

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k22-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3: PIC18(L)F4XK22 PIN SUMMARY (CONTINUED)

	•.	-		-,				(,						
40-PDIP	40-UQFN	44-TQFP	44-QFN	0/1	Analog	Comparator	СТМИ	SR Latch	Reference	(E)CCP	EUSART	JSSM	Timers	Interrupts	Pull-up	Basic
9	24	26	26	RE1	AN6					P3B						
10	25	27	27	RE2	AN7					CCP5						
1	16	18	18	RE3											Y	MCLR VPP
11, 32	7, 26	7, 28	7,8 28, 29	Vdd												Vdd
12, 31	6, 27	6, 29	6, 30, 31	Vss												Vss
—	—	12, 13 33, 34	13	NC												

CCP2 multiplexed in fuses. T3CKI multiplexed in fuses. Note 1:

2:

3: CCP3/P3A multiplexed in fuses.

4: P2B multiplexed in fuses.

	Pin N	lumber			Pin	Buffer	Description		
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description		
37	14	14	12	RB4/IOC0/T5G/AN11			•		
				RB4	I/O	TTL	Digital I/O.		
				IOC0	I	TTL	Interrupt-on-change pin.		
				T5G	I	ST	Timer5 external clock gate input.		
				AN11	I	Analog	Analog input 11.		
38	15	15	13	RB5/IOC1/P3A/CCP3/T3C	KI/T1G/A	N13			
				RB5	I/O	TTL	Digital I/O.		
				IOC1	I	TTL	Interrupt-on-change pin.		
				P3A ⁽¹⁾	0	CMOS	Enhanced CCP3 PWM output.		
				CCP3 ⁽¹⁾	I/O	ST	Capture 3 input/Compare 3 output/PWM 3 output		
				Т3СКІ ⁽²⁾	I	ST	Timer3 clock input.		
				T1G	I	ST	Timer1 external clock gate input.		
				AN13	I	Analog	Analog input 13.		
39	16	16	14	RB6/IOC2/PGC					
				RB6	I/O	TTL	Digital I/O.		
				IOC2	I	TTL	Interrupt-on-change pin.		
				PGC	I/O	ST	In-Circuit Debugger and ICSP™ programming clock pin.		
40	17	17	15	RB7/IOC3/PGD					
				RB7	I/O	TTL	Digital I/O.		
				IOC3	1	TTL	Interrupt-on-change pin.		
				PGD	I/O	ST	In-Circuit Debugger and ICSP™ programming data pin.		
15	32	34	30	RC0/P2B/T3CKI/T3G/T1C	KI/SOSC	0	, , , , , , , , , , , , , , , , , , ,		
				RC0	I/O	ST	Digital I/O.		
				P2B ⁽²⁾	0	смоз	Enhanced CCP1 PWM output.		
				Т3СКІ ⁽¹⁾	1	ST	Timer3 clock input.		
				T3G	I	ST	Timer3 external clock gate input.		
				T1CKI	1	ST	Timer1 clock input.		
				SOSCO	ο	_	Secondary oscillator output.		
16	35	35	31	RC1/P2A/CCP2/SOSCI					
				RC1	I/O	ST	Digital I/O.		
				P2A ⁽¹⁾	0	CMOS	Enhanced CCP2 PWM output.		
				CCP2 ⁽¹⁾	I/O	ST	Capture 2 input/Compare 2 output/PWM 2 output		
				SOSCI	"°	Analog	Secondary oscillator input.		
17	36	36	32	RC2/CTPLS/P1A/CCP1/T		Ŭ			
				RC2	I/O	ST	Digital I/O.		
				CTPLS	0	_	CTMU pulse generator output.		
				P1A	0	CMOS	Enhanced CCP1 PWM output.		
				CCP1	I/O	ST	Capture 1 input/Compare 1 output/PWM 1 output		
				T5CKI	.,C	ST	Timer5 clock input.		
				AN14		Analog	Analog input 14.		
Legen	d- тті	_ TTL ~	l omnatible		u atiblo inn		put; ST = Schmitt Trigger input with CMOS levels;		

Legend: IIL = IIL compatible input CMOS = CMOS compatible input or output; SI = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

6.3 Register Definitions: Memory Control

REGISTER 6-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0					
EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD					
bit 7							bit					
Legend:												
R = Readable	e bit	W = Writable	bit									
S = Bit can b	e set by softwar	e. but not clea	red	U = Unimpler	nented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 7	EEPGD: Flas	h Program or	Data EEPRON	A Memory Selec	ct bit							
		- lash program		-								
		lata EEPROM	,									
bit 6	CFGS: Flash	Program/Data	EEPROM or	Configuration S	elect bit							
		Configuration r	0									
6.4 C			or data EEPR	Ow memory								
bit 5	•	ted: Read as		•.								
bit 4		()	rase Enable b		DTD on the ne		ad					
			of erase opera	dressed by TBL ation)	PIR on the ne	Xt WR commar	10					
	0 = Perform											
bit 3	WRERR: Fla	sh Program/Da	ata EEPROM I	Error Flag bit ⁽¹⁾								
	1 = A write operation is prematurely terminated (any Reset during self-timed programming in norma											
	•	operation, or an improper write attempt)										
	0 = 1 he write	e operation cor	npleted									
bit 2	WREN: Flash	n Program/Dat	a EEPROM W	rite Enable bit								
		•										
L:1 4		•	-lash program	/data EEPROM								
bit 1	WR: Write Co		Maraaa/writa									
				cycle or a progra it is cleared by								
	· ·			ed) by software								
	0 = Write cyc	cle to the EEPI	ROM is comple	ete								
bit 0	RD: Read Co											
				s one cycle. RD								
		ot cleared) by : t initiate an EE		it cannot be set	wnen EEPGD	= 1 or CFGS =	1.)					
	0 = D0es 10		r itow leau									

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

7.6 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 24.0 "Special Features of the CPU" for additional information.

7.7 Protection Against Spurious Write

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT). The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

7.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM without exceeding the total number of write cycles to a single byte. Refer to the Data EEPROM Memory parameters in **Section 27.0** "**Electrical Specifications**" for write cycle limits. If this is the case, then an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 7-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification.

CLRF	EEADR	; Start at address 0
CLRF	EEADRH	; if > 256 bytes EEPROM
BCF	EECON1, CFGS	; Set for memory
BCF	EECON1, EEPGD	; Set for Data EEPROM
BCF	INTCON, GIE	; Disable interrupts
BSF	EECON1, WREN	; Enable writes
		; Loop to refresh array
BSF	EECON1, RD	; Read current address
MOVLW	55h	;
MOVWF	EECON2	; Write 55h
MOVLW	0AAh	;
MOVWF	EECON2	; Write OAAh
BSF	EECON1, WR	; Set WR bit to begin write
BTFSC	EECON1, WR	; Wait for write to complete
BRA	\$-2	
INCFSZ	EEADR, F	; Increment address
BRA	LOOP	; Not zero, do it again
INCFSZ	EEADRH, F	; if > 256 bytes, Increment address
BRA	LOOP	; if > 256 bytes, Not zero, do it again
DOF	FECON1 MDEN	; Disable writes
	,	
BSF	INTCON, GIE	; Enable interrupts
	CLRF BCF BCF BSF BSF MOVLW MOVWF MOVWF BSF BTFSC BRA INCFSZ BRA INCFSZ	CLRFEEADRHBCFEECON1, CFGSBCFEECON1, EEPGDBCFINTCON, GIEBSFEECON1, WRENBSFEECON1, RDMOVLW55hMOVWFEECON2MOVLW0AAhMOVWFEECON1, WRBSFEECON1, WRBSFEECON1, WRBRA\$-2INCFSZEEADR, FBRALOOPINCFSZEEADRH, FBRALOOPBCFEECON1, WREN

EXAMPLE 7-3: DATA EEPROM REFRESH ROUTINE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—		150	
ECCP1AS	CCP1ASE		CCP1AS<2:0>		PSS1A0	C<1:0>	PSS1B	D<1:0>	202	
CCP1CON	P1M<	1:0>	DC1B<	1:0>		CCP1M<3:0)>		198	
ECCP2AS	CCP2ASE		CCP2AS<2:0>		PSS2A0	C<1:0>	PSS2B	PSS2BD<1:0>		
CCP2CON	P2M<	1:0>	DC2B<	1:0>		CCP2M<3:0)>	>		
CTMUCONH	CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	323	
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	152	
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	148	
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270	
SLRCON	_		_	SLRE ⁽¹⁾	SLRD ⁽¹⁾	SLRC	SLRB	SLRA	153	
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM<3:0	>		253	
T1CON	TMR1CS	5<1:0>	T1CKPS	<1:0>	T1SOSCEN	T1SYNC	T1RD16	TMR10N	166	
T3CON	TMR3CS	5<1:0>	T3CKPS-	<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	166	
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GS	S<1:0>	167	
T5CON	TMR5CS	5<1:0>	T5CKPS	<1:0>	T5SOSCEN	T5SYNC	T5RD16	TMR5ON	166	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151	
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269	

TABLE 10-9: REGISTERS ASSOCIATED WITH PORTC

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTC.

Note 1: Available on PIC18(L)F4XK22 devices.

TABLE 10-10: CONFIGURATION REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	_	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTC.

TABLE 10-11: PORTD I/O SUMMARY

Pin Name	Function	TRIS Setting	ANSEL setting	Pin Type	Buffer Type	Description
RD0/SCK2/SCL2/AN20	RD0	0	0	0	DIG	LATD<0> data output; not affected by analog input.
		1	0	I	ST	PORTD<0> data input; disabled when analog input enabled.
	SCK2	0	0	0	DIG	MSSP2 SPI Clock output.
		1	0	I	ST	MSSP2 SPI Clock input.
	SCL2	0	0	0	DIG	MSSP2 I ² C Clock output.
		1	0	I	l ² C	MSSP2 I ² C Clock input.
	AN20	1	1	Ι	AN	Analog input 20.
RD1/CCP4/SDI2/SDA2/	RD1	0	0	0	DIG	LATD<1> data output; not affected by analog input.
AN21		1	0	I	ST	PORTD<1> data input; disabled when analog input enabled.
	CCP4	0	0	0	DIG	Compare 4 output/PWM 4 output.
		1	0	I	ST	Capture 4 input.
	SDI2	1	0	I	ST	MSSP2 SPI data input.
	SDA2	0	0	0	DIG	MSSP2 I ² C data output.
		1	0	I	l ² C	MSSP2 I ² C data input.
	AN21	1	1	I	AN	Analog input 21.
RD2/P2B/AN22	RD2	0	0	0	DIG	LATD<2> data output; not affected by analog input.
		1	0	I	ST	PORTD<2> data input; disabled when analog input enabled.
	P2B ⁽¹⁾	0	0	0	DIG	Enhanced CCP2 PWM output 2.
	AN22	1	1	I	AN	Analog input 22.
RD3/P2C/SS2/AN23	RD3	0	0	0	DIG	LATD<3> data output; not affected by analog input.
		1	0	I	ST	PORTD<3> data input; disabled when analog input enabled.
	P2C	0	0	0	DIG	Enhanced CCP2 PWM output 4.
	SS2	1	0	I	TTL	MSSP2 SPI slave select input.
	AN23	1	1	I	AN	Analog input 23.
RD4/P2D/SDO2/AN24	RD4	0	0	0	DIG	LATD<4> data output; not affected by analog input.
		1	0	I	ST	PORTD<4> data input; disabled when analog input enabled.
	P2D	0	0	0	DIG	Enhanced CCP2 PWM output 3.
	SDO2	0	0	0	DIG	MSSP2 SPI data output.
	AN24	1	1	I	AN	Analog input 24.
RD5/P1B/AN25	RD5	0	0	0	DIG	LATD<5> data output; not affected by analog input.
		1	0	I	ST	PORTD<5> data input; disabled when analog input enabled.
	P1B	0	0	0	DIG	Enhanced CCP1 PWM output 2.
	AN25	1	1	I	AN	Analog input 25.

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I^2C = Schmitt Trigger input with I^2C .

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

FIGURE 12-7:	TIMER1/3/5 GATE SING	LE-PULSE AND TOGGLE COMBINED MODE
TMRxGE		
TxGPOL		
TxGSPM		
TxGTM		
TxGG <u>O/</u> DONE	 Set by software Counting enabled of the set of the	Cleared by hardware on falling edge of TxGVAL
TxG_IN	rising edge of TxG	
ТхСКІ		
TxGVAL		
TIMER1/3/5	Ν	<u>N + 1</u> <u>N + 2</u> <u>N + 3</u> <u>N + 4</u>
TMRxGIF	Cleared by software	Set by hardware on falling edge of TxGVAL

12.12 Peripheral Module Disable

When a peripheral module is not used or inactive, the module can be disabled by setting the Module Disable bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the PMD bits holds the module in Reset and disconnects the module's clock source. The Module Disable bits for Timer1 (TMR1MD), Timer3 (TMR3MD) and Timer5 (TMR5MD) are in the PMD0 Register. See Section 3.0 "Power-Managed Modes" for more information.

15.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDAx from a high-to -low state while SCLx line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an active state. Figure 15-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDAx line low before asserting it low. This does not conform to the I^2C specification that states no bus collision can occur on a Start.

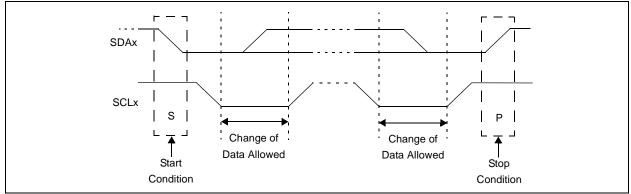
15.4.6 STOP CONDITION

A Stop condition is a transition of the SDAx line from a low-to-high state while the SCLx line is high.

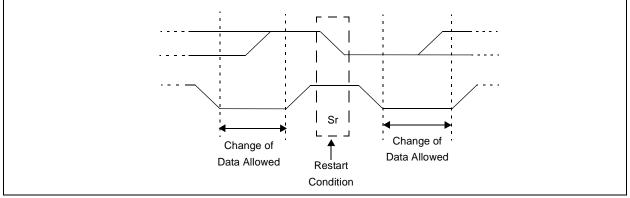
Note: At least one SCLx low time must appear before a Stop is valid, therefore, if the SDAx line goes low then high again while the SCLx line stays high, only the Start condition is detected.

15.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 15-13 shows the wave form for a Restart condition.

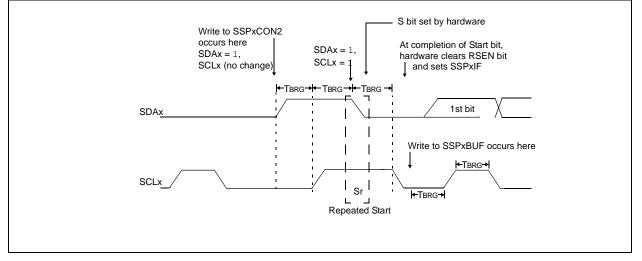

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/W bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a high address with R/\overline{W} clear, or high address match fails.


15.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

FIGURE 15-12: I²C START AND STOP CONDITIONS



15.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 15-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. SCLx is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

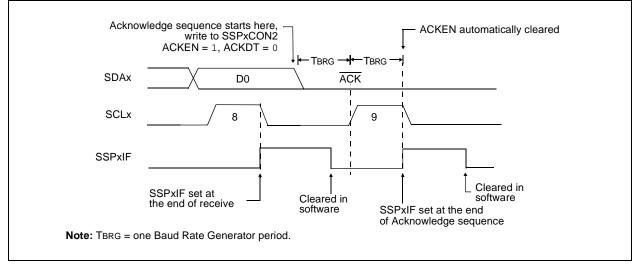
FIGURE 15-27: REPEAT START CONDITION WAVEFORM

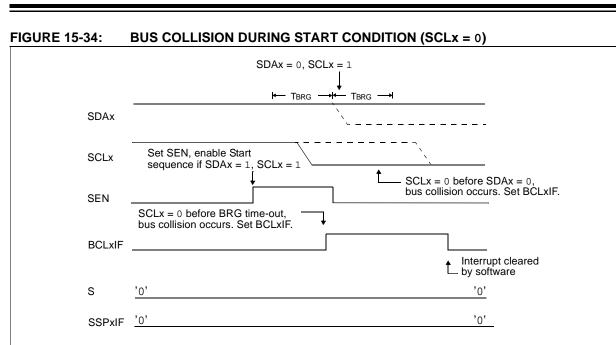
15.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN, of the SSPxCON2 register. When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSPx module then goes into Idle mode (Figure 15-30).

15.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).


15.6.9 STOP CONDITION TIMING


A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN, of the SSPxCON2 register. At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 15-31).

15.6.9.1 WCOL Status Flag

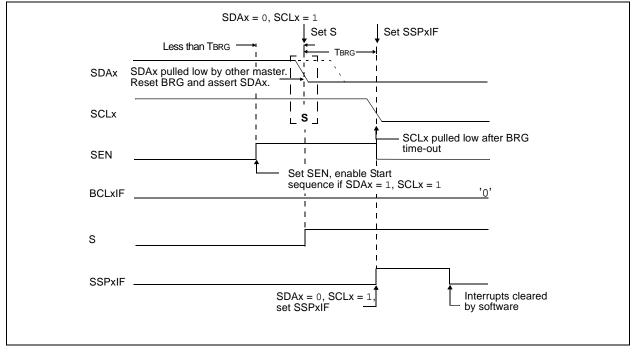
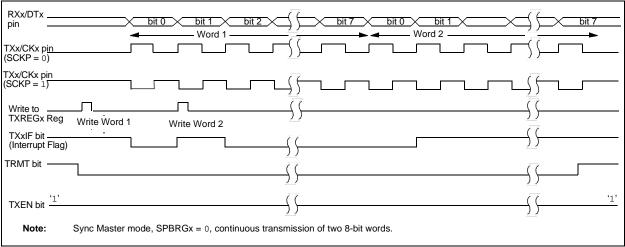
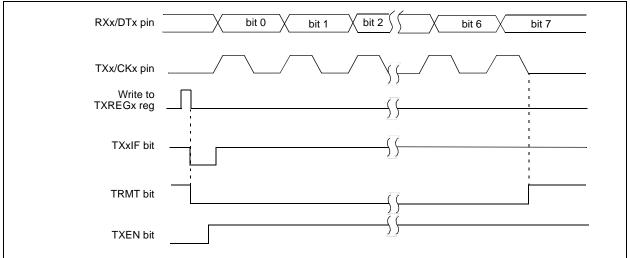

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 15-30: ACKNOWLEDGE SEQUENCE WAVEFORM



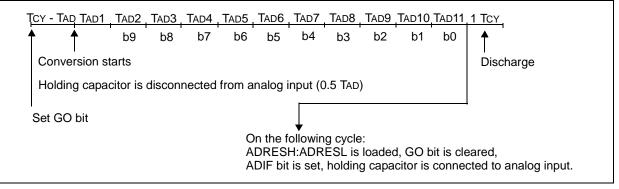

- 16.5.1.5 Synchronous Master Transmission Setup:
- Initialize the SPBRGHx, SPBRGx register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 16.4 "EUSART Baud Rate Generator (BRG)").
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC. Set the TRIS bits corresponding to the RXx/DTx and TXx/CKx I/O pins.

- 4. Disable Receive mode by clearing bits SREN and CREN.
- 5. Enable Transmit mode by setting the TXEN bit.
- 6. If 9-bit transmission is desired, set the TX9 bit.
- 7. If interrupts are desired, set the TXxIE, GIE/ GIEH and PEIE/GIEL interrupt enable bits.
- 8. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 9. Start transmission by loading data to the TXREGx register.

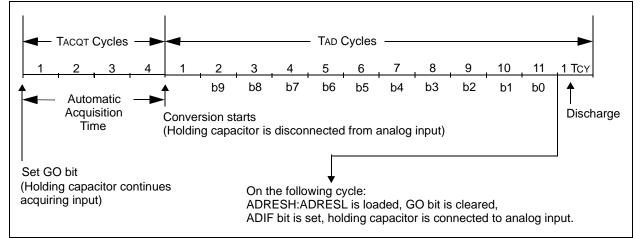
FIGURE 16-10: SYNCHRONOUS TRANSMISSION

FIGURE 16-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

17.2 ADC Operation


17.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will, depending on the ACQT bits of the ADCON2 register, either immediately start the Analog-to-Digital conversion or start an acquisition delay followed by the Analog-to-Digital conversion. Figure 17-3 shows the operation of the A/D converter after the GO bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into SLEEP mode before the conversion begins.


Figure 17-4 shows the operation of the A/D converter after the GO bit has been set and the ACQT<2:0> bits are set to '010' which selects a 4 TAD acquisition time before the conversion starts.

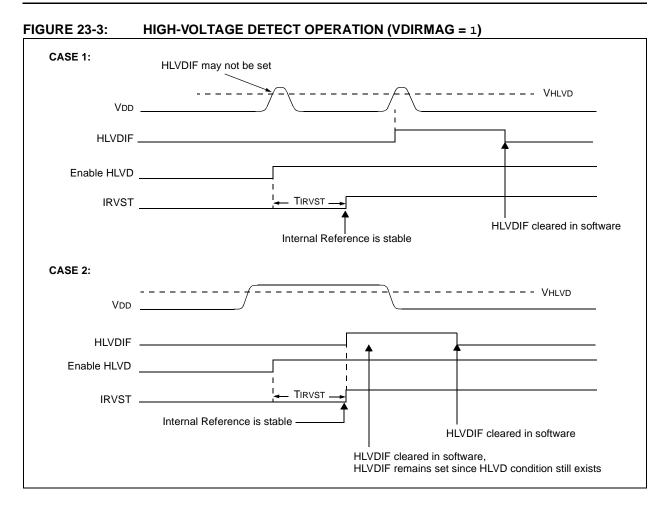
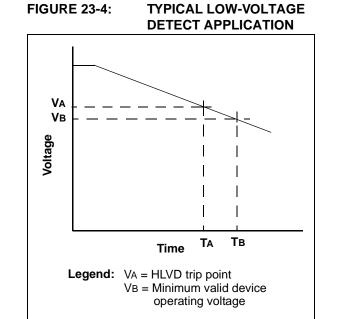

Note:	The GO/DONE bit should not be set in the									
	same ir	same instruction that turns on the ADC.								
	Refer	to	Section 17.2.10	"A/D						
	Conver	sion F	Procedure".							

FIGURE 17-3: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 17-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)



23.6 Applications

In many applications, it is desirable to detect a drop below, or rise above, a particular voltage threshold. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 23-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and a controlled shutdown before the device voltage exits the valid operating range at TB. This would give the application a time window, represented by the difference between TA and TB, to safely exit.

Mnemo	onic,	Description	Cycles	16-	Bit Instr	uction W	/ord	Status	Netes
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BIT-ORIEN	ITED OP	ERATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERA	TIONS						•	
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	k, s	Call subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	_	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	k	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP	_	No Operation	1	1111	xxxx	xxxx	xxxx	None	4
POP	—	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	_	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH,	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	PEIE/GIEL None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP		Go into Standby mode	1	0000	0000	0000	0013	TO, PD	

TABLE 25-2: PIC18(L)F2X/4XK22 INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

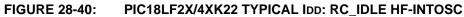
SUB	FSR	Subtrac	Subtract Literal from FSR					
Syntax:		SUBFSR	SUBFSR f, k					
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$					
		$f \in [\ 0, \ 1,$	f ∈ [0, 1, 2]					
Oper	ation:	FSR(f) – I	$FSR(f) - k \rightarrow FSRf$					
Statu	s Affected:	None	None					
Enco	ding:	1110	1001	ffkk	kkł	k		
Description:			The 6-bit literal 'k' is subtracted from the contents of the FSR specified by 'f'.					
Words:		1	1					
Cycles:		1	1					
Q Cycle Activity:								
Q1		Q2	Q3		Q4			
	Decode	Read register 'f'			Write			
			Du	~				

Example: SUBFSE

Before Instruction

FSR2 =	03FFh
After Instruction	

FSR2 = 03DCh


SUBULNK Subtract Literal from FSR2 and Return

	-	_				-			
Syntax:			SUBULNK k						
Operands:		$0 \le k \le 63$							
Oper	ation:	FS	SR2 – k –	→ FSF	R2				
		(T	$OS) \rightarrow P$	С					
Statu	s Affected:	No	None						
Enco	ding:		1110	100)1	11kk		kkkk	
Description:			The 6-bit literal 'k' is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.						
Words:		1							
Cycles:		2							
Q Cycle Activity									
Q1 Decode			Q2			Q3		Q4	
			Rea	d	Pro	ocess		Write to	

Decode	Read register 'f'	Process Data	Write to destination
No	No	No	No
Operation	Operation	Operation	Operation

Example: SUBULNK 23h

<u></u>		50D0DIvit		
Before Instruction				
FSR2	=	03FFh		
PC	=	0100h		
After Instruction	n			
FSR2	=	03DCh		
PC	=	(TOS)		

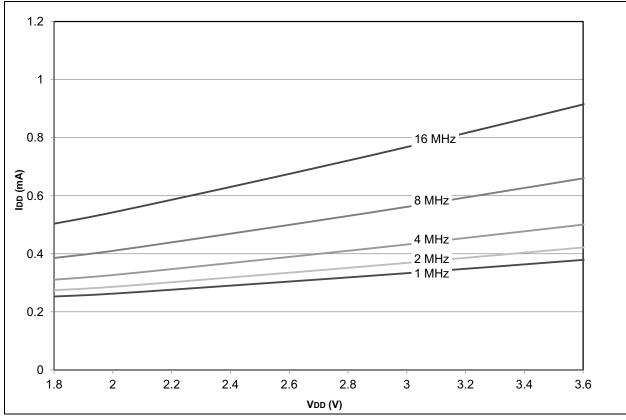
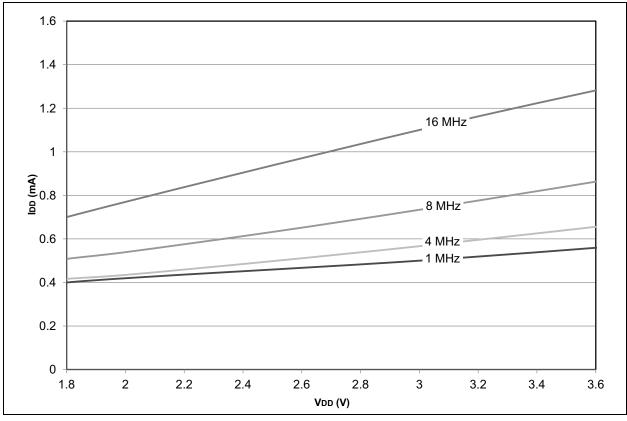
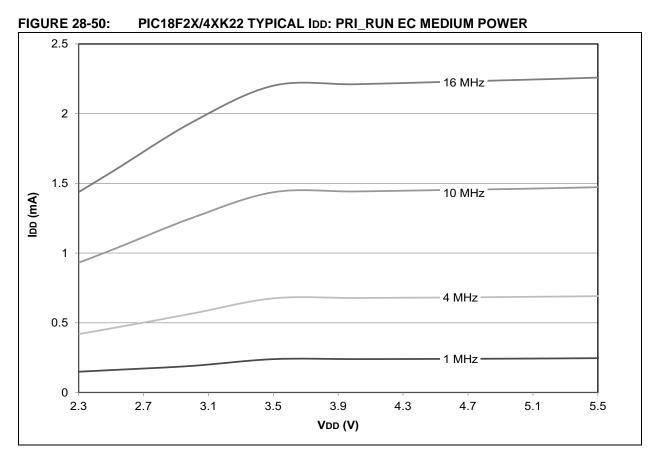
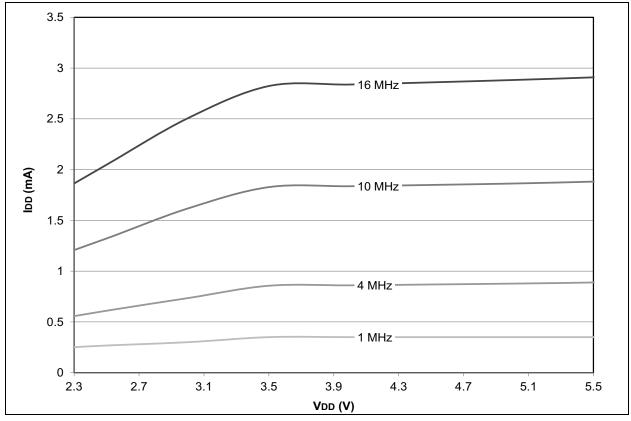
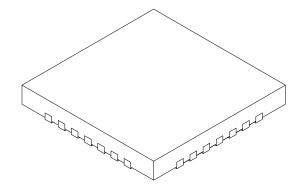





FIGURE 28-41: PIC18LF2X/4XK22 MAXIMUM IDD: RC_IDLE HF-INTOSC



© 2010-2016 Microchip Technology Inc.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensi	on Limits	MIN	NOM	MAX	
Number of Pins	N	28			
Pitch	е		0.40 BSC		
Overall Height	A	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	E	4.00 BSC			
Exposed Pad Width	E2	2.55	2.65	2.75	
Overall Length	D	4.00 BSC			
Exposed Pad Length	D2	2.55	2.65	2.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

APPENDIX A: REVISION HISTORY

Revision A (February 2010)

Initial release of this document.

Revision B (April 2010)

Updated Figures 2-4, 12-1 and 18-2; Updated Registers 2-2, 10-4, 10-5, 10-7, 17-2, 24-1 and 24-5; Updated Sections 10.3.2, 18.8.4, Synchronizing Comparator Output to Timer1; Updated Sections 27.2, 27-3, 27-4, 27-5, 27-6, 27-7 and 27-9; Updated Tables 27-2, 27-3, 27-4 and 27-7; Other minor corrections.

Revision C (July 2010)

Added 40-pin UQFN diagram; Updated Table 2 and Table 1-3 to add 40-UQFN column; Updated Table 1-1 to add "40-pin UQFN"; Updated Figure 27-1; Added Figure 27-2; Updated Table 27-6; Added 40-Lead UQFN Package Marking Information and Details; Updated Packaging Information section; Updated Table B-1 to add "40-pin UQFN"; Updated Product Identification System section; Other minor corrections.

Revision D (November 2010)

Updated the data sheet to new format; Revised Tables 1-2, 1-3, 5-2, 10-1, 10-5, 10-6, 10-8, 10-9, 10-11, 10-14, 14-13 and Register 14-5; Updated the Electrical Characteristics section.

Revision E (January 2012)

Updated Section 2.5.2, EC Mode; Updated Table 3-2; Removed Table 3-3; Updated Section 14.4.8; Removed CM2CON Register; Updated the Electrical Characteristics section; Updated the Packaging Information section; Updated the Char. Data section; Other minor corrections.

Revision F (May 2012)

Minor corrections; release of Final data sheet.

Revision G (August 2016)

Minor corrections to Tables 1-2, 17-1, 27-11, 27-14, 27-22, Section 2.6.1, Example 7-3, Registers 9-4, 9-5, 9-11, 14-5, Figures 10-1, 17-3, 17-4, 27-23; Updated Packaging Information Section.