycle       | es:                          | 2                                                                      |                                                                                                                                                                                     |                     |                                 |  |  |  |  |  |
| QC          | ycle Activity:               |                                                                        |                                                                                                                                                                                     |                     |                                 |  |  |  |  |  |
|             | Q1                           | Q2                                                                     | Q3                                                                                                                                                                                  |                     | Q4                              |  |  |  |  |  |
|             | Decode                       | Read<br>literal 'k'                                                    | Proce<br>Data                                                                                                                                                                       | ess P<br>a fro<br>W | OP PC<br>om stack,<br>rite to W |  |  |  |  |  |
|             | No                           | No                                                                     | No                                                                                                                                                                                  |                     | No                              |  |  |  |  |  |
|             | operation                    | operation                                                              | operat                                                                                                                                                                              | tion o              | peration                        |  |  |  |  |  |
| <u>Exan</u> | n <b>ple</b> :<br>CALL TABLE | ; W contai                                                             | ins tab                                                                                                                                                                             | le                  |                                 |  |  |  |  |  |
|             |                              | ; offset v                                                             | /alue                                                                                                                                                                               |                     |                                 |  |  |  |  |  |
|             |                              | ; w now na<br>; table va                                               | ; W now has<br>: table value                                                                                                                                                        |                     |                                 |  |  |  |  |  |
| :           |                              |                                                                        |                                                                                                                                                                                     |                     |                                 |  |  |  |  |  |
| TABI        | Æ                            |                                                                        |                                                                                                                                                                                     |                     |                                 |  |  |  |  |  |
|             | ADDWF PCL                    | ; W = offs                                                             | set                                                                                                                                                                                 |                     |                                 |  |  |  |  |  |
|             | RETLW k0                     | ; Begin ta                                                             | able                                                                                                                                                                                |                     |                                 |  |  |  |  |  |
|             | RETLW KI                     | i                                                                      |                                                                                                                                                                                     |                     |                                 |  |  |  |  |  |
|             |                              |                                                                        |                                                                                                                                                                                     |                     |                                 |  |  |  |  |  |
| :           |                              |                                                                        |                                                                                                                                                                                     |                     |                                 |  |  |  |  |  |

W = 07h After Instruction

W = value of kn

| SUBLW                 | Subtract            | W from lite      | ral        | SUBWF                       | Subtract                  | W from f                            |                       |
|-----------------------|---------------------|------------------|------------|-----------------------------|---------------------------|-------------------------------------|-----------------------|
| Syntax:               | SUBLW k             | (                |            | Syntax:                     | SUBWF                     | f {,d {,a}}                         |                       |
| Operands:             | $0 \le k \le 255$   | 5                |            | Operands:                   | $0 \le f \le 255$         | 5                                   |                       |
| Operation:            | $k-(W) \rightarrow$ | W                |            |                             | $d \in [0,1]$             |                                     |                       |
| Status Affected:      | N, OV, C, [         | DC, Z            |            | Operation:                  | $a \in [0, 1]$            | \ doct                              |                       |
| Encoding:             | 0000                | 1000 kkl         | k kkkk     | Operation.                  | (I) = (VV) =              |                                     |                       |
| Description           | W is subtra         | acted from the   | 8-bit      | Status Allected:            | N, OV, C,                 | 11 da 664                           |                       |
|                       | literal 'k'. T      | he result is pl  | aced in W. | Encoding:                   | 0101<br>Subtract V        | IIda III                            | ۲۲ IIII<br>۲۴ (۵'۵    |
| Words:                | 1                   |                  |            | Description.                | compleme                  | ent method). If                     | 'd' is '0', the       |
| Cycles:               | 1                   |                  |            |                             | result is st              | ored in W. If 'c                    | l' is '1', the        |
| Q Cycle Activity:     |                     |                  |            |                             | result is st<br>(default) | tored back in re                    | egister 'f'           |
| Q1                    | Q2                  | Q3               | Q4         |                             | If 'a' is '0',            | the Access Ba                       | ank is                |
| Decode                | Read<br>literal 'k' | Process<br>Data  | Write to W |                             | selected.                 | lf 'a' is '1', the l<br>he GPR bank | BSR is used           |
| Example 1:            | SUBLW 0             | l2h              |            |                             | If 'a' is '0' a           | and the extend                      | ed instruction        |
| Before Instruc        | tion                |                  |            |                             | set is enal               | bled, this instru                   | iction<br>ral Offset  |
| W                     | = 01h               |                  |            |                             | Addressin                 | g mode whene                        | ever                  |
| After Instruction     | e :<br>on           |                  |            |                             | f ≤ 95 (5Fl               | h). See <b>Sectio</b>               | n 25.2.3<br>Oriente d |
| W<br>C                | = 01h<br>= 1 :re    | sult is positive | 2          |                             | Instructio                | ented and Bit-<br>ns in Indexed     | Literal Offset        |
| Z                     | = 0                 |                  |            |                             | Mode" for                 | details.                            |                       |
| Example 2:            |                     | 122              |            | Words:                      | 1                         |                                     |                       |
| Refere Instruc        | tion                | 211              |            | Cycles:                     | 1                         |                                     |                       |
| W                     | = 02h               |                  |            | Q Cycle Activity:           |                           |                                     |                       |
| C<br>After Instructio | = ?<br>on           |                  |            | Q1                          | Q2                        | Q3                                  | Q4                    |
| W                     | = 00h               | cult is zoro     |            | Decode                      | Read                      | Process                             | Write to              |
| Z                     | = 1                 | Sult is zero     |            | <b></b>                     |                           |                                     | uestination           |
| N                     | = 0                 |                  |            | Example 1:<br>Before Instru | SUBWF'                    | REG, 1, 0                           |                       |
| Example 3:            | SUBLW 0             | 2h               |            | REG                         | = 3                       |                                     |                       |
| Before Instruc<br>W   | = 03h               |                  |            | VV<br>C                     | = 2<br>= ?                |                                     |                       |
| C<br>After Instructio | = ?                 |                  |            | After Instructi             | on<br>– 1                 |                                     |                       |
| W                     | = FFh ; (2          | 2's compleme     | nt)        | W                           | = 2                       |                                     |                       |
| Z                     | = 0; re = 0         | esult is negativ | /e         | Z                           | = 1 ; re = 0              | esult is positive                   | 9                     |
| Ν                     | = 1                 |                  |            | N                           | = 0                       |                                     |                       |
|                       |                     |                  |            | Example 2:                  | SUBWF                     | REG, 0, 0                           |                       |
|                       |                     |                  |            | REG                         | = 2                       |                                     |                       |
|                       |                     |                  |            | W<br>C                      | = 2<br>= ?                |                                     |                       |
|                       |                     |                  |            | After Instructi             | on                        |                                     |                       |
|                       |                     |                  |            | REG<br>W                    | = 2<br>= 0                |                                     |                       |
|                       |                     |                  |            | C<br>Z                      | = 1 ; re                  | esult is zero                       |                       |
|                       |                     |                  |            | Ň                           | = 0                       |                                     |                       |
|                       |                     |                  |            | Example 3:                  | SUBWF                     | REG, 1, 0                           |                       |
|                       |                     |                  |            | Before Instrue<br>REG       | ction<br>= 1              |                                     |                       |
|                       |                     |                  |            | W                           | = 2                       |                                     |                       |
|                       |                     |                  |            | After Instructi             | e ?<br>on                 |                                     |                       |
|                       |                     |                  |            | REG                         | = FFh ;(2                 | 's complement                       | t)                    |
|                       |                     |                  |            | Č                           | $= 0^{2}$ ; re            | esult is negativ                    | e                     |
|                       |                     |                  |            | ∠<br>N                      | = 0<br>= 1                |                                     |                       |

| TBLWT             | Table Write                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                 |                                           |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|-------------------------------------------|--|--|
| Syntax:           | TBLWT ( '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | '; <b>*+; *-;</b> +* | )               |                                           |  |  |
| Operands:         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                 |                                           |  |  |
| Operation:        | if TBLWT*,<br>(TABLAT) $\rightarrow$ Holding Register;<br>TBLPTR – No Change;<br>if TBLWT*+,<br>(TABLAT) $\rightarrow$ Holding Register;<br>(TBLPTR) + 1 $\rightarrow$ TBLPTR;<br>if TBLWT*-,<br>(TABLAT) $\rightarrow$ Holding Register;<br>(TBLPTR) – 1 $\rightarrow$ TBLPTR;<br>if TBLWT+*,<br>(TABLAT) $\rightarrow$ Holding Register;<br>(TABLAT) $\rightarrow$ Holding Register;                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                 |                                           |  |  |
| Status Affected:  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                 |                                           |  |  |
| Encoding:         | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0000                 | 0000            | 11nn<br>nn=0 *<br>=1 *+<br>=2 *-<br>=3 +* |  |  |
| Description:      | This instruction uses the three LSBs of<br>TBLPTR to determine which of the eight<br>holding registers the TABLAT is written to.<br>The holding registers are used to program<br>the contents of Program Memory (P.M.).<br>(Refer to Section 6.0 "Flash Program<br>Memory" for additional details on<br>programming Flash memory.)<br>The TBLPTR (a 21-bit pointer) points to<br>each byte in the program memory.<br>TBLPTR has a 2-MByte address range.<br>The LSb of the TBLPTR selects which<br>byte of the program memory location to<br>access.<br>TBLPTR[0] = 0: Least Significant<br>Byte of Program<br>Memory Word<br>TBLPTR[0] = 1: Most Significant<br>Byte of Program<br>Memory Word<br>The TBLWT instruction can modify the<br>value of TBLPTR as follows:<br>• no change<br>• post-increment<br>• pre-increment |                      |                 |                                           |  |  |
| Words:            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                 |                                           |  |  |
| Cycles:           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                 |                                           |  |  |
| Q Cycle Activity: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 0.0             | <u>.</u>                                  |  |  |
|                   | Q1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q2                   | Q3              | Q4                                        |  |  |
|                   | Decode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No                   | No<br>operation | No                                        |  |  |
|                   | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                   | No              | No                                        |  |  |
|                   | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | operation<br>(Read   | operation       | operation<br>(Write to                    |  |  |

### TBLWT Table Write (Continued)

| Example1:                                   | TBLWT *+;                               |        |                |  |  |  |  |  |
|---------------------------------------------|-----------------------------------------|--------|----------------|--|--|--|--|--|
| Before Instruction                          |                                         |        |                |  |  |  |  |  |
| TABLAT<br>TBLPTR<br>HOLDIN                  |                                         | =<br>= | 55h<br>00A356h |  |  |  |  |  |
| (00A35                                      | =                                       | FFh    |                |  |  |  |  |  |
| After Instructions (table write completion) |                                         |        |                |  |  |  |  |  |
| TABLAT                                      | =                                       | 55h    |                |  |  |  |  |  |
|                                             |                                         | =      | 00A357h        |  |  |  |  |  |
| (00A35                                      | i6h)                                    | =      | 55h            |  |  |  |  |  |
| Example 2:                                  | TBLWT +*;                               |        |                |  |  |  |  |  |
| Before Instrue                              | ction                                   |        |                |  |  |  |  |  |
| TABLAT                                      |                                         | =      | 34h            |  |  |  |  |  |
|                                             | R<br>NG REGISTER<br>9Ah)<br>NG REGISTER | =      | 01389Ah        |  |  |  |  |  |
| (01389<br>HOLDIN                            |                                         | =      | FFh            |  |  |  |  |  |
| (01389                                      | Bh)                                     | =      | FFh            |  |  |  |  |  |
| After Instructi                             | on (table write completion)             |        |                |  |  |  |  |  |
| TABLAT                                      |                                         | =      | 34h            |  |  |  |  |  |
|                                             | R<br>NG REGISTER<br>DAh)<br>NG REGISTER | =      | 01389Bh        |  |  |  |  |  |
| (01389<br>HOLDIN                            |                                         | =      | FFh            |  |  |  |  |  |
| (01389                                      | Bh)                                     | =      | 34h            |  |  |  |  |  |

TABLAT)

Holding Register)

# 26.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

# 26.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

# 26.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

# 26.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>).

## 26.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.





