

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k22-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2:	PIC18(L)F2XK22 PIN SUMMARY
----------	----------------------------

IAD				FZANZZ	1 114 50									
28-SSOP, SOIC 28-SPDIP	28-QFN, UQFN	0/1	Analog	Comparator	СТМИ	SR Latch	Reference	(E)CCP	EUSART	MSSP	Timers	Interrupts	dn-lluq	Basic
2	27	RA0	AN0	C12IN0-										
3	28	RA1	AN1	C12IN1-										
4	1	RA2	AN2	C2IN+			VREF- DACOUT							
5	2	RA3	AN3	C1IN+			VREF+							
6	3	RA4		C1OUT		SRQ		CCP5			TOCKI			
7	4	RA5	AN4	C2OUT		SRNQ	HLVDIN			SS1				
10	7	RA6												OSC2 CLKO
9	6	RA7												OSC1 CLKI
21	18	RB0	AN12			SRI		CCP4 FLT0		SS2		INT0	Y	
22	19	RB1	AN10	C12IN3-				P1C		SCK2 SCL2		INT1	Y	
23	20	RB2	AN8		CTED1			P1B		SDI2 SDA2		INT2	Y	
24	21	RB3	AN9	C12IN2-	CTED2			CCP2 P2A ⁽¹⁾		SDO2			Y	
25	22	RB4	AN11					P1D			T5G	IOC	Υ	
26	23	RB5	AN13					CCP3 P3A ⁽⁴⁾ P2B ⁽³⁾			T1G T3CKI ⁽²⁾	IOC	Y	
27	24	RB6							TX2/CK2			IOC	Y	PGC
28	25	RB7							RX2/DT2			IOC	Y	PGD
11	8	RC0						P2B ⁽³⁾			SOSCO T1CKI T3CKI ⁽²⁾ T3G			
12	9	RC1						CCP2 P2A ⁽¹⁾			SOSCI			
13	10	RC2	AN14		CTPLS			CCP1 P1A			T5CKI			
14	11	RC3	AN15							SCK1 SCL1				
15	12	RC4	AN16							SDI1 SDA1				
16	13	RC5	AN17							SDO1				
17	14	RC6	AN18					CCP3 P3A ⁽⁴⁾	TX1/CK1					
18	15	RC7	AN19					P3B	RX1/DT1					
1	26	RE3												MCLR VPP
8, 19 19	5, 16 16	Vss												Vss
20	17	Vdd												Vdd

 CCP2/P2A multiplexed in fuses.
 T3CKI multiplexed in fuses.
 P2B multiplexed in fuses.
 CCP3/P3A multiplexed in fuses. Note 1:

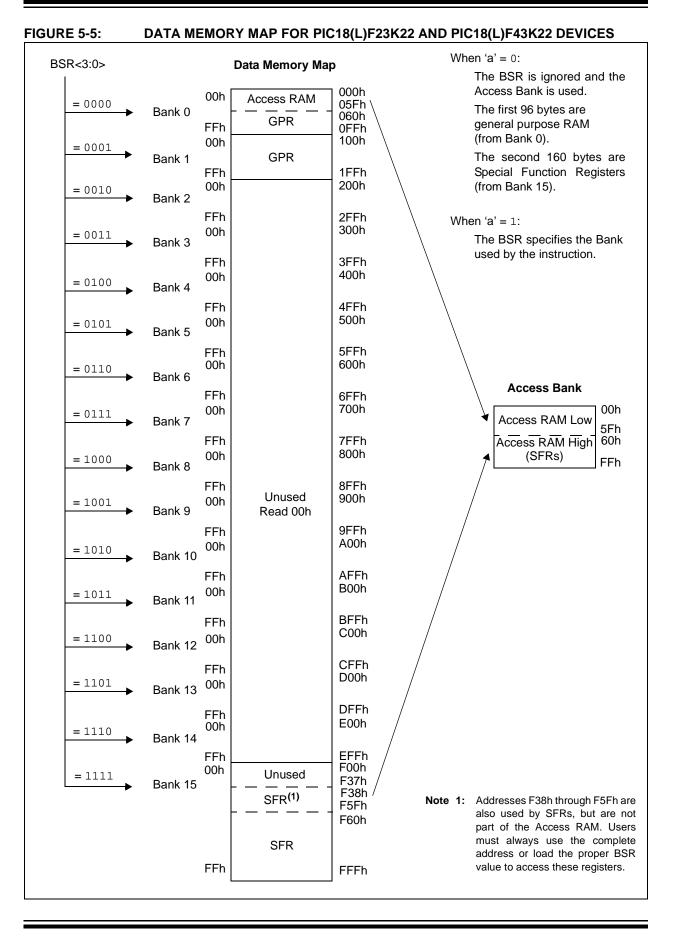

Pin Nu	ımber		D '	Buffer			
PDIP, SOIC	QFN, UQFN	Pin Name	Pin Type	Description			
2	27	RA0/C12IN0-/AN0					
		RA0	I/O	TTL	Digital I/O.		
		C12IN0-	Т	Analog	Comparators C1 and C2 inverting input.		
		ANO	I	Analog	Analog input 0.		
3	28	RA1/C12IN1-/AN1					
		RA1	I/O	TTL	Digital I/O.		
		C12IN1-	I	Analog	Comparators C1 and C2 inverting input.		
		AN1	Ι	Analog	Analog input 1.		
4	1	RA2/C2IN+/AN2/DACOUT/VREF-					
		RA2	I/O	TTL	Digital I/O.		
		C2IN+	I	Analog	Comparator C2 non-inverting input.		
		AN2	I	Analog	Analog input 2.		
		DACOUT	0	Analog	DAC Reference output.		
		VREF-	Ι	Analog	A/D reference voltage (low) input.		
5	2	RA3/C1IN+/AN3/VREF+					
		RA3	I/O	TTL	Digital I/O.		
		C1IN+	I	Analog	Comparator C1 non-inverting input.		
		AN3	I	Analog	Analog input 3.		
		VREF+	Ι	Analog	A/D reference voltage (high) input.		
6	3	RA4/CCP5/C1OUT/SRQ/T0CKI					
		RA4	I/O	ST	Digital I/O.		
		CCP5	I/O	ST	Capture 5 input/Compare 5 output/PWM 5 output.		
		C1OUT	0	CMOS	Comparator C1 output.		
		SRQ	0	TTL	SR latch Q output.		
		ТОСКІ	Ι	ST	Timer0 external clock input.		
7	4	RA5/C2OUT/SRNQ/SS1/HLVDIN/AN	14				
		RA5	I/O	TTL	Digital I/O.		
		C2OUT	0	CMOS	Comparator C2 output.		
		SRNQ	0	TTL	SR latch \overline{Q} output.		
		SS1	Т	TTL	SPI slave select input (MSSP).		
		HLVDIN	I	Analog	High/Low-Voltage Detect input.		
		AN4	Ι	Analog	Analog input 4.		
10	7	RA6/CLKO/OSC2					
		RA6	I/O	TTL	Digital I/O.		
		CLKO	0		In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.		
		OSC2	0		Oscillator crystal output. Connects to crystal or resonato in Crystal Oscillator mode.		

TABLE 1-2:	
IABLE 1-2:	PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value c</u> POR, BO	
FFFh	TOSU	—	—	—		Top-of-Stack,	Upper Byte (T	OS<20:16>)		0 00	000
FFEh	TOSH			Тор	-of-Stack, High	Byte (TOS<15	5:8>)			0000 00	000
FFDh	TOSL			Тор	o-of-Stack, Lov	v Byte (TOS<7	:0>)			0000 00	000
FFCh	STKPTR	STKFUL	STKUNF	_		ç	STKPTR<4:0>			00-00	000
FFBh	PCLATU	_	_	_		Holding F	Register for PC	<20:16>		0 00	000
FFAh	PCLATH		•	ŀ	Holding Regist	er for PC<15:8	>			0000 00	000
FF9h	PCL				Holding Regis	ter for PC<7:0>	•			0000 00	000
FF8h	TBLPTRU	_	_	Pi	rogram Memor	y Table Pointer	Upper Byte(T	BLPTR<21:16	6>)	00 00	000
FF7h	TBLPTRH		F	Program Memo	ory Table Point	ter High Byte(T	BLPTR<15:8>)		0000 00	000
FF6h	TBLPTRL		Р	rogram Memo	ory Table Point	er Low Byte(TE	3LPTR<7:0>)			0000 00	000
FF5h	TABLAT				Program Men	ory Table Latc	h			0000 00	000
FF4h	PRODH				Product Regis	ter, High Byte				XXXX XX	xxx
FF3h	PRODL				Product Regis	ster, Low Byte				XXXX XX	xxx
FF2h	INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 00	00x
FF1h	INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1	1-1
FF0h	INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-	-00
FEFh	INDF0	Uses cont	ents of FSR0	to address da	ta memorv – v	alue of FSR0 r	ot changed (no	ot a physical r	egister)		
FEEh	POSTINCO						. .		• ,		
FEDh	POSTDEC0										
FECh	PREINC0										
FEBh	PLUSW0		Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 offset by W								
FEAh	FSR0H							00	000		
FE9h	FSR0L							XXXX XX	xxx		
FE8h	WREG								XXXX XX	xxx	
FE7h	INDF1	Uses cor	Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)								
FE6h	POSTINC1		Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register) Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)								
FE5h	POSTDEC1					value of FSR1					
FE4h	PREINC1					value of FSR1					
FE3h	PLUSW1				memory – val	ue of FSR1 pre					
FE2h	FSR1H	_	— — — Indirect Data Memory Address Pointer 1, High Byte					00	000		
FE1h	FSR1L		•	Indirect Data I	Memory Addre	ss Pointer 1, L	ow Byte			XXXX XX	xxx
FE0h	BSR	—	—	—	—		Bank Selec	t Register		00	000
FDFh	INDF2	Uses co									
FDEh	POSTINC2										
FDDh	POSTDEC2)			
FDCh	PREINC2	Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) –									
FDBh	PLUSW2										
FDAh	FSR2H	_	_	_	_	Indirect Dat	a Memory Add	ress Pointer 2	, High Byte	00	000
FD9h	FSR2L			ndirect Data N	lemory Addres	s Pointer 2, Lo	w Byte			XXXX XX	xxx
FD8h	STATUS	_	_	_	N	OV	Z	DC	С	x xx	
FD7h	TMR0H		1	1	Timer0 Regist			-	-	0000 00	
FD6h	TMR0L				Timer0 Regist					xxxx xx	
FD5h	TOCON	TMR0ON	T08BIT	TOCS	TOSE	PSA		T0PS<2:0>		1111 11	
FD3h	OSCCON	IDLEN	100011	IRCF<2:0>	1002	OSTS	HFIOFS		<1:0>	0011 q	
FD2h	OSCCON2	PLLRDY	SOSCRUN		MFIOSEL	SOSCGO	PRISD	MFIOFS	LFIOFS	00-0 01	
Legend:						nds on conditio				00.000	-70

TABLE 5-2: REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES

Note 1: PIC18(L)F4XK22 devices only.

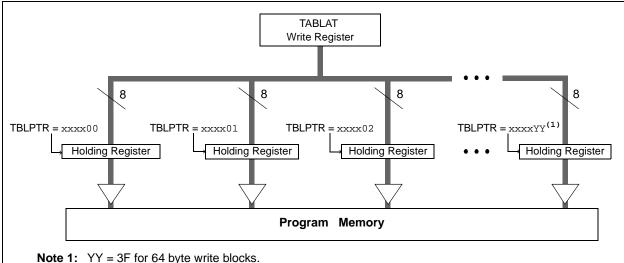
2: PIC18(L)F2XK22 devices only.

3: PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.

4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

6.6 Writing to Flash Program Memory

The programming block size is 64 bytes. Word or byte programming is not supported.


Table writes are used internally to load the holding registers needed to program the Flash memory. There are only as many holding registers as there are bytes in a write block (64 bytes).

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction needs to be executed 64 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. After all the holding registers have been written, the programming operation of that block of memory is started by configuring the EECON1 register for a program memory write and performing the long write sequence. The long write is necessary for programming the internal Flash. Instruction execution is halted during a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all holding registers before executing a long write operation.

FIGURE 6-5: TABLE WRITES TO FLASH PROGRAM MEMORY

6.6.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the block erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write the 64-byte block into the holding registers with auto-increment.
- 7. Set the EECON1 register for the write operation:
 - set EEPGD bit to point to program memory;
 - · clear the CFGS bit to access program memory;
 - set WREN to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Verify the memory (table read).

This procedure will require about 6 ms to update each write block of memory. An example of the required code is given in Example 6-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the bytes in the holding registers.

14.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains three Enhanced Capture/Compare/PWM modules (ECCP1, ECCP2, and ECCP3) and two standard Capture/Compare/PWM modules (CCP4 and CCP5).

The Capture and Compare functions are identical for all CCP/ECCP modules. The difference between CCP and ECCP modules are in the Pulse-Width Modulation (PWM) function. In CCP modules, the standard PWM function is identical. In ECCP modules, the Enhanced PWM function has either full-bridge or half-bridge PWM output. Full-bridge ECCP modules have four available I/O pins while half-bridge ECCP modules and can be configured as standard PWM modules. See Table 14-1 to determine the CCP/ECCP functionality available on each device in this family.

	TABLE 14-1:	PWM RESOURCES
--	-------------	---------------

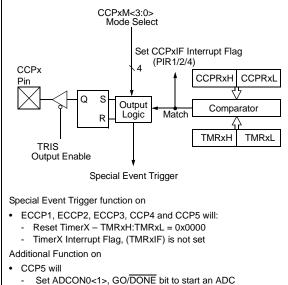
- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to ECCP1, ECCP2, ECCP3, CCP4 and CCP5. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

Device Name	ECCP1	ECCP2	ECCP3	CCP4	CCP5
PIC18(L)F23K22 PIC18(L)F24K22 PIC18(L)F25K22 PIC18(L)F25K22 PIC18(L)F26K22	Enhanced PWM Full-Bridge	Enhanced PWM Half-Bridge	Enhanced PWM Half-Bridge	Standard PWM	Standard PWM (Special Event Trigger)
PIC18(L)F43K22 PIC18(L)F44K22 PIC18(L)F45K22 PIC18(L)F45K22 PIC18(L)F46K22	Enhanced PWM Full-Bridge	Enhanced PWM Full-Bridge	Enhanced PWM Half-Bridge	Standard PWM	Standard PWM (Special Event Trigger)

14.2 Compare Mode

The Compare mode function described in this section is identical for all CCP and ECCP modules available on this device family.

Compare mode makes use of the 16-bit TimerX resources, Timer1, Timer3 and Timer5. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMRxH:TMRxL register pair. When a match occurs, one of the following events can occur:


- Toggle the CCPx output
- · Set the CCPx output
- Clear the CCPx output
- Generate a Special Event Trigger
- Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 14-2 shows a simplified diagram of the Compare operation.

FIGURE 14-2: COMPARE MODE OPERATION BLOCK DIAGRAM

Conversion if ADCON<0>, ADON = 1.

14.2.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Some CCPx outputs are multiplexed on a couple of pins. Table 14-2 shows the CCP output pin Multiplexing. Selection of the output pin is determined by the CCPxMX bits in Configuration register 3H (CONFIG3H). Refer to Register 24-4 for more details.

Note: Clearing the CCPxCON register will force the CCPx compare output latch to the default low level. This is not the PORT I/O data latch.

14.2.2 TimerX MODE RESOURCE

In Compare mode, 16-bit TimerX resource must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See Section 12.0 "Timer1/3/5 Module with Gate Control" for more information on configuring the 16-bit TimerX resources.

Note: Clocking TimerX from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, TimerX must be clocked from the instruction clock (Fosc/4) or from an external clock source.

14.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCPxCON register).

18.9 Register Definitions: Comparator Control

REGISTER 18-1: CMxCON0: COMPARATOR x CONTROL REGISTER

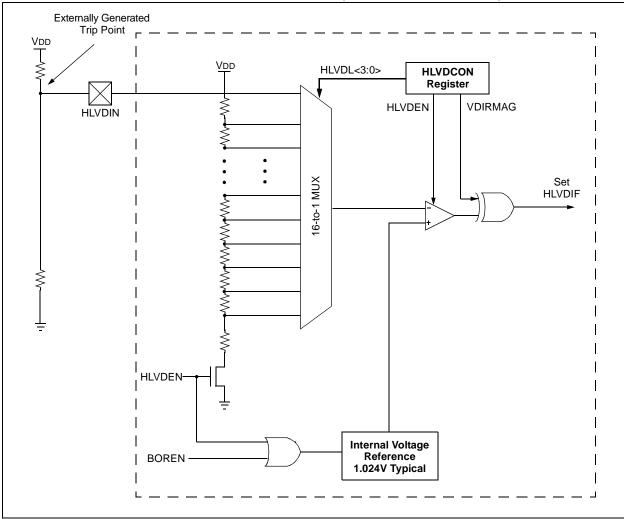
R/W-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0
CxON	CxOUT	CxOE	CxPOL	CxSP	CxR	CxCH	l<1:0>
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 7	1 = Compar	nparator Cx Enal ator Cx is enabl ator Cx is disabl	ed				
bit 6	CxOUT: Con <u>If CxPOL =</u> CxOUT = 0 CxOUT = 1 <u>If CxPOL =</u> CxOUT = 1	mparator Cx Ou 1 (inverted polar when CxVIN+ > when CxVIN+ < 0 (non-inverted when CxVIN+ > when CxVIN+ <	tput bit <u>ity):</u> CxVin- CxVin- <u>polarity):</u> CxVin-				
bit 5	1 = CxOUT	parator Cx Outp is present on the is internal only		1)			
bit 4	1 = CxOUT	mparator Cx Ou logic is inverted logic is not inver		Select bit			
bit 3	CxSP: Com 1 = Cx oper	parator Cx Spee ates in Normal-F ates in Low-Pow	ed/Power Sele Power, Higher	Speed mode			
bit 2	CxR: Comp 1 = CxVIN+	arator Cx Reference connects to CxV connects to C12	ence Select bi /REF output		input)		
bit 1-0	CxCH<1:0> 00 = C12IN 01 = C12IN 10 = C12IN	: Comparator C D- pin of Cx coni 1- pin of Cx coni 2- pin of Cx coni 3- pin of Cx coni	x Channel Sel nects to CxVIN nects to CxVIN nects to CxVIN	1- 1- 1-			

Note 1: Comparator output requires the following three conditions: CxOE = 1, CxON = 1 and corresponding port TRIS bit = 0.

The module is enabled by setting the HLVDEN bit (HLVDCON<4>). Each time the HLVD module is enabled, the circuitry requires some time to stabilize. The IRVST bit (HLVDCON<5>) is a read-only bit used to indicate when the circuit is stable. The module can only generate an interrupt after the circuit is stable and IRVST is set.

The VDIRMAG bit (HLVDCON<7>) determines the overall operation of the module. When VDIRMAG is cleared, the module monitors for drops in VDD below a predetermined set point. When the bit is set, the module monitors for rises in VDD above the set point.

23.2 Operation


When the HLVD module is enabled, a comparator uses an internally generated reference voltage as the set point. The set point is compared with the trip point, where each node in the resistor divider represents a trip point voltage. The "trip point" voltage is the voltage level at which the device detects a high or low-voltage event, depending on the configuration of the module.

When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal by setting the HLVDIF bit.

The trip point voltage is software programmable to any of 16 values. The trip point is selected by programming the HLVDL<3:0> bits (HLVDCON<3:0>).

The HLVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits, HLVDL<3:0>, are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, HLVDIN. This gives users the flexibility of configuring the High/Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.

FIGURE 23-1: HLVD MODULE BLOCK DIAGRAM (WITH EXTERNAL INPUT)

25.1.1 STANDARD INSTRUCTION SET

ADDLW	ADD literal to W		ADDWF	ADD W to f				
Syntax:	ADDLW	ADDLW k		Syntax:	ADDWF	ADDWF f {,d {,a}}		
Operands:	$0 \le k \le 255$			Operands:	$0 \leq f \leq 255$			
Operation:	ion: $(W) + k \rightarrow W$			d ∈ [0,1]				
Status Affected:	N, OV, C, E	DC, Z		Oneration	$a \in [0,1]$	doot		
Encoding:	0000	1111 kk	kk kkkk	Operation: Status Affected:	$(W) + (f) \rightarrow$			
Description:	The conten	ts of W are ad	lded to the		N, OV, C, E			
		'k' and the res	ult is placed in	Encoding:	0010	01da ff		
	W.			Description:		egister 'f'. If 'd' ared in W. If 'd'		
Words:	1				result is sto	red back in re		
Cycles:	1				(default).			
Q Cycle Activity:	00	00	0.4		,		nk is selected. ed to select the	
Q1	Q2	Q3	Q4		GPR bank.			
Decode	Read literal 'k'	Process Data	Write to W				ed instruction ction operates	
Example:	ADDLW 1	15h			in Indexed mode wher	Literal Offset / never f ≤ 95 (5 . 2.3 "Byte-O r	Addressing Fh). See	
Before Instruc	ction						is in Indexed	
W =	10h					set Mode" for	details.	
After Instruction				Words:	1			
W =	25h			Cycles:	1			
				Q Cycle Activity:				
				Q1	Q2	Q3	Q4	
				Decode	Read	Process	Write to	
					register 'f'	Data	destination	
				Example:	ADDWF	REG, 0, 0	I	
			Before Instruc	ction				
				W	= 17h			
				REG After Instruction	= 0C2h			

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

W

REG

0D9h

0C2h

=

=

TBL	RD	Table Rea	d				
Synta	ax:	TBLRD (*; *	*+; *-;	+*)			
Oper	ands:	None					
Oper	ation:	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR – No Change; if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT;					
Statu	s Affected:	None					
Enco	ding:	0000	000	00	0000)	10nn nn=0 * =1 *+ =2 *- =3 +*
Desc	ription:	This instruction is used to read the contents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word The TBLRD instruction can modify the value of TBLPTR as follows: • no change • post-increment • post-decrement					dress the I Table bints to r. TBLPTR ificant Byte n Memory ficant Byte n Memory
Word	ls:	pre-increment					
Cycle		2					
Q Cycle Activity:							
20	Q1	Q2			Q3		Q4
	Decode	No operatio	on	оре	No eration		No operation

No operation (Read Program

Memory)

No

operation

No operation

(Write TABLAT)

TBLRD	Table Read	(Continued)
-------	------------	-------------

Example1:	TBLRD *+	+ ;	
Before Instruction	n		
TABLAT		=	55h
TBLPTR MEMORY	(00A356h)	=	00A356h 34h
After Instruction	(,		•
TABLAT		=	34h
TBLPTR		=	00A357h
Example2:	TBLRD +*	* ;	
Examples.		'	
Before Instruction	102100	,	
Before Instructio	102100	=	AAh
Before Instruction TABLAT TBLPTR	on .	=	01A357h
Before Instructio	(01A357h)	=	
Before Instruction TABLAT TBLPTR MEMORY MEMORY After Instruction	(01A357h)	= = =	01A357h 12h 34h
Before Instruction TABLAT TBLPTR MEMORY MEMORY	(01A357h)	= = =	01A357h 12h

No

operation

26.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

26.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

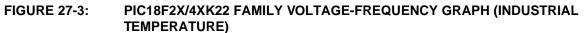
The MPASM Assembler features include:

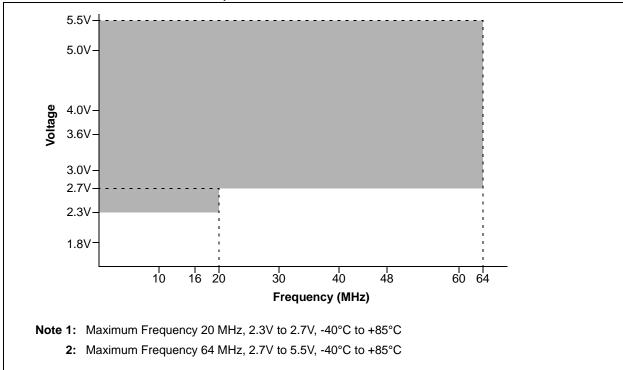
- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

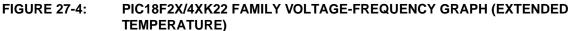
26.4 MPLINK Object Linker/ MPLIB Object Librarian

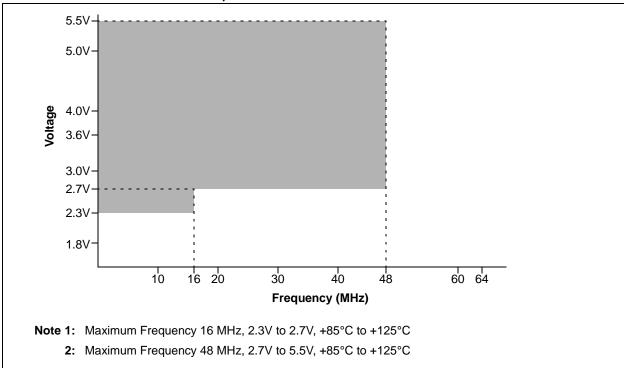
The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.


The object linker/library features include:


- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction


26.5 MPLAB Assembler, Linker and Librarian for Various Device Families


MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

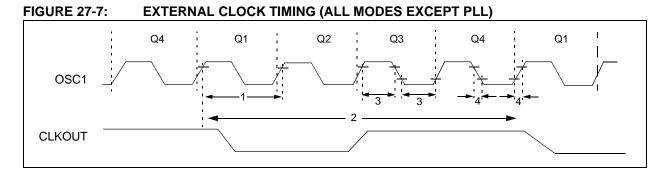
- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

27.4 DC Characteristics: RC Idle Supply Current, PIC18(L)F2X/4XK22

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
PIC18F2	X/4XK22	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					tated)	
Param No.	Device Characteristics	Тур	Max	Units		5		
D045	D045 Supply Current (IDD) ^{(1),(2)}		18	μΑ	-40°C	VDD = 1.8V	Fosc = 31 kHz	
		0.6	18	μΑ	+25°C		(RC_IDLE mode, LFINTOSC source)	
		0.7	—	μΑ	+60°C		LFINTOSC Source)	
		0.75	20	μΑ	+85°C			
		2.3	22	μΑ	+125°C			
D046		1.1	20	μΑ	-40°C	VDD = 3.0V		
		1.2	20	μΑ	+25°C			
		1.3	—	μΑ	+60°C			
		1.4	22	μΑ	+85°C			
		3.2	25	μΑ	+125°C			
D047		17	30	μΑ	-40°C	VDD = 2.3V	Fosc = 31 kHz (RC_IDLE mode, LFINTOSC source)	
		13	30	μΑ	+25°C			
		14	30	μΑ	+85°C			
		15	45	μΑ	+125°C			
D048		19	35	μΑ	-40°C	VDD = 3.0V		
		15	35	μΑ	+25°C			
		16	35	μΑ	+85°C			
		17	50	μΑ	+125°C			
D049		21	40	μΑ	-40°C	VDD = 5.0V		
		15	40	μΑ	+25°C			
		16	40	μΑ	+85°C			
		18	60	μΑ	+125°C			
D050		0.11	0.20	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 500 kHz	
D051		0.12	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MFINTOSC source)	
D052		0.14	0.21	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 500 kHz	
D053		0.15	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MFINTOSC source)	
D054		0.20	0.31	mA	-40°C to +125°C	VDD = 5.0V		

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.


2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

 $\overline{MCLR} = VDD;$

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

27.11.3 TIMING DIAGRAMS AND SPECIFICATIONS

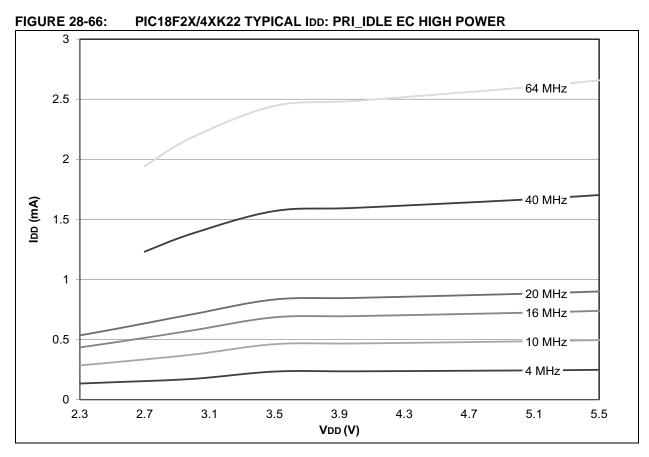
TABLE 27-7: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC DC	0.5 16	MHz MHz	EC, ECIO Oscillator mode (low power) EC, ECIO Oscillator mode (medium power) EC, ECIO Oscillator mode (high power)
			DC	64	MHz	
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC Oscillator mode
			5	200	kHz	LP Oscillator mode
			0.1	4	MHz	XT Oscillator mode
			4	4	MHz	HS Oscillator mode, VDD < 2.7V
			4	16	MHz	HS Oscillator mode, $VDD \ge 2.7V$, Medium-Power mode (HSMP)
			4	20	MHz	HS Oscillator mode, $VDD \ge 2.7V$, High-Power mode (HSHP)
1	Tosc	External CLKIN Period ⁽¹⁾	2.0 62.5		μs ns	EC, ECIO Oscillator mode (low power) EC, ECIO Oscillator mode (medium power) EC, ECIO Oscillator mode (high power)
			15.6	—	ns	,
		Oscillator Period ⁽¹⁾	250	_	ns	RC Oscillator mode
			5	200	μs	LP Oscillator mode
			0.25 250	10 250	μs ns	XT Oscillator mode HS Oscillator mode, VDD < 2.7V
			62.5	250	ns	HS Oscillator mode, $VDD \ge 2.7V$, Medium-Power mode (HSMP)
			50	250	ns	HS Oscillator mode, $VDD \ge 2.7V$, High-Power mode (HSHP)
2	Тсү	Instruction Cycle Time ⁽¹⁾	62.5	_	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1)	2.5	—	μs	LP Oscillator mode
	TosH	High or Low Time	30	—	ns	XT Oscillator mode
			10	_	ns	HS Oscillator mode
4	TosR,	External Clock in (OSC1)	_	50	ns	LP Oscillator mode
	TosF	SF Rise or Fall Time	—	20	ns	XT Oscillator mode
			—	7.5	ns	HS Oscillator mode

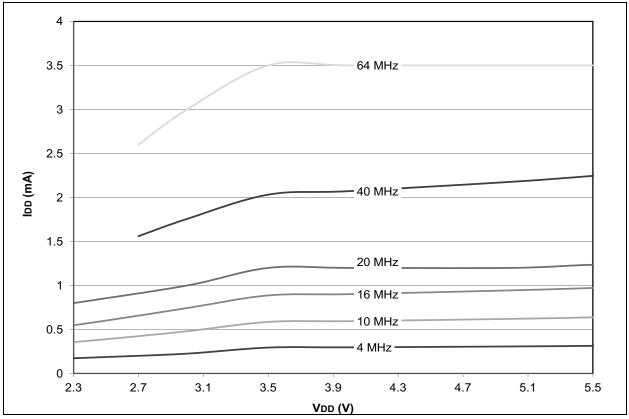
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

Param. No.	Sym	Characteristic	Min	Max	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	5	MHz	VDD < 2.7V, -40°C to +85°C
			4	4	MHz	VDD < 2.7V, +85°C to +125°C
			4	16	MHz	$2.7V \le VDD$, -40°C to +85°C
			4	12	MHz	2.7V ≤ VDD, +85°C to +125°C
F11	Fsys	On-Chip VCO System Frequency	16	20	MHz	VDD < 2.7V, -40°C to +85°C
			16	16	MHz	VDD < 2.7V, +85°C to +125°C
			16	64	MHz	$2.7V \le VDD$, -40°C to +85°C
			16	48	MHz	2.7V ≤ VDD, +85°C to +125°C
F12	t _{rc}	PLL Start-up Time (Lock Time)	—	2	ms	

TABLE 27-8: PLL CLOCK TIMING SPECIFICATIONS


TABLE 27-9: AC CHARACTERISTICS:INTERNAL OSCILLATORS ACCURACY PIC18(L)F46K22

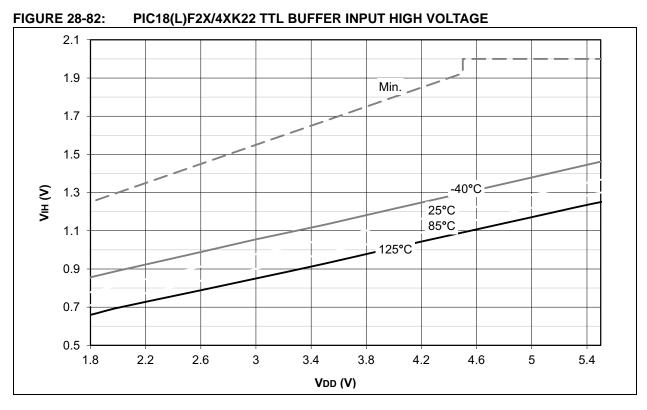
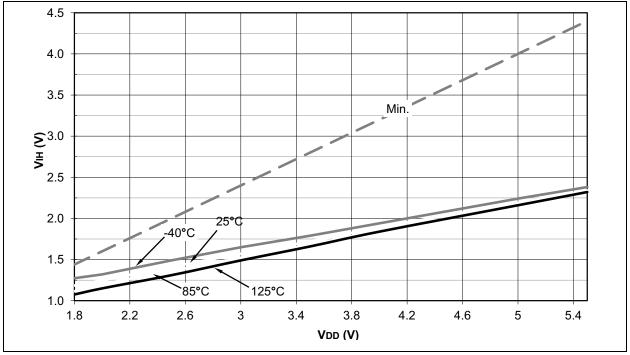
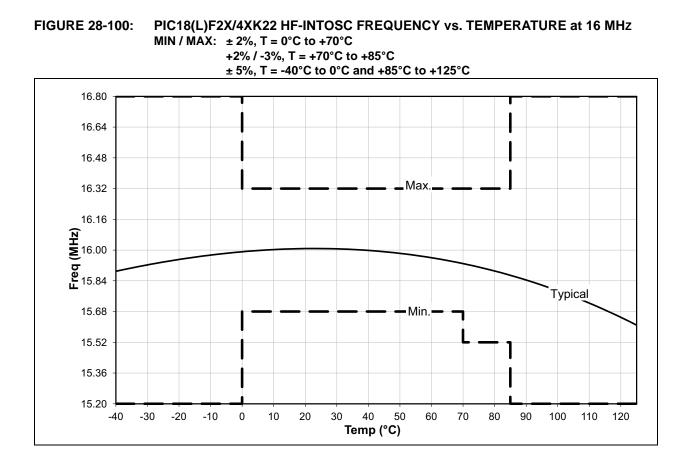
Standard Operating Conditions (unless otherwise stated)						
Operatin	ng temperature	-40°C ⊴	≤ TA ≤ +125°(С		

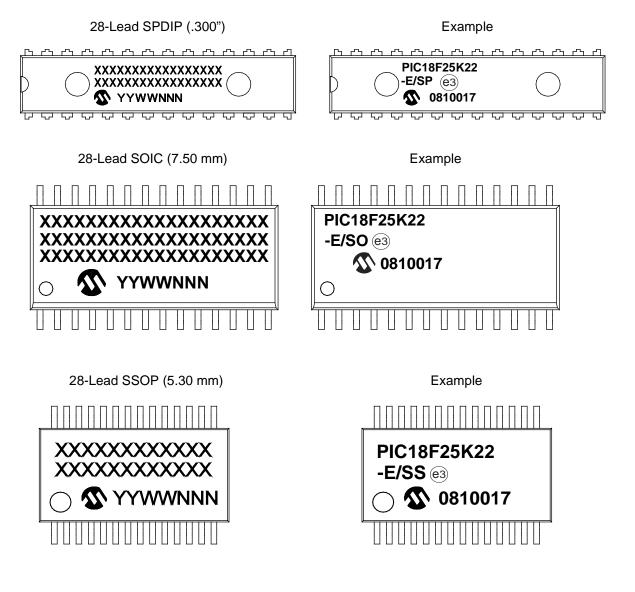

							-
Param. No.	Characteristics	Freq. Tolerance	Min	Тур†	Мах	Units	Conditions
OA1	Internal Calibrated	± 2%		16.0	_	MHz	$0^{\circ}C \leq \text{Ta} \leq \textbf{+60^{\circ}C}, \text{ Vdd} \geq 2.5 \text{V}$
	HFINTOSC Frequency ⁽¹⁾	\pm 3%	—	16.0	—	MHz	+60°C \leq Ta \leq +85°C, Vdd \geq 2.5V
		\pm 5%	—	16.0	—	MHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$
OA2			_	500	_	kHz	$0^{\circ}C \leq \text{Ta} \leq \textbf{+60}^{\circ}C, \text{ Vdd} \geq 2.5\text{V}$
	MFINTOSC Frequency ⁽¹⁾	\pm 3%	—	500	—	kHz	+60°C \leq Ta \leq +85°C, Vdd \geq 2.5V
		\pm 5%	—	500	—	kHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$
OA3	Internal Calibrated LFINTOSC Frequency ⁽¹⁾	± 20%	—	31	—	kHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

© 2010-2016 Microchip Technology Inc.


FIGURE 28-83: PIC18(L)F2X/4XK22 SCHMITT TRIGGER BUFFER INPUT HIGH VOLTAGE

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

Legend	d: XXX Y YY WW NNN @3 *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.