

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k22t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

2.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 2-1 illustrates a block diagram of the oscillator module.

Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured from one of three internal oscillators, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The primary clock module can be configured to provide one of six clock sources as the primary clock.

- 1. RC External Resistor/Capacitor
- 2. LP Low-Power Crystal
- 3. XT Crystal/Resonator
- 4. INTOSC Internal Oscillator
- 5. HS High-Speed Crystal/Resonator
- 6. EC External Clock

The HS and EC oscillator circuits can be optimized for power consumption and oscillator speed using settings in FOSC<3:0>. Additional FOSC<3:0> selections enable RA6 to be used as I/O or CLKO (FOSC/4) for RC, EC and INTOSC Oscillator modes.

Primary Clock modes are selectable by the FOSC<3:0> bits of the CONFIG1H Configuration register. The primary clock operation is further defined by these Configuration and register bits:

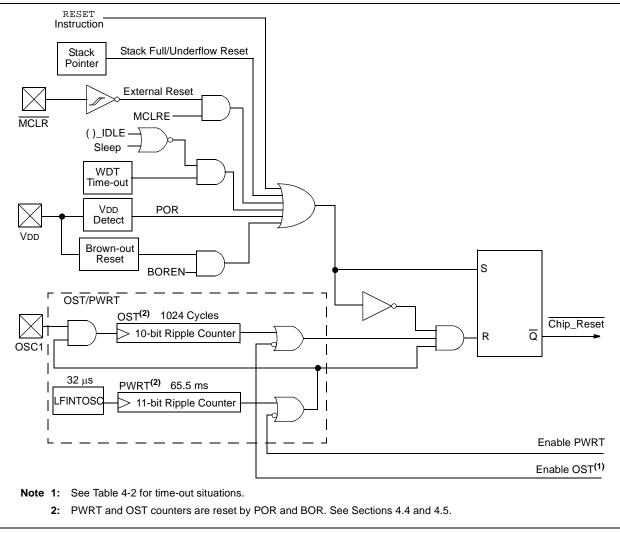
- 1. PRICLKEN (CONFIG1H<5>)
- 2. PRISD (OSCCON2<2>)
- 3. PLLCFG (CONFIG1H<4>)
- 4. PLLEN (OSCTUNE<6>)
- 5. HFOFST (CONFIG3H<3>)
- 6. IRCF<2:0> (OSCCON<6:4>)
- 7. MFIOSEL (OSCCON2<4>)
- 8. INTSRC (OSCTUNE<7>)

The HFINTOSC, MFINTOSC and LFINTOSC are factory calibrated high, medium and low-frequency oscillators, respectively, which are used as the internal clock sources.

4.0 RESET

The PIC18(L)F2X/4XK22 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset


This section discusses Resets generated by MCLR, POR and BOR and covers the operation of the various start-up timers. Stack Reset events are covered in Section 5.2.0.1 "Stack Full and Underflow Resets". WDT Resets are covered in Section 24.3 "Watchdog Timer (WDT)". A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 4-1.

4.1 RCON Register

Device Reset events are tracked through the RCON register (Register 4-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 4.7 "Reset State of Registers"**.

The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 9.0 "Interrupts". BOR is covered in Section 4.5 "Brown-out Reset (BOR)".

5.4.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of data memory, it also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from or written to the wrong location. This can be disastrous if a GPR is the intended target of an operation, but an SFR is written to instead. Verifying and/or changing the BSR for each read or write to data memory can become very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 96 bytes of memory (00h-5Fh) in Bank 0 and the last 160 bytes of memory (60h-FFh) in Block 15. The lower half is known as the "Access RAM" and is composed of GPRs. This upper half is also where the device's SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figures 5-5 through 5-7).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0', however, the instruction is forced to use the Access Bank address map; the current value of the BSR is ignored entirely.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle, without updating the BSR first. For 8-bit addresses of 60h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 60h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 5.7.3 "Mapping the Access Bank in Indexed Literal Offset Mode".

5.4.3 GENERAL PURPOSE REGISTER FILE

PIC18 devices may have banked memory in the GPR area. This is data RAM, which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upwards towards the bottom of the SFR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

5.4.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy the top portion of Bank 15 (F38h to FFFh). A list of these registers is given in Table 5-1 and Table 5-2.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of a peripheral feature are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

dress F5Fh F5Eh F5Dh F5Ch F5Bh F58h F57h F58h F57h F56h F55h F54h F54h	Name CCPR3H CCPR3L CCP3CON PWM3CON ECCP3AS PSTR3CON CCPR4H CCPR4L CCPR4L CCPR5H CCPR5H CCPR5L CCP5CON
F5Eh F5Dh F5Ch F5Bh F58h F59h F58h F57h F56h F55h F55h F54h F53h	CCPR3L CCP3CON PWM3CON ECCP3AS PSTR3CON CCPR4H CCPR4L CCP4CON CCPR5H CCPR5L
F5Dh F5Ch F5Bh F5Ah F59h F58h F57h F56h F55h F54h F53h	CCP3CON PWM3CON ECCP3AS PSTR3CON CCPR4H CCPR4L CCP4CON CCPR5H CCPR5L
F5Ch F5Bh F5Ah F59h F58h F57h F56h F55h F54h F53h	PWM3CON ECCP3AS PSTR3CON CCPR4H CCPR4L CCP4CON CCPR5H CCPR5L
F5Bh F5Ah F59h F58h F57h F56h F55h F55h F53h	ECCP3AS PSTR3CON CCPR4H CCPR4L CCP4CON CCPR5H CCPR5L
F5Ah F59h F58h F57h F56h F55h F55h F53h	PSTR3CON CCPR4H CCPR4L CCP4CON CCPR5H CCPR5L
F59h F58h F57h F56h F55h F54h F53h	CCPR4H CCPR4L CCP4CON CCPR5H CCPR5L
F58h F57h F56h F55h F54h F53h	CCPR4L CCP4CON CCPR5H CCPR5L
F57h F56h F55h F54h F53h	CCP4CON CCPR5H CCPR5L
F56h F55h F54h F53h	CCPR5H CCPR5L
F55h F54h F53h	CCPR5L
F54h F53h	
F53h	CCFSCON
	TMR4
EEDh	PR4
F52h F51h	T4CON
	T4CON TMR5H
	TMR5L
	T5CON
	T5GCON
	TMR6
	PR6
	T6CON
	CCPTMRS0
	CCPTMRS1
	SRCON0
	SRCON1
	CTMUCONH
	CTMUCONL
	CTMUICON
	VREFCON0
	VREFCON1
F40h	VREFCON2
F3Fh	PMD0
F3Eh	PMD1
F3Dh	PMD2
F3Ch	ANSELE
F3Bh	ANSELD
F3Ah	ANSELC
F39h	ANSELB
F38h	ANSELA
	F3Fh F3Eh F3Dh F3Ch F3Bh F3Ah F39h

TABLE 5-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F2X/4XK22 DEVICES

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: PIC18(L)F4XK22 devices only.

4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CCP5IP	CCP4IP	CCP3IP
bit 7				·			bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 2	1 = High prior 0 = Low prior	ity					
bit 1	CCP4IP: CCF 1 = High prior 0 = Low prior	-	ority bit				
bit 0	CCP3IP: CCF 1 = High prior 0 = Low prior	-	ority bit				

REGISTER 9-17: IPR4: PERIPHERAL INTERRUPT PRIORITY REGISTER 4

REGISTER 9-18: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	_	—	—	—	TMR6IP	TMR5IP	TMR4IP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3	Unimplemented: Read as '0'
bit 2	TMR6IP: TMR6 to PR6 Match Interrupt Priority bit
	1 = High priority0 = Low priority
bit 1	TMR5IP: TMR5 Overflow Interrupt Priority bit
	1 = High priority0 = Low priority
bit 0	TMR4IP: TMR4 to PR4 Match Interrupt Priority bit
	1 = High priority 0 = Low priority

12.1 Timer1/3/5 Operation

The Timer1/3/5 module is a 16-bit incrementing counter which is accessed through the TMRxH:TMRxL register pair. Writes to TMRxH or TMRxL directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1/3/5 is enabled by configuring the TMRxON and TMRxGE bits in the TxCON and TxGCON registers, respectively. Table 12-1 displays the Timer1/3/5 enable selections.

TABLE 12-1:TIMER1/3/5 ENABLESELECTIONS

TMRXON	TMRxGE	Timer1/3/5 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

12.2 Clock Source Selection

The TMRxCS<1:0> and TxSOSCEN bits of the TxCON register are used to select the clock source for Timer1/3/5. The dedicated Secondary Oscillator circuit can be used as the clock source for Timer1, Timer3 and Timer5, simultaneously. Any of the TxSOSCEN bits will enable the Secondary Oscillator circuit and select it as the clock source for that particular timer. Table 12-2 displays the clock source selections.

12.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMRxH:TMRxL register pair will increment on multiples of Fosc as determined by the Timer1/3/5 prescaler.

When the Fosc internal clock source is selected, the Timer1/3/5 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1/3/5 value. To utilize the full resolution of Timer1/3/5, an asynchronous input signal must be used to gate the Timer1/3/5 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the TxG pin to Timer1/3/5 Gate
- C1 or C2 comparator input to Timer1/3/5 Gate

12.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1/3/5 module may work as a timer or a counter.

When enabled to count, Timer1/3/5 is incremented on the rising edge of the external clock input of the TxCKI pin. This external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated secondary internal oscillator circuit.

In Counter mode, a falling edge must be
registered by the counter prior to the first
incrementing rising edge after any one or
more of the following conditions:

- Timer1/3/5 enabled after POR
- Write to TMRxH or TMRxL
- Timer1/3/5 is disabled
- Timer1/3/5 is disabled (TMRxON = 0) when TxCKI is high then Timer1/3/5 is enabled (TMRxON=1) when TxCKI is low.

TMRxCS1	TMRxCS0	TxSOSCEN	Clock Source
0	1	х	System Clock (FOSC)
0	0	х	Instruction Clock (Fosc/4)
1	0	0	External Clocking on TxCKI Pin
1	0	1	Osc.Circuit On SOSCI/SOSCO Pins

TABLE 12-2: CLOCK SOURCE SELECTIONS

15.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCLx line low effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCLx.

The CKP bit of the SSPxCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCLx line to go low and then hold it. Setting CKP will release SCLx and allow more communication.

15.5.6.1 Normal Clock Stretching

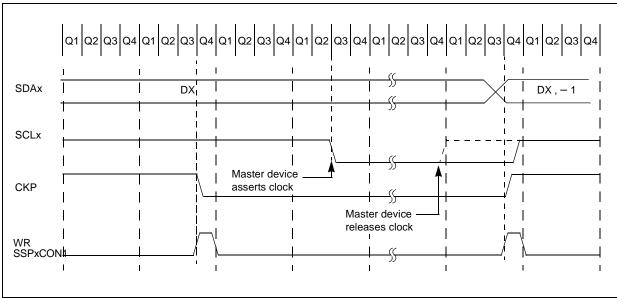
Following an ACK if the R/W bit of SSPxSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPxBUF with data to transfer to the master. If the SEN bit of SSPxCON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes.

- Note 1: The BF bit has no effect on whether the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPxBUF was read before the 9th falling edge of SCLx.
 - 2: Previous versions of the module did not stretch the clock for a transmission if SSPxBUF was loaded before the 9th falling edge of SCLx. It is now always cleared for read requests.

15.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set, the clock is always stretched. This is the only time the SCLx is stretched without CKP being cleared. SCLx is released immediately after a write to SSPxADD.

Note: Previous versions of the module did not stretch the clock if the second address byte did not match.


15.5.6.3 Byte NACKing

When the AHEN bit of SSPxCON3 is set; CKP is cleared by hardware after the 8th falling edge of SCLx for a received matching address byte. When the DHEN bit of SSPxCON3 is set; CKP is cleared after the 8th falling edge of SCLx for received data.


Stretching after the 8th falling edge of SCLx allows the slave to look at the received address or data and decide if it wants to ACK the received data.

15.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCLx line to go low and then hold it. However, clearing the CKP bit will not assert the SCLx output low until the SCLx output is already sampled low. Therefore, the CKP bit will not assert the SCLx line until an external I²C master device has already asserted the SCLx line. The SCLx output will remain low until the CKP bit is set and all other devices on the I²C bus have released SCLx. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCLx (see Figure 15-23).

FIGURE 15-23: CLOCK SYNCHRONIZATION TIMING

FIGURE 16-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

	[03[03[03]	404(0402	609030900	03924	Q3		<u>koskosko</u> (028090	603666	3043	osiozios	404,046	20303
COSX	A JULIUN. Beiski		nunyunu ''''''				nininin	nunun İ	Yunun			AUQUA 8:68-0%6	2
WEBE :	×.	: 	میں ہے۔ رینینی کاریک چ	······ · · ·		• • • • • • • • • • • •		······································	· · · · · · · · · · · · · · · · · · ·			:	, , ,
836339X3 269	uni Mi	- - -	;	, , ,		N Ž					525-5 		
	,	States Co	voreand Exerc	uteri 🏅	Steep Hods		Cierre	වේ රිස්ම ස	e (Fear Re:	94 OÚ	ROREGA	2	,
26660-31					arrieg deta, itea et die presanca d			x dhe Wi	.48 ost cart	66066	wwie to	ta e opeaa	e signa is
2	1356 8933	alle cocco	ins in the wol	la dha MARE d	28.26 5682								

23.7 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

23.8 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL<3:0>				337
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151

TABLE 23-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented locations, read as '0'. Shaded bits are unused by the HLVD module.

ADDWFC	ADD W a	ADD W and CARRY bit to f						
Syntax:	ADDWFC	f {,d {,a}}						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$							
Operation:	(W) + (f) +	$(C) \rightarrow dest$						
Status Affected:	N,OV, C, D	C, Z						
Encoding:	0010	00da ff	ff ffff					
Description:	Add W, the CARRY flag and data mem ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.							
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	Write to destination					
Example:	ADDWFC	REG, 0,	1					
Before Instruct CARRY E REG W After Instructio CARRY E REG W	$ \begin{array}{rcl} \text{pit} = & 1 \\ = & 02h \\ = & 4Dh \\ n \end{array} $							

	AND liter	al with	W	
	ANDLW	k		
	$0 \le k \le 255$	5		
	(W) .AND.	$k\toW$		
d:	N, Z			
	0000	1011	kkkk	kkkk
	1			
Cycles:				
vity:				
	Q2	Q3	1	Q4
Decode F		Process Data		Write to W
Example:		05Fh		
nstructi	ion			
	= A3h			
truction	n			
	= 03h			
	de	ANDLW $0 \le k \le 255$ (W) .AND. (W) .AND. AND. 0000 The conter 8-bit literal 1 1 vity: Q2 de Read literal 'k' ANDLW nstruction = A3h truction	ANDLW k $0 \le k \le 255$ (W) AND. $k \rightarrow W$ ed: N, Z 0000 1011 The contents of W a 8-bit literal 'k'. The r 1 1 vity: Q2 Q3 de Read literal Proce 'k' Dat ANDLW 05Fh nstruction = A3h truction	$0 \le k \le 255$ (W) .AND. $k \to W$ ed: N, Z $0000 1011 kkkk$ The contents of W are AND 8-bit literal 'k'. The result is p 1 1 1 vity: $Q2 \qquad Q3$ de Read literal Process 'k' Data ANDLW 05Fh estruction = A3h truction

BNC	ov	Branch if Not Overflow		BNZ		Branch if	Not Zero			
Synta	ax:	BNOV n			Synta	ax:	BNZ n	BNZ n		
Oper	ands:	-128 ≤ n ≤ ′	27		Oper	ands:	-128 ≤ n ≤ [°]			
Oper	ation:	if OVERFLOW bit is '0' (PC) + 2 + 2n \rightarrow PC		Oper	ation:	if ZERO bit (PC) + 2 +				
Statu	is Affected:	None	None		Statu	s Affected:	None			
Enco	oding:	1110	0101 nn	nn nnnn	Enco	ding:	1110	0001 nn	inn nnnn	
Desc	sription:	If the OVERFLOW bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be $PC + 2 + 2n$. This instruction is then a 2-cycle instruction.		Desc	ription:	will branch. The 2's cor added to th incremente instruction,	nplement nun e PC. Since th d to fetch the the new addr n. This instruc	ne PC will have next		
Word	ds:	1			Word	s:	1			
Cycle	es:	1(2)			Cycle	es:	1(2)			
	ycle Activity: Imp:				Q C If Ju	ycle Activity: mp:				
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC	
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operation	
lf No	o Jump:	oporation	oporation	oporation	lf No	Jump:	oporation	oporation	oporation	
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation	
<u>Exar</u>	nple:	HERE	BNOV Jump		Exam	nple:	HERE	BNZ Jump	þ	
	Before Instruc	ction				Before Instruc				
	PC After Instruction If OVER PC If OVER	on FLOW = 0; = ad	dress (HERE dress (Jump			PC After Instruction If ZERO PC If ZERO	on = 0;	dress (HERE dress (Jump		
	PC		dress (HERE	+ 2)		PC	•,	dress (HERE	+ 2)	

er Instruction		
If ZERO	=	0;
PC	=	address (Jump)
If ZERO	=	1;
PC	=	address (HERE + 2)

BTFSC	Bit Test File, Skip if Clear			BTFSS	Bit Test File, Skip if Set			
Syntax:	BTFSC f, b	{,a}		Syntax:	BTFSS f, b {,a}			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			$0 \le f \le 255$ $0 \le b < 7$ $a \in [0,1]$			
Operation:	skip if (f)	= 0		Operation:	skip if (f) = 1			
Status Affected:	None			Status Affected:	None			
Encoding:	1011 bbba ffff ffff			Encoding:	1010	bbba fff	f ffff	
Description:	instruction is the next instru- current instru- and a NOP is this a 2-cycle If 'a' is '0', th 'a' is '1', the GPR bank. If 'a' is '0' an set is enable Indexed Liter mode where See Section Bit-Oriented	gister 'f' is '0', t skipped. If bit ruction fetched uction executio s executed inst e instruction. e Access Bank BSR is used to d the extended d, this instructi ral Offset Addrever f \leq 95 (5FH 25.2.3 "Byte- 1 Instructions et Mode " for do	 'b' is '0', then during the n is discarded ead, making is selected. If select the l instruction on operates in essing D. Oriented and in Indexed 	Description:	instruction is the next instru- current instru and a NOP is this a 2-cycle If 'a' is '0', the 'a' is '1', the E GPR bank. If 'a' is '0' and set is enabled in Indexed Lit mode wheney See Section Bit-Oriented	ister 'f' is '1', t skipped. If bit uction fetched ction execution executed instr- instruction. Access Bank 3SR is used to the extended d, this instructi- eral Offset Ad ver f \leq 95 (5Fh 25.2.3 "Byte- Instructions t Mode" for de	b' is '1', then during the is discarded ead, making is selected. If select the instruction on operates dressing). Oriented and in Indexed	
Words:	1			Words:	1			
Cycles:	•	cles if skip and 2-word instruc		Cycles:		les if skip and 2-word instruc		
Q Cycle Activity:				Q Cycle Activity:				
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Decode	Read	Process	No	Decode	Read	Process	No	
lf ckip:	register 'f'	Data	operation	lf skip:	register 'f'	Data	operation	
lf skip: Q1	Q2	Q3	Q4	п экір. Q1	Q2	Q3	Q4	
No	No	No	No	No	No	No	No	
operation	operation	operation	operation	operation	operation	operation	operation	
If skip and followed	by 2-word inst	truction:		If skip and followe	d by 2-word in	struction:		
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
No	No	No	No	No	No	No	No	
operation	operation	operation	operation	operation	operation	operation	operation	
No operation	No operation	No operation	No operation	No operation	No operation	No operation	No operation	
operation	operation	operation	operation	operation	operation	operation	operation	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	

DECFSZ	Decrement f, skip if 0			DCFSNZ	Decreme	nt f, skip if n	ot 0		
Syntax:	DECFSZ f	f {,d {,a}}		Syntax:	DCFSNZ	f {,d {,a}}			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$			Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]				
Operation:	(f) − 1 → de skip if resul	-		Operation:	(f) – 1 \rightarrow description of the skip if results of the second sec				
Status Affected:	None			Status Affected:	None				
Encoding:	0010	11da ff:	ff ffff	Encoding:	0100	11da fff	f ffff		
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			Description:	decrements placed in V placed bac If the result instruction, discarded a instead, ma instruction. If 'a' is '0', t If 'a' is '0', t GPR bank. If 'a' is '0' a set is enab in Indexed mode wher Section 25 Bit-Oriente	Ind the extended led, this instruct Literal Offset A never f ≤ 95 (5 5.2.3 "Byte-Or ed Instruction	the result is the result is (default). next dy fetched, is kecuted de the is selected. d to select the ed instruction ction operates Addressing Fh). See iented and s in Indexed		
Words:	1					set Mode" for	details.		
Cycles:	1(2)			Words:	1				
		cles if skip ar 2-word instru		Cycles:		cycles if skip a a 2-word instr			
Q Cycle Activity:	0.0	0.0	<u>.</u>	Q Cycle Activity:		a 2-woru insti			
Q1 Decode	Q2 Read	Q3 Process	Q4 Write to	Q1	Q2	Q3	Q4		
Decode	register 'f'	Data	destination	Decode	Read	Process	Write to		
lf skip:					register 'f'	Data	destination		
Q1	Q2	Q3	Q4	If skip:					
No	No	No	No	Q1	Q2	Q3	Q4		
operation	operation	operation	operation	No	No	No operation	No		
If skip and followe			0.4	operation If skip and follow			operation		
Q1 No	Q2	Q3 No	Q4 No	Q1	Q2	Q3	Q4		
operation	No operation	operation	operation	No	No	No	No		
No	No	No	No	operation	operation	operation	operation		
operation	operation	operation	operation	No	No	No	No		
Example:	HERE	DECFSZ GOTO	CNT, 1, 1 LOOP	operation	Operation	OPERATION	operation		
Before Instruc	CONTINUE	9010	LOOF	<u>Exampto</u> .	ZERO	:	., ., .		
PC After Instructi	= Address	6 (HERE)		Before Instru TEMP	=	?			
CNT If CNT	= CNT - 1 = 0;	G (CONTINUE])	After Instruc TEMP If TEM	=	TEMP – 1, 0;			
If CNT	≠ 0;	S (HERE + 2		P		Äddress (2	ZERO)		

PIC18LF	2X/4XK22	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
PIC18F2	PIC18F2X/4XK22		dard Operating Conditions (unless otherwise stated) ating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Device Characteristics	Тур	Max	Units	Conditions				
D100	Supply Current (IDD) ^{(1),(2)}	0.030	0.050	mA	-40°C to +125°C	Vdd = 1.8V	Fosc = 1 MHz		
D101		0.045	0.065	mA	-40°C to +125°C	VDD = 3.0V	(PRI_IDLE mode, ECM source)		
D102		0.06	0.12	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 1 MHz		
D103		0.08	0.15	mA	-40°C to +125°C	VDD = 3.0V	(PRI_IDLE mode, ECM source)		
D104		0.13	0.20	mA	-40°C to +125°C	VDD = 5.0V			
D105		0.45	0.8	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 20 MHz		
D106		0.70	1.0	mA	-40°C to +125°C	VDD = 3.0V	(PRI_IDLE mode, ECH source)		
D107		0.55	0.8	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 20 MHz		
D108		0.75	1.0	mA	-40°C to +125°C	VDD = 3.0V	(PRI_IDLE mode, ECH source)		
D109		0.90	1.2	mA	-40°C to +125°C	VDD = 5.0V	L'OIT Source)		
D110		2.25	3.0	mA	-40°C to +125°C	Vdd = 3.0V	Fosc = 64 MHz (PRI_IDLE mode, ECH source)		
D111		2.25	3.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz		
D112		2.60	3.5	mA	-40°C to +125°C	VDD = 5.0V	(PRI_IDLE mode, ECH source)		
D113		0.35	0.6	mA	-40°C to +125°C	Vdd = 1.8V	Fosc = 4 MHz		
D114		0.55	0.8	mA	-40°C to +125°C	VDD = 3.0V	16 MHz Internal (PRI_IDLE mode, ECM + PLL source)		
D115		0.45	0.6	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 4 MHz		
D116		0.60	0.9	mA	-40°C to +125°C	VDD = 3.0V	16 MHz Internal (PRI_IDLE mode,		
D117		0.70	1.0	mA	-40°C to +125°C	VDD = 5.0V	ECM + PLL source)		
D118		2.2	3.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 16 MHz 64 MHz Internal (PRI_IDLE mode, ECH + PLL source)		
D119		2.2	3.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 16 MHz		
D120		2.5	3.5	mA	-40°C to +125°C	VDD = 5.0V	64 MHz Internal (PRI_IDLE mode, ECH + PLL source)		

27.6 DC Characteristics: Primary Idle Supply Current, PIC18(L)F2X/4XK22

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

MCLR = VDD;

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

27.7 DC Characteristics: Secondary Oscillator Supply Current, PIC18(L)F2X/4XK22

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
PIC18F2	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Device Characteristics	Тур	Max	Units	Conditions					
D130	Supply Current (IDD)(1),(2)	3.5	23	μΑ	-40°C	VDD = 1.8V	Fosc = 32 kHz			
		3.7	25	μΑ	+25°C		(SEC_RUN mode, SOSC source)			
		3.8	—	μΑ	+60°C					
		4.0	28	μΑ	+85°C					
		5.1	30	μΑ	+125°C					
D131		6.2	26	μΑ	-40°C	VDD = 3.0V				
		6.4	30	μΑ	+25°C					
		6.5	—	μΑ	+60°C					
		6.8	35	μΑ	+85°C					
		7.8	40	μΑ	+125°C					
D132		15	35	μΑ	-40°C	VDD = 2.3V	Fosc = 32 kHz			
		16	35	μΑ	+25°C		(SEC_RUN mode, SOSC source)			
		17	35	μΑ	+85°C					
		19	50	μΑ	+125°C					
D133		18	50	μΑ	-40°C	VDD = 3.0V				
		19	50	μΑ	+25°C					
		21	50	μΑ	+85°C					
		22	60	μΑ	+125°C					
D134		19	55	μΑ	-40°C	VDD = 5.0V				
		20	55	μΑ	+25°C					
		22	55	μΑ	+85°C					
		23	70	μΑ	+125°C					

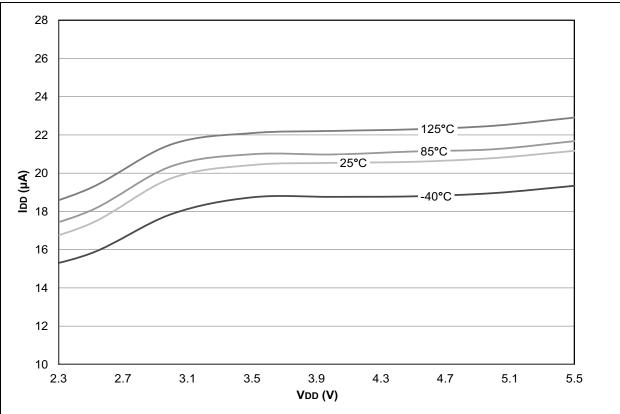
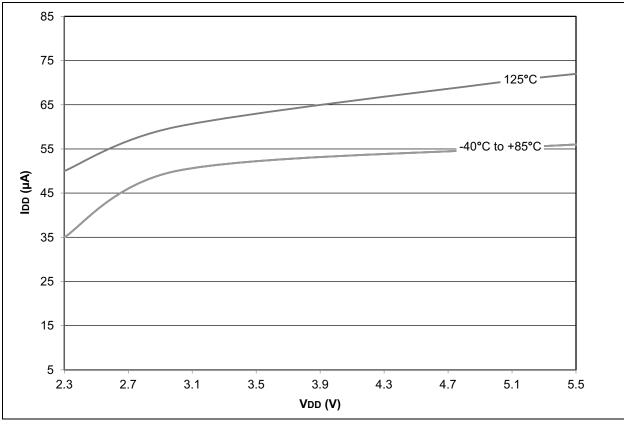
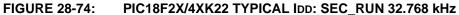
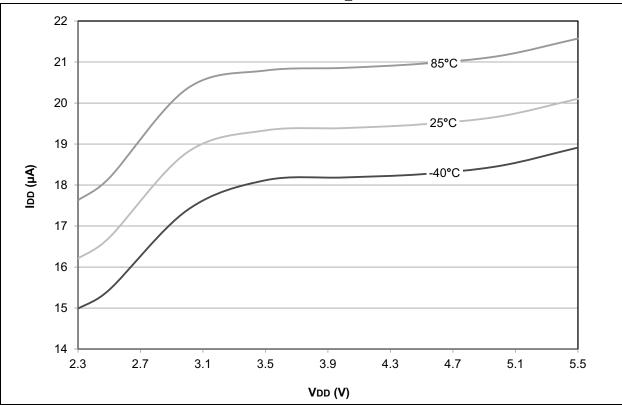
Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

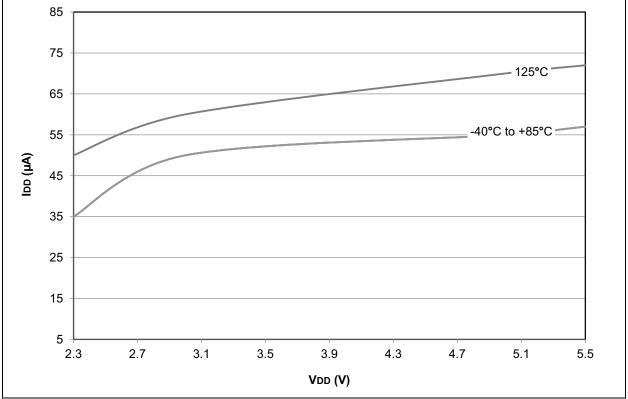
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

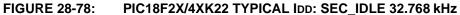
2: The test conditions for all IDD measurements in active operation mode are: All I/O pins set as outputs driven to Vss;

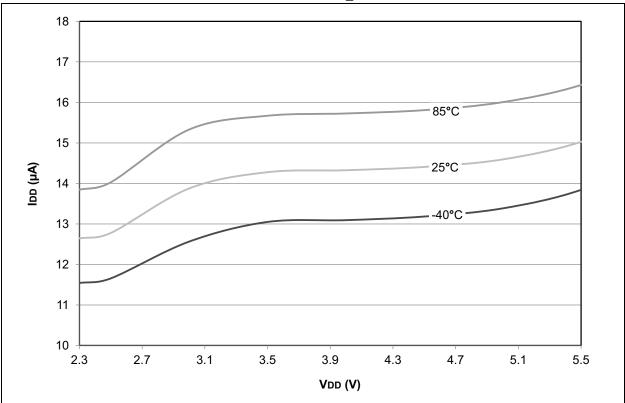
 $\frac{AIII}{MCLR} = VDD;$

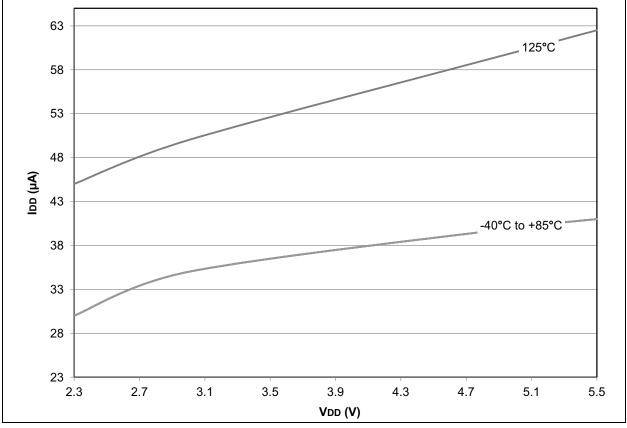
SOSCI / SOSCO = complementary external square wave, from rail-to-rail.

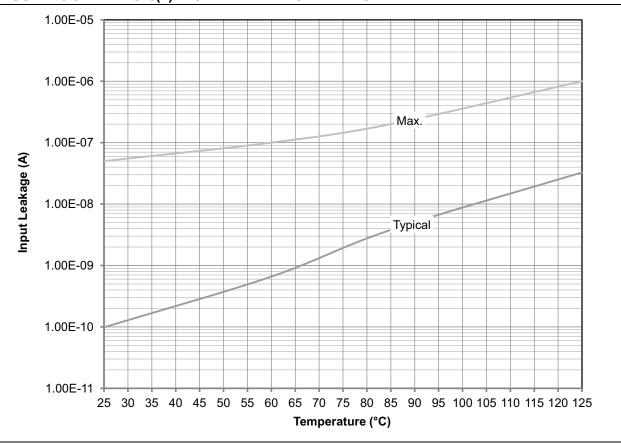






FIGURE 28-23: PIC18F2X/4XK22 MAXIMUM IDD: RC_RUN LF-INTOSC 31 kHz

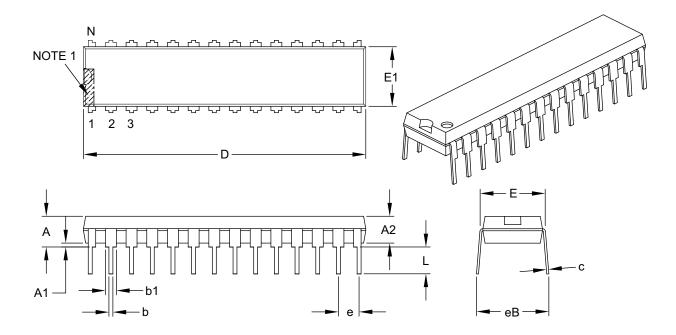








© 2010-2016 Microchip Technology Inc.


FIGURE 28-84: PIC18(L)F2X/4XK22 PIN INPUT LEAKAGE

29.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	e		.100 BSC	
Top to Seating Plane	A	_	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	_
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	-	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B