

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k22t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

OSC Mode	OSC1 Pin	OSC2 Pin		
RC, INTOSC with CLKOUT	Floating, external resistor should pull high	At logic low (clock/4 output)		
RC with IO	Floating, external resistor should pull high	Configured as PORTA, bit 6		
INTOSC with IO	Configured as PORTA, bit 7	Configured as PORTA, bit 6		
EC with IO	Floating, pulled by external clock	Configured as PORTA, bit 6		
EC with CLKOUT	Floating, pulled by external clock	At logic low (clock/4 output)		
LP, XT, HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level		

TABLE 2-3:OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Note: See Table 4-2 in Section 4.0 "Reset" for time-outs due to Sleep and MCLR Reset.

2.11 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS<1:0>) bits of the OSCCON register.

PIC18(L)F2X/4XK22 devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 3.1.2 "Entering Power-Managed Modes"**.

2.11.1 SYSTEM CLOCK SELECT (SCS<1:0>) BITS

The System Clock Select (SCS<1:0>) bits of the OSCCON register select the system clock source that is used for the CPU and peripherals.

- When SCS<1:0> = 00, the system clock source is determined by configuration of the FOSC<3:0> bits in the CONFIG1H Configuration register.
- When SCS<1:0> = 10, the system clock source is chosen by the internal oscillator frequency selected by the INTSRC bit of the OSCTUNE register, the MFIOSEL bit of the OSCCON2 register and the IRCF<2:0> bits of the OSCCON register.
- When SCS<1:0> = 01, the system clock source is the 32.768 kHz secondary oscillator shared with Timer1, Timer3 and Timer5.

After a Reset, the SCS<1:0> bits of the OSCCON register are always cleared.

Note: Any automatic clock switch, which may occur from Two-Speed Start-up or Fail-Safe Clock Monitor, does not update the SCS<1:0> bits of the OSCCON register. The user can monitor the SOSCRUN, MFIOFS and LFIOFS bits of the OSCCON2 register, and the HFIOFS and OSTS bits of the OSCCON register to determine the current system clock source.

2.11.2 OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT

The Oscillator Start-up Time-out Status (OSTS) bit of the OSCCON register indicates whether the system clock is running from the external clock source, as defined by the FOSC<3:0> bits in the CONFIG1H Configuration register, or from the internal clock source. In particular, when the primary oscillator is the source of the primary clock, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes.

2.11.3 CLOCK SWITCH TIMING

When switching between one oscillator and another, the new oscillator may not be operating which saves power (see Figure 2-9). If this is the case, there is a delay after the SCS<1:0> bits of the OSCCON register are modified before the frequency change takes place. The OSTS and IOFS bits of the OSCCON register will reflect the current active status of the external and HFINTOSC oscillators. The timing of a frequency selection is as follows:

- 1. SCS<1:0> bits of the OSCCON register are modified.
- 2. The old clock continues to operate until the new clock is ready.
- 3. Clock switch circuitry waits for two consecutive rising edges of the old clock after the new clock ready signal goes true.
- 4. The system clock is held low starting at the next falling edge of the old clock.
- 5. Clock switch circuitry waits for an additional two rising edges of the new clock.
- 6. On the next falling edge of the new clock the low hold on the system clock is released and new clock is switched in as the system clock.
- 7. Clock switch is complete.

See Figure 2-1 for more details.

If the HFINTOSC is the source of both the old and new frequency, there is no start-up delay before the new frequency is active. This is because the old and new frequencies are derived from the HFINTOSC via the postscaler and multiplexer.

Start-up delay specifications are located in **Section 27.0 "Electrical Specifications**", under AC Specifications (Oscillator Module).

2.12 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device.

This mode allows the application to wake-up from Sleep, perform a few instructions using the HFINTOSC as the clock source and go back to Sleep without waiting for the primary oscillator to become stable.

Note: Executing a SLEEP instruction will abort the oscillator start-up time and will cause the OSTS bit of the OSCCON register to remain clear.

When the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) is enabled (see **Section 2.5.1 "Oscillator Start-up Timer (OST)**"). The OST will suspend program execution until 1024 oscillations are counted. Two-Speed Start-up mode minimizes the delay in code execution by operating from the internal oscillator as the OST is counting. When the OST count reaches 1024 and the OSTS bit of the OSCCON register is set, program execution switches to the external oscillator.

2.12.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is enabled when all of the following settings are configured as noted:

- Two-Speed Start-up mode is enabled when the IESO of the CONFIG1H Configuration register is set.
- SCS<1:0> (of the OSCCON register) = 00.
- FOSC<2:0> bits of the CONFIG1H Configuration register are configured for LP, XT or HS mode.

Two-Speed Start-up mode becomes active after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- · Wake-up from Sleep.

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
MSSP2MD	MSSP1MD	—	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	MSSP2MD: N	ISSP2 Periphe	eral Module Di	sable Control I	bit		
	1 = Module is	s disabled, Clo	ck Source is d	lisconnected, r	nodule does no lule draws digita	0 1	ower
bit 6	MSSP1MD: N	ISSP1 Periphe	eral Module Di	sable Control I	bit		
					nodule does no lule draws digita	• •	ower
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	CCP5MD: CC	P5 Peripheral	Module Disab	ole Control bit			
					nodule does no lule draws digita	0 1	ower
bit 3	CCP4MD: CC	P4 Peripheral	Module Disab	ole Control bit			
					nodule does no lule draws digita		ower
bit 2	CCP3MD: CC	P3 Peripheral	Module Disab	le Control bit			
				,	nodule does no lule draws digita	0 1	ower
bit 1	CCP2MD: CC	P2 Peripheral	Module Disab	le Control bit			
					nodule does no lule draws digita	• .	ower
bit 0	CCP1MD: CC	P1 Peripheral	Module Disab	ole Control bit			
					nodule does no lule draws digita	0 1	ower

D . (1)(Port Fun	ction Priority by P	ort Pin	
Port bit	PORTA	PORTB	PORTC	PORTD ⁽²⁾	PORTE ⁽²⁾
5	SRNQ	CCP3 ⁽³⁾	SDO1	P1B	
	C2OUT	P3A ⁽³⁾	RC5	RD5	
	RA5	P2B ⁽¹⁾⁽⁴⁾			
		RB5			
6	OSC2	PGC	TX1/CK1	TX2/CK2	
	CLKO	TX2/CK2 ⁽¹⁾	CCP3 ⁽¹⁾⁽⁷⁾	P1C	
	RA6	RB6	P3A ⁽¹⁾⁽⁷⁾	RD6	
		ICDCK	RC6		
7	RA7				
	OSC1	PGD	RX1/DT1	RX2/DT2	
	RA7	RX2/DT2 ⁽¹⁾	P3B ⁽¹⁾	P1D	
		RB7	RC7	RD7	
		ICDDT			

TABLE 10-4: PORT PIN FUNCTION PRIORITY (CONTINUED)

Note 1: PIC18(L)F2XK22 devices.

2: PIC18(L)F4XK22 devices.

3: Function default pin.

4: Function default pin (28-pin devices).

5: Function default pin (40/44-pin devices).

6: Function alternate pin.

7: Function alternate pin (28-pin devices).

8: Function alternate pin (40/44-pin devices)

				•••••		
R/W-1	R/W-1	R/W-1	U-0	U-0	U-0	U-0
IOCB6	IOCB5	IOCB4	—	—	—	—
						bit 0
	R/W-1	R/W-1 R/W-1	R/W-1 R/W-1 R/W-1	R/W-1 R/W-1 U-0	R/W-1 R/W-1 R/W-1 U-0 U-0	

REGISTER 10-13: IOCB: INTERRUPT-ON-CHANGE PORTB CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 **IOCB<7:4>:** Interrupt-on-Change PORTB control bits

1 = Interrupt-on-change enabled⁽¹⁾

0 = Interrupt-on-change disabled

Note 1: Interrupt-on-change requires that the RBIE bit (INTCON<3>) is set.

REGISTER 10-14: SLRCON: SLEW RATE CONTROL REGISTER

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	_	SLRE ⁽¹⁾	SLRD ⁽¹⁾	SLRC	SLRB	SLRA
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5	Unimplemented: Read as '0'	
bit 4	SLRE: PORTE Slew Rate Control bit ⁽¹⁾	
	1 = All outputs on PORTE slew at a limited rate0 = All outputs on PORTE slew at the standard rate	
bit 3	SLRD: PORTD Slew Rate Control bit ⁽¹⁾	
	1 = All outputs on PORTD slew at a limited rate0 = All outputs on PORTD slew at the standard rate	
bit 2	SLRC: PORTC Slew Rate Control bit	
	1 = All outputs on PORTC slew at a limited rate0 = All outputs on PORTC slew at the standard rate	
bit 1	SLRB: PORTB Slew Rate Control bit	
	1 = All outputs on PORTB slew at a limited rate0 = All outputs on PORTB slew at the standard rate	
bit 0	SLRA: PORTA Slew Rate Control bit	
	 1 = All outputs on PORTA slew at a limited rate⁽²⁾ 0 = All outputs on PORTA slew at the standard rate 	
Note 1.	These bits are available on PIC18(I)F4XK22 devices	

Note 1: These bits are available on PIC18(L)F4XK22 devices.

2: The slew rate of RA6 defaults to standard rate when the pin is used as CLKOUT.

12.8 Timer1/3/5 Interrupt

The Timer1/3/5 register pair (TMRxH:TMRxL) increments to FFFFh and rolls over to 0000h. When Timer1/3/5 rolls over, the Timer1/3/5 interrupt flag bit of the PIR1/2/5 register is set. To enable the interrupt on rollover, you must set these bits:

- TMRxON bit of the TxCON register
- TMRxIE bits of the PIE1, PIE2 or PIE5 registers
- PEIE/GIEL bit of the INTCON register
- GIE/GIEH bit of the INTCON register

The interrupt is cleared by clearing the TMRxIF bit in the Interrupt Service Routine.

For more information on selecting high or low priority status for the Timer1/3/5 Overflow Interrupt, see **Section 9.0 "Interrupts"**.

Note:	The TMRxH:TMRxL register pair and the
	TMRxIF bit should be cleared before
	enabling interrupts.

12.9 Timer1/3/5 Operation During Sleep

Timer1/3/5 can only operate during Sleep when set up in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMRxON bit of the TxCON register must be set
- TMRxIE bit of the PIE1/2/5 register must be set
- PEIE/GIEL bit of the INTCON register must be set
- TxSYNC bit of the TxCON register must be set
- TMRxCS bits of the TxCON register must be configured
- TxSOSCEN bit of the TxCON register must be configured

The device will wake-up on an overflow and execute the next instruction. If the GIE/GIEH bit of the INTCON register is set, the device will call the Interrupt Service Routine.

The secondary oscillator will continue to operate in Sleep regardless of the $\overline{\text{TxSYNC}}$ bit setting.

12.10 ECCP/CCP Capture/Compare Time Base

The CCP modules use the TMRxH:TMRxL register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMRxH:TMRxL register pair is copied into the CCPRxH:CCPRxL register pair on a configured event.

In Compare mode, an event is triggered when the value CCPRxH:CCPRxL register pair matches the value in the TMRxH:TMRxL register pair. This event can be a Special Event Trigger.

For more information, see Section 14.0 "Capture/Compare/PWM Modules".

12.11 ECCP/CCP Special Event Trigger

When any of the CCP's are configured to trigger a special event, the trigger will clear the TMRxH:TMRxL register pair. This special event does not cause a Timer1/3/5 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPRxH:CCPRxL register pair becomes the period register for Timer1/3/5.

Timer1/3/5 should be synchronized and FOSC/4 should be selected as the clock source in order to utilize the Special Event Trigger. Asynchronous operation of Timer1/3/5 can cause a Special Event Trigger to be missed.

In the event that a write to TMRxH or TMRxL coincides with a Special Event Trigger from the CCP, the write will take precedence.

For more information, see **Section 17.2.8** "**Special Event Trigger**".

Name	Bit 7	Bit 6		Bit 4		Bit 2		Bit 0	Register
Name	Bit /	BIT 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit U	on Page
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIE4	_	—	_	—	—	CCP5IE	CCP4IE	CCP3IE	120
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIR4	—	—	_	—	—	CCP5IF	CCP4IF	CCP3IF	115
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
PMD1	MSSP2MD	MSSP1MD	_	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	53
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1SOSCEN	T1SYNC	T1RD16	TMR10N	166
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS<1:0>		167
T3CON	TMR3C	S<1:0>	T3CKP	S<1:0>	T3SOSCEN	T3SYNC	T3RD16 TMR3ON		166
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GSS<1:0>		167
T5CON	TMR5C	S<1:0>	T5CKP	S<1:0>	T5SOSCEN T5SYNC T5RD16 TMR5ON			TMR5ON	166
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GSS	<1:0>	167
TMR1H		Holding	Register for th	e Most Signifi	cant Byte of the 10	6-bit TMR1 Re	egister		_
TMR1L			Least Sign	ificant Byte of	the 16-bit TMR1 I	Register			_
TMR3H		Holding	Register for th	e Most Signifi	cant Byte of the 10	6-bit TMR3 Re	egister		—
TMR3L			Least Sign	ificant Byte of	the 16-bit TMR3 I	Register			—
TMR5H		Holding	Register for th	e Most Signifi	cant Byte of the 10	6-bit TMR5 Re	egister		—
TMR5L			Least Sign	ificant Byte of	the 16-bit TMR5 I	Register			—
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
TRISE	WPUE3	—	—	—	—	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	151

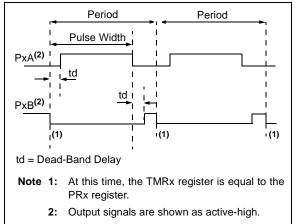
TABLE 14-3: REGISTERS ASSOCIATED WITH CAPTURE (CONTINUED)

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Capture mode.

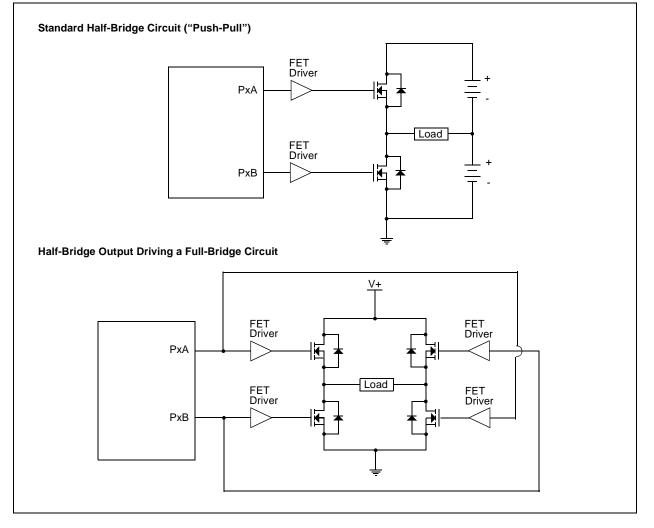
Note 1: These registers/bits are available on PIC18(L)F4XK22 devices.

TABLE 14-4: CONFIGURATION REGISTERS ASSOCIATED WITH CAPTURE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348


Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Capture mode.

14.4.1 HALF-BRIDGE MODE


In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCPx/PxA pin, while the complementary PWM output signal is output on the PxB pin (see Figure 14-9). This mode can be used for half-bridge applications, as shown in Figure 14-9, or for full-bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in halfbridge power devices. The value of the PDC<6:0> bits of the PWMxCON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 14.4.5 "Programmable Dead-Band Delay Mode"** for more details of the dead-band delay operations. Since the PxA and PxB outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure PxA and PxB as outputs.

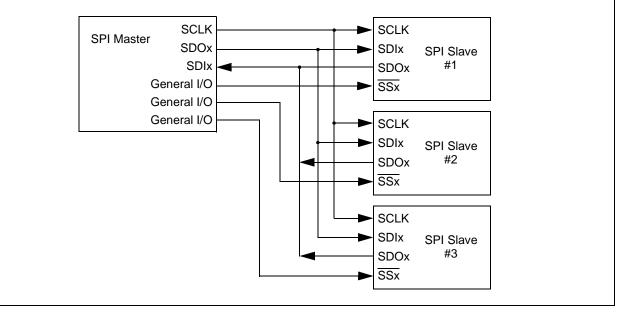

FIGURE 14-8: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 14-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

FIGURE 15-4: SPI MASTER AND MULTIPLE SLAVE CONNECTION

15.2.1 SPI MODE REGISTERS

The MSSPx module has five registers for SPI mode operation. These are:

- MSSPx STATUS register (SSPxSTAT)
- MSSPx Control register 1 (SSPxCON1)
- MSSPx Control register 3 (SSPxCON3)
- MSSPx Data Buffer register (SSPxBUF)
- MSSPx Address register (SSPxADD)
- MSSPx Shift register (SSPxSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and STATUS registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower 6 bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In one SPI Master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 15.7 "Baud Rate Generator"**.

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

15.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCKx is the clock output)
- Slave mode (SCKx is the clock input)
- Clock Polarity (Idle state of SCKx)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCKx)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

To enable the serial port, SSPx Enable bit, SSPxEN of the SSPxCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPxEN bit, re-initialize the SSPxCONx registers and then set the SSP<u>xEN</u> bit. This configures the SDIx, SDOx, SCKx and SSx pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- SDIx must have corresponding TRIS bit set
- SDOx must have corresponding TRIS bit cleared
- SCKx (Master mode) must have corresponding TRIS bit cleared
- SCKx (Slave mode) must have corresponding TRIS bit set
- SSx must have corresponding TRIS bit set

16.4.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDCONx register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPBRGHx:SPBRGx register pair. After the ABDOVF has been set, the counter continues to count until the fifth rising edge is detected on the RXx/DTx pin. Upon detecting the fifth RXx/DTx edge, the hardware will set the RCxIF interrupt flag and clear the ABDEN bit of the BAUDCONx register. The RCxIF flag can be subsequently cleared by reading the RCREGx. The ABDOVF flag can be cleared by software directly.

To terminate the auto-baud process before the RCxIF flag is set, clear the ABDEN bit then clear the ABDOVF bit. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

16.4.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RXx/DTx line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDCONx register. Once set, the normal receive sequence on RXx/DTx is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RXx/DTx line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCxIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 16-7), and asynchronously if the device is in Sleep mode (Figure 16-8). The interrupt condition is cleared by reading the RCREGx register.

The WUE bit is automatically cleared by the low-to-high transition on the RXx line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

16.4.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

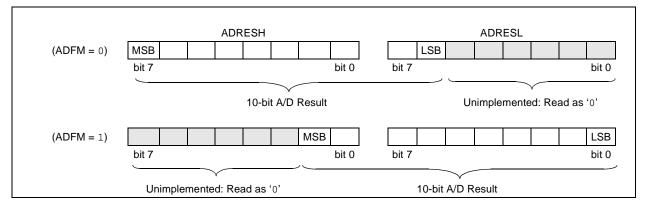
Therefore, the initial character in the transmission must be all '0's. This must be 10 or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit

The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared by hardware by a rising edge on RXx/DTx. The interrupt condition is then cleared by software by reading the RCREGx register and discarding its contents.


To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

17.1.7 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON2 register controls the output format.

Figure 17-2 shows the two output formats.

FIGURE 17-2: 10-BIT A/D CONVERSION RESULT FORMAT

17.3 Register Definitions: ADC Control

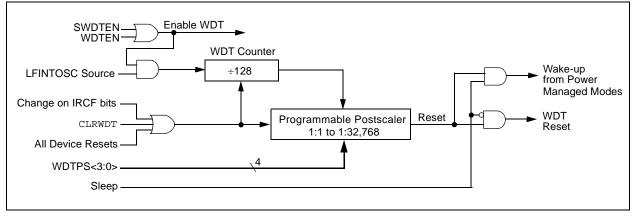
Note: Analog pin control is determined by the ANSELx registers (see Register 10-2)

REGISTER 17-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0

Legend:				
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	Unimple	mented: Read as '0'		
bit 6-2	CHS<4:0)>: Analog Channel Select bits	;	
	00000 =			
	00001 =			
	00010 =			
	00011 =			
	00100 =			
	00101 =			
	00110 =			
	00111 =			
	01000 =			
	01001 = 01010 =			
	01010 = 01011 =			
	01011 =			
	01100 =			
	01101 =			
	01111 =			
	10000 =			
	10001 =			
	10010 =			
	10011 =	AN19		
	10100 =	AN20 ⁽¹⁾		
	10101 =			
	10110 =	AN22 ⁽¹⁾		
	10111 =			
	11000 =			
	11001 =			
	11010 =			
	11011 =			
		Reserved		
	11101 =			
	11110 =			(2)
		_	96V Volt Fixed Voltage Reference)·-/
bit 1		IE: A/D Conversion Status bit		
		, , ,	tting this bit starts an A/D convers	
		, j	ardware when the A/D conversion	has completed.
	0 = A/D	conversion completed/not in prog	gress	
bit 0	ADON: A	ADC Enable bit		
	1 = ADC	is enabled		
	0 = ADC	is disabled and consumes no or	perating current	

2: Allow greater than 15 μs acquisition time when measuring the Fixed Voltage Reference.


24.3 Watchdog Timer (WDT)

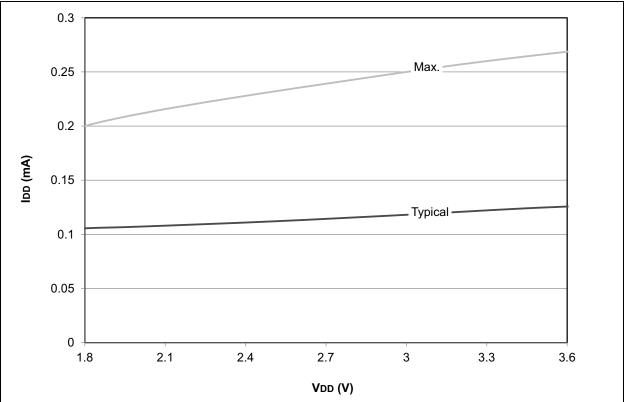
For PIC18(L)F2X/4XK22 devices, the WDT is driven by the LFINTOSC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the LFINTOSC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits of the OSCCON register are changed or a clock failure has occurred.

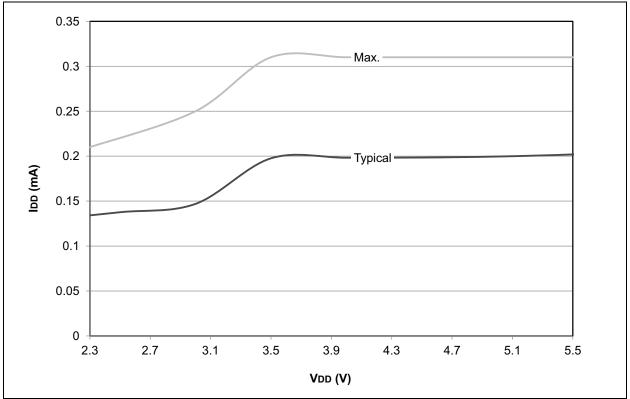
- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits of the OSCCON register clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

FIGURE 24-1: WDT BLOCK DIAGRAM

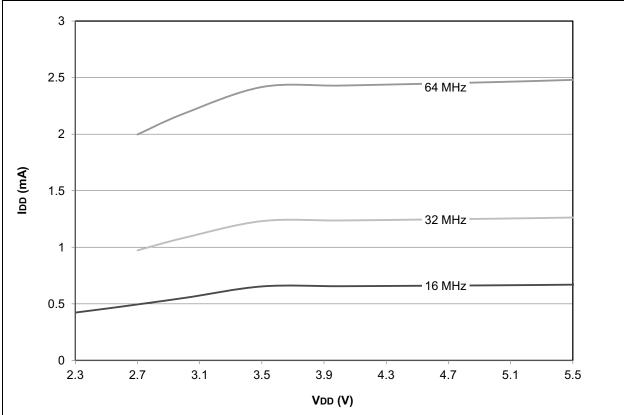
POP	Pop Top of Return Stack	PUSH	Push Top of Return Stack
Syntax:	POP	Syntax:	PUSH
Operands:	None	Operands:	None
Operation:	$(TOS) \rightarrow bit bucket$	Operation:	$(PC + 2) \rightarrow TOS$
Status Affected:	None	Status Affected:	None
Encoding:	0000 0000 0000 0110	Encoding:	0000 0000 0000 0101
Description:	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.	Description: Words:	The PC + 2 is pushed onto the top of the return stack. The previous TOS value is pushed down on the stack. This instruction allows implementing a software stack by modifying TOS and then pushing it onto the return stack.
Words:	1	Cycles:	1
Cycles:	1	Q Cycle Activity:	
Q Cycle Activity:		Q1	Q2 Q3 Q4
Q1 Decode	Q2Q3Q4NoPOP TOSNooperationvalueoperation	Decode	PUSH No No PC + 2 onto operation operation return stack
Example:	POP Goto new	Example: Before Instruc	PUSH
Before Instruct TOS Stack (1 I	ion = 0031A2h evel down) = 014332h	TOS PC	= 345Ah = 0124h
After Instructio TOS PC	n = 014332h = NEW	After Instructio PC TOS Stack (1	on = 0126h = 0126h level down) = 345Ah

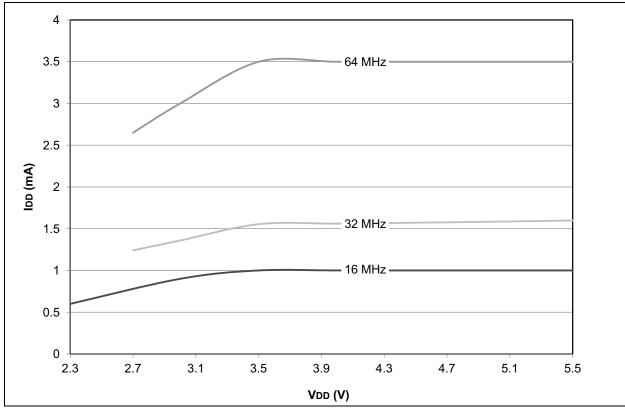

RET	FIE	Return fr	om Inte	rrupt	
Synta	ax:	RETFIE {	s}		
Oper	ands:	$s \in [0,1]$			
Oper	ration:	$(TOS) \rightarrow P$ $1 \rightarrow GIE/G$ if s = 1 $(WS) \rightarrow W$ (STATUSS) $(BSRS) \rightarrow$ PCLATU, F	iIEH or Pf ,) → Statu BSR,	S,	nged.
Statu	is Affected:	GIE/GIEH,	PEIE/GI	EL.	
Enco	oding:	0000	0000	0001	000s
Desc	ription:	Return fror and Top-of the PC. Int setting eith global inter contents of STATUSS their corres STATUS ar of these re	-Stack (TC errupts ar er the hig rupt enab t the shad and BSR sponding nd BSR. I	DS) is loa re enabled h or low p ble bit. If 's low registe S, are loa registers, f 's' = 0, r	ded into d by priority s' = 1, the ers, WS, ded into W, no update
Word	ds:	1			
Cycle	es:	2			
QC	ycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	No operation	No operat	tion fro	OP PC om stack t GIEH or GIEL
	No	No	No		No
	operation	operation	operat	ion o	peration
Exan	nple:	RETFIE	1		
	After Interrupt PC W BSR Status GIE/GIEF	I, PEIE/GIEL	= V = B	OS VS SRS TATUSS	

ds: on: Affected: ng: tion: le Activity: Q1 Decode	RETLW k $0 \le k \le 255$ $k \rightarrow W$, (TOS) \rightarrow PC PCLATU, P None 0000 W is loaded program co of the stack high addres unchanged. 1 2 Q2 Read literal 'k'	1100 with the 8 unter is loa (the return is latch (PC	kkkk 3-bit liter aded fro n addres CLATH) s F	kkkk al 'k'. Th m the to ss). The remains Q4
on: Affected: ng: ition: le Activity: Q1	$k \rightarrow W$, (TOS) \rightarrow PC PCLATU, P None W is loaded program co of the stack high addres unchanged. 1 2 Q2 Read	CLATH and 1100 I with the 8 unter is loa (the return is latch (PC) Q3 Proces	kkkk 3-bit liter aded fro n addres CLATH) s F	kkkk al 'k'. Th m the to ss). The remains Q4
Affected: ng: ntion: le Activity: Q1	(TOS) → P0 PCLATU, P None W is loaded program co of the stack high addres unchanged. 1 2 Q2 Read	CLATH and 1100 I with the 8 unter is loa (the return is latch (PC) Q3 Proces	kkkk 3-bit liter aded fro n addres CLATH) s F	kkkk al 'k'. Th m the to ss). The remains Q4
ng: htion: le Activity: Q1	0000 W is loaded program co of the stack high addres unchanged. 1 2 Q2 Read	l with the 8 unter is loa (the return is latch (PC) Q3 Proces	3-bit liter aded fro n addres CLATH) s F	al 'k'. The to the total set. The term and the total set. The term and the total set. The total set to the total set total set. The total set tota
le Activity:	W is loaded program co of the stack high addres unchanged. 1 2 Q2 Read	l with the 8 unter is loa (the return is latch (PC) Q3 Proces	3-bit liter aded fro n addres CLATH) s F	al 'k'. The to the total set. The term and the total set. The term and the total set. The total set to the total set total set. The total set tota
le Activity: Q1	program co of the stack high addres unchanged. 1 2 Q2 Read	unter is loa (the return is latch (PC Q3 Proces	aded fro n addres CLATH) s F	m the to ss). The remains Q4 POP PC
le Activity: Q1	2 Q2 Read	Proces	-	POP PC
le Activity: Q1	Q2 Read	Proces	-	POP PC
Q1	Read	Proces	-	POP PC
	Read	Proces	-	POP PC
Decode			-	
		Dala		om stack rite to V
No	No	No		No
operation	operation	operatio	on o	peratior
<u>e</u> :				
LL TABLE	; offset v ; W now ha	value as	e	
DDWF PCL TLW k0 TLW k1				
TLW kn	; End of t	able		
	DUWF PCL TLW K0 TLW K1	LL TABLE ; W contai ; offset v ; W now ha ; table va DDWF PCL ; W = offs TLW k0 ; Begin ta TLW k1 ;	LL TABLE ; W contains tabl ; offset value ; W now has ; table value DDWF PCL ; W = offset TLW k0 ; Begin table TLW k1 ;	LL TABLE ; W contains table ; offset value ; W now has ; table value DDWF PCL ; W = offset TLW k0 ; Begin table TLW k1 ;


W = 07h After Instruction

W = value of kn





© 2010-2016 Microchip Technology Inc.

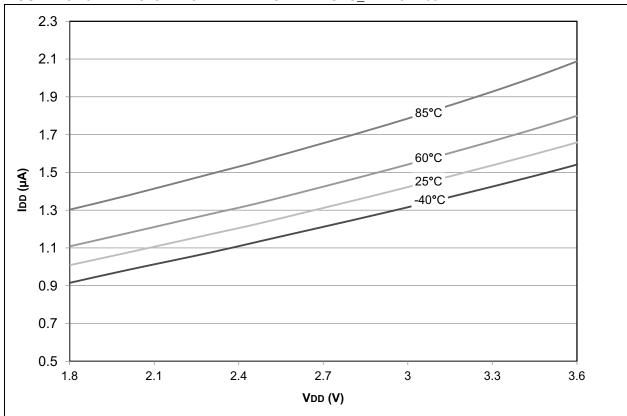
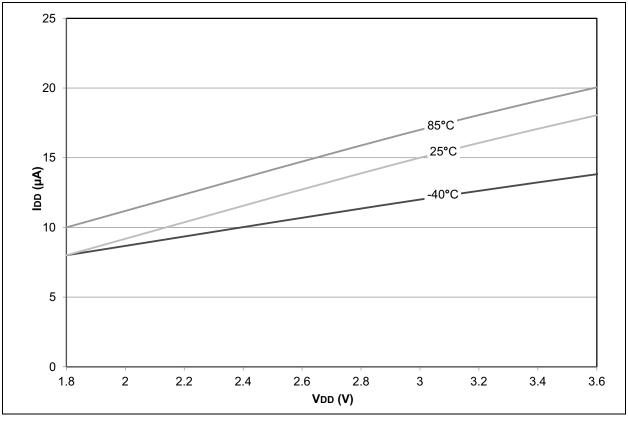
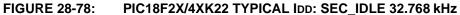
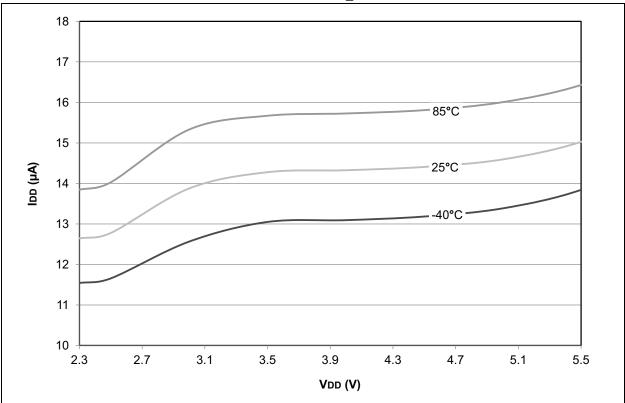
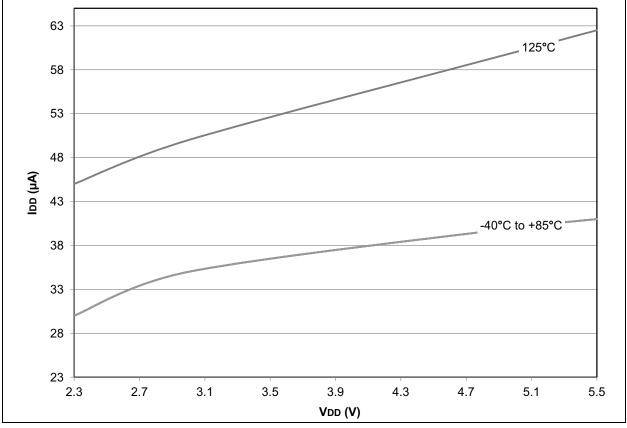





FIGURE 28-76: PIC18LF2X/4XK22 TYPICAL IDD: SEC_IDLE 32.768 kHz


FIGURE 28-77: PIC18LF2X/4XK22 MAXIMUM IDD: SEC_IDLE 32.768 kHz

© 2010-2016 Microchip Technology Inc.